
                                                                                                                                    

The construction of solution of nonlinear relativistic wave 
equation in 11.:<1>:: theory 

R. R~czka 

Institute of Nuclear Research, Warsaw, Boza 69, Poland 

The nonlinear equation <0+ m ')<I>(x )=,,:<1>3: for the quantum scalar field with special fonn of 
ordering ofthc interaction tenn, is considered. The unique soultion <I>(x) of this equation is 
constructed. It satisfies the relativistic covariance, asymptotic, irredicibility and the relativistic 
primitive causality conditions in the sense of sesquilinear form. The spectral condition is also 
satisfied. 

1, INTRODUCTION 

The construction of an interacting quantum field 
which satisfies a system of Wightman, Haag-Schroer or 
Haag-Kastler axioms is a central problem in quantum 
field theory. It seems that the best starting point would 
be a relativistic dynamical equation of motion for the 
field, determined in a specific carrier vector space.1,2 
However, because of difficulties associated with the 
definition of the product of fields one solves this prob
lem in roundabout manner; one first constructs the 
interacting field using, e,g., Hamiltonian approach and 
then one defines the equation of motion which this 
field satisfies (see Glimm and Jaffe,3 Dell 'AntoniO, 4 

or Federbush5 for specific examples). This approach 
which works in cases of quantum field theory models 
in two-dimensional space-time is not fully satis
factory. In fact the role of the dynamical equation of 
motion is reduced in this approach to the identity, which 
in principle has no physical consequences. On the other 
hand, the development of theoretical physics points out 
that the dynamical equation, together with initial or 
boundary conditions contains whole information on a 
physical system. Therefore, it seems that it would be 
more reasonable to start with certain relativistic 
dynamical equations for field satisfying a specific initial 
condition and then construct the field by solving the given 
field equation. 

In the present paper we try to realize this program 
for self-interacting scalar field considering the special 
form of ordering of the product of field operators. In 
Sec. 2 we establish the form of field equations, initial 
conditions and the carrier Hilbert space H. Next in 
Sec.3 we construct explicitly the unique solution <I>(x) of 
the field equation and we discuss the meaning of <I>(x) as 
a sesquilinear form in H. We prove in next sections 
that the field <I> (x) satisfies asymptotic, relativistic 
covariance, spectral, irreducibility and relativistic primi
tive causality conditions and possesses the unique 
vacuum. We construct in Sec. 8 the transformation 
which connects <Pout and <Pin field and we discuss the 
problem of existence of a nontrivial unitary relativistic 
scattering operator in the present model. Finally in 
Sec.9 we discuss some generalizations of the present 
method for a class of nonpolynomial analytic interac
tions and for n-dimensional space-time, n = 2,3,4, .... 

2. THE FIELD EQUATION IN A: <I>~: THEORY 

Let <I> (x) be a scalar quantum field in four-dimensional 
Minkowski space-time satisfying the following field 
equation: 

(0 + m 2 ) <I> (x) = A "<1>3 (x) ", A < 0, (2.1) 

with a priori nonspecified meaning of the nonlinear term. 
The meaning of this term with a particular rule of ordel'
ing will be given later on. 

The problem which we solve in this paper is to find a 
solution <P(x) of Eq. (2.1) which in the sense specified 
below satisfies the asymptotic condition <P (x) ----> <P. (x), 
where <I> in (x) is a free relativistic local field.tFo~ t6~t 
purpose it is convenient to use the equivalent Yang
Feldman form of Eq. (2.1) given by 

<I>(x) = <l>in(x) + AJ t.R(x _y)"<I>3(y)"d4y (2.2) 

We shall look for a solution <I> (x) of Eq. (2.2) defined as 
a sesquilinear form in the Fock space Hin associated 
with the field <l>in' Let {a(p), a*(p)} be the set of an
nihilation and creation operators of the <Pin field satisfy
ing the canonical commutation relations. Let {el(p)}~= 1 

be a complete orthonormal set of Hermite polynomials 
defined on the mass hyperboloid p2 = m 2 (see, e.g., Ref. 
6, p. 141). The smeared out annihilation and creation 
operators az and aZ, i, k = 1,2, . ", satisfy the canonical 
commutation relations [a p at] = 0ik and form an in
finite-dimensional nilpotent Lie algebra which is ir
reducible in the space H . In Ref. 7 we have constructed 
the interacting field <P(xfusing the integral representa
tion for <I> (x) in terms of the irreducible set a I' ak*, i, k = 
1,2, ... ,. Here we present an alternative method. 

The distributional nature of the interacting field 
operator <I>(x) is a priori not known. We know, however, 
that the solution <I>(x) of the nonlinear equations like 
(2.2) may usually be given as some functional of the 
<l>in field in the form of the limit of an iterative series. 
For instance the nth order iteration of Eq. (2.2) has 
the form 

<I>(n)(x) = {<I>in + lIN R{<I>in + IINR{' •. {<pin + IINR{<I>in 

+ IINR (<I>itl)}} ... }} } (n)' (2.3) 

where for functional >It(x) of the creation and annihila
tion operators in Hitl the operation NR (>It)(x) is given by 
the formula 

(2.4) 

To simplify the notation, we shall use for the limit 
of the iterative series (2.3) the notation 

lim <I>(n)(x) == [(1 -IINR)-l(<I>u)](x). 
n-oo 

(2.5) 

We see that <t>(n) (x) is a functional of the creation and 
annihilation operators. It was shown by Kristensen, 
Mejlbo, and Poulsen8 that the operators a(p) and a*(p) 
have a natural dense domain of definition a C H. which 
is some analog to the Schwartz S- space. They ~so 
showed that a(p): a --7 a whereas a*(p): a' --> a', where a' 
is the dual of a. Hence only normally ordered functions 
of creation and annihilation operators may be well
defined in Hin • In particular if we define the quotation 
marks in (2.1) as the normal ordering with respect to 
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the creation and annihilation operators of the <I>. field 
we see that <I>(n)(x) is the well-defined sesquilin~ar fo;m 
on the domain D(<I» being the linear envelope of the 
coherent state vectors in H l' This suggests that the 
ordering "<p3(x)" =: <I>3(x): ~ay lead to a well-defined 
dynamical equation. It is, however, not known for a time 
being how this particular ordering rule influences the 
underlying dynamics described by Eq. (2.1). 

3. THE CONSTRUCTION OF THE INTERACTING 
FIELD <l> (x) 

We first construct a convenient dense subset LJ(<I» 
contained in Hin . Let 

Iz> = exp( - 411z11Z) exp(za*) 1 0 >, 

where za* = I;~ ZkaZ and z = {Zk};'= 1 

(3.1) 

is an element of the Schwartz 5-space of quickly de
creasing sequences. The vectors 1 z), z E: 5, are called 
the coherent state vectors. It follows from Eq. (3.1) that 

It is well known that if J is a dense subset in the 
Hilbert space [Z of complex sequences {z k} ~, then the 
set LJ(q,) {I z), z E: J} is the complete set in Hin .9 Hence 
the set of all finite linear combinations of coherent 
states 1 z), z E: 5, is dense in Hill' 

The following proposition summarizes the main results 
of the present paper. 

Proposition 1.' The dynamical equation (2. 2) has the 
unique solution <I>(x) given by the formula 

(3.3) 

where for a functional >v(x) of the creation and annihila
tion operators in Hin the operator NR('fJ) is given by the 
formula 

(3.4) 

The field <I> (x) is a sesquilinear form defined on the 
dense set LJ(q,) constructed above. The series (3.3) is 
weakly convergent on D(<I» with respect to the F-norm 
given by the fqrmula [for u, v E: D(ep) we denote 
(u 1 q, (x) 1 v) = <I> (x )] 

11$II1,. = sup 11<i>(t)ll~ + sup 1 $(t, x) IZ + J sup I$(t, x) 1 zeit , 
I I,x x (3.5) 

where 11'11 E is the energy norm 

11<I>(t)II~= r [4>Z(t,x) + Iv$(t,xl z +m z<I>Z(t,x)]d3x. 
R3 (3.6) 

Proof: The nth order iterative approximation of 
Eq. (2.2) has the form (2.3) where the nonlinear opera
tor N R (') is given by the formula (3.4). The field <Jlil1(X) 
has the following form in terms of az and aZ operators: 

<I> iU(X) = CPk(x)aZ + CPk(x)a k, 

where 

CPk(X) = NJ exp(ipx)ek(P)dll(p), 

dlJ(P) = d 3p/po' N = [2(27f)3]-1/Z 

if I z'), I z) E: D(<Jl), then 
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(3.7) 

(3.8) 

Moreover, for m = 2, 3, 4, .. " we have 

(z'l: <I>r:,(x): Iz)/(z'lz) =.f.i1,(x,z',z). 

Since <I>Cn)(x) contains only normally ordered powers of 
<I> Ul' we obtain 

cl>(n)(x,z',z) '= (z'I<I>(n)(x)lz) (Z'lz)-1 

= {1>1ll + ANR {1>in + ANR {" '{¢;n + ANR{<I> in 

+ ANR(¢il.lJ} .. . }}}, (3.10) 
_ A 

where N R is a nonlinear map which for elements 1/1 with 
a finite F-norm is given by the formula 

NR(~)(X) = f .6 R (x -y)~3(y)d4y. 

The function cl>(n)(x, z', z) is the nth order iterative ap
proximation of the classical equation 

<l>(x,z',z) = <l>in(x,z',z) + AJ .6 R (x -y)<l>3(y,z,z)d4y. 
(3.11) 

The nonlinear equations (3.11) were extensively studied 
~y Segal,10 Brodsky,ll Moravetz and Strauss. 1Z Let 
<Jlo(x, z', z) b~ a solution of the free Klein-",Gordon equa
tion and let <I>o(t = 0, x, z', z) '= 1/1 1 (x) and <I>o(t = 0, x, z', 
z) '= 1/Iz (x) Define F 1 as the space of the free solutions 
such that 1/1 1 has third derivatives in L 1 (R 3) and second 
derivatives in L z(R3) while 1/I2(x) has second derivatives 
in L1 (R3) and first derivatives in L 2 (R3). Let F denote 
a completion of F 1 in the F-norm. T~en the Moravetz
Strauss theorem 12 ;v assures that i~ <Jlh,(x,z', z) E: F, 
then there exists a unique solution <I>(x, z', z) of Eq. (3.11), 
which has finite F-norm and is given as the limit in 
F-norm of the iterative series. In addition there exists 
a free solution ¢out (x, z', z) such that 

¢U1(t,X,Z',Z)<- <i>(t,x,z',z) -> .f>Olll(t,X,Z',z), 
t---'> -00 t~oo 

(3. 12) 

in the energy norm. 

Now, because z = {Zk}~ and z' = {z~}~ are elements 
of the nuclear 5-space of sequences the functions 
ek(p)z~p(/ and ek(P)zkPf/ are elements of the Schwartz 
§-space of functions in the momentum space; hence 
<I>;n(O,x,z;z) and the transform 4>in(O,X,z;z) cor-

responding to the time derivative 4>in(x) satisfies the 
regularity conditions imposed on elements of F-space. 
Consequently the classical solution .f.in (x, z', z) of the 
free Klein-Gordon equation given by Eq. (3.9) belongs 
to F-space. Therefore, there exists a unique solution 
of Eq. (3.11) in the form: 

¢(x, z', z) = [(1 - ANR)-1(<i>in)](x, z', z). (3.13) 

The iterative approximation (2.3) of <I> (x) by virtue 
of Eq. (3. 13) is weakly convergent in F-norm on the set 
of coherent state vectors. If u =uil~') and v = vkl:> are 
arbitrary elements in D(<Jl) , then we have 

i k A 

(u I <Jl (n) (X) 1 V) = I; ii iV k ( Z ' 1 Z) <I> (n) (x, Z " Z) 
i, k _ 

i k A i k 
----> !:UiVk(Z'lz)<I>(x,z',z) in the F-norm. 
n-+ 00 i,k 

Hence the solution <I> (x) given by Eq. (3. 3) is the ses-
quilinear form on D(<I». QED 

From the formula (3.3) it follows that 

(01 <I> (x) 10) = 0 and (p 1 <I> (x) I 0) = [2(27T)3]-1/Z exp(ipx). 
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4. ASYMPTOTIC CONDITIONS 

The present approach enables a new precise formula
tion of asymptotic conditions. Indeed we have 

Proposition 2: There exists a quantum field <l>oot(x) 
which satisfies the free Klein-Gordon equation such that 

(4.1) 

in the sense of the sesquilinear forms on D(<I». More 
precisely, for 11, v E D(<I» the limits 

(ul<l>in(t,x)lv) -- (ul <I>(t, x) Iv) ---7 (uI<l>out(t,x)lv), 
t~-<X) t~<X) (4.2) 

hold in the energy norm (3.6). 

Proof: For lz'), Iz) in D(<I» the function (3.9) is in 
F-space. Hence <I>(t, x, z', z) given by (3.13) satisfies 
(3.12). Consequently, for u = uil~) and v = vkl~) in D(<I» 
we have 

lim II (u I (<I>(t, x) - <l>in(t, x» 1 v) II E 
t--oo 

= O. 

Similarly we show using (3.12) that <l>out field given by 

(4.4) 

where 

NA(I{I)(x) = I AA(X -y): 1{13(y): d 4y (4.5) 

satisfies the condition (4.2) QED 

5. RELATIVISTIC COVARIANCE, SPECTRAL 
CONDITION AND THE UNIQUENESS OF VACUUM 

Proposition 3: Let (a, !\) ---7 Ural, A) be the unitary 
representation of the Poincare group in the Fock space 
H in • Then 

ural, A) <I> (x) (Ural, A)-1 = <I> (Ax + a), 

Ut:,l, A) <l>out(X)(Ura',A)-l = <l>out(Ax + a). 

(5.1) 

(5.2) 

These formulae are understood as the equality of ses
qui linear forms on D(<I». 

Proof: If 1 z), Z E 5, is a coherent state, then 
1 Z (a, A) == (Ura, A)- 1 I Z) is also a coherent state with 
z(a, A) E S. Hence Eq. (3.10) implies 

<f,(n)(x,z'(a,A),Z(a,A) = <f,(n)(Ax +a,z',z). 

For n ---7 00 both sides of this equality converge in F-norm. 
This implies Eq. (5. 1). Similarly, using (4.4), we derive 
(5.2). QED 

The formula (5.1) implies that the total 4-momentum 
P~, /1 = 0, 1, 2, 3, coincides with P;:'. Because H = Hill 
and UCa. A) = Ura', A) there is exactly one state in H which 
is invariant under all Poincare transformation: this is 
the Fock vacuum 10). The operator M = (p PI') 1/2 has 
discrete eigenvalues 0 and m and the contin~um of mass 
values above 2m. Hence the spectral condition in the 
Wightman or the Haag-Ruelle form is automatically 
satisfied in this model. 
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6. IRREDUCIBILITY 

Let \It(x) be a sesquilinear form, defined on the dense 
set D(\lt) in a Hilbert space H. we say that \It(x) is ir
reducible if for every self-adjoint bounded operator B 
with the range R(B) C D(\lt) the equality 

(ull{l(x)Blv) = (uIB\lt(x) Iv) forallu,vED(\lt) (6.1) 

implies B = bI, b E R. In our case we have 

Proposition 4: The field <I>(x) is irreducible. 

Proof: Let <I>(x) satisfies (6.1). Then for u, v E D(4)) 
we have 

(UI(D +m 2 )4>(x)Blv) = (uIB(D +m 2 )4>(x)lv). 

Therefore the sesquilinear form: 4>3(x): commutes with 
B. Hence by virtue of Eq. (2. 2) we conclude that B com
mutes with 4>in(x) on D(4)). Hence B = bJ. QED 

7. RELATIVISTIC PRIMITIVE CAUSALITY 

One distinguishes in quantum field theory at least 
three concepts of causality13: 

(i) Einstein causality (i.e., local commutativity), 

(ii) primitive causality, 

(iii) relativistic primitive causality. 

The relativistic primitive causality for sesquilinear 
form \It(x) demands that if a region O2 in R4 is causally 
dependent on a region 0 1 (Le., every ray in the back
ward cone originating from O2 passes through 0 1 ), then 
all matrix elements (u I \It(x) I v), (t, x) E O2 , U, V E D(\lt), 
are determined by the matrix elements of \It(x) for 
(t, x) E 0 1 , 

In our case we have 

Proposition 5: The field <I>(x) given by Eq. (3.3) 
satisfies the relativistic primitive causality condition. 

Proof: For Iz'), Iz) in D(4)) the function <p(t,x,z',z) 
satisfies the local hyperbolic equation (3.11). Hence 
the assertion of Proposition 5 follows from the causality 
of classical solutions. QED 

8. SCATTERING OPERATOR 

The scattering operator is defined in the Heisenberg 
picture as the transfo~mation which connects 4>out and 
<Pill fields, Le., <Pout = S(4)ill)' In conventional approach 
it is assumed that 4> out field is canonical, irreducible 
and possesses the same set of smearing test functions 
as 4>ill field; in such a case transformation 5 is unitary 
implemented in H,Le., 4>out = S-l<!>i.uS, In our case we 
have 

Proposition 6: The transformation 5 is given by the 
formula 

where for functional \It(x) of creation and annihilation 
operators the operation N(\lt) is defined by the formula 

N(\lt)(x) = I A(x -y): \lt3(y): d 4y. (8.2) 

The transformation 5 has the following properties: 
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(i) S '" I; 

(ii) SlUt:', A) <I>il'(U~, A)-1] = ur,:, A) S(<l>il)(U(,:, A)-1; 

(iii) S possesses the inverse given by the formula 

(8.3) 

(8,4) 

<l>it'(X) = S-l(<l>out)(x) = {[I - AN(J - AN A)-l](<l>out)}(x), 
(8.5) 

The convergence of series (8.1) and (8,5) is the weak 
convergence on D(¢) with respect to E-norm (3.6), 

Proof: Taking the matrix elements of (8,1) between 
coherent states vectors 1 z '), 1 z) in D (<I», we reduce (8. 1) 
to the corresponding equality for classical wavefunctions 
4> (x, Z"', z) and 4> in (x, Z"', z), which holds by virtue of 
Moravetz-Strauss theorem,12v Similarly one proves Eq, 
(8,1) and all remaining assertions for arbitrary vectors 
1t,1I in D(<I» , QED 

We are not able to prove or disprove for the time 
being that the transformation S is unitary implemented 
in the carrier space H, If S would be unitary implement
ed, then the scattering operator 5 '" I, 

g, DISCUSSION 

A, The results of the present paper may be extend
ed to a class of nonpolynomial interactions A: F(<I»:, 
where F(') satisfies the conditions: 

(i) F (.) is an odd analytic function, 

(ii) F'(O) = 0, 

(iii) IF(z)z- 5
1 -->0 as Izl -->ro. 

The extension of the present results may be proven 
by using in the proof of Proposition 1 the corresponding 
results for the classical nonlinear relativistic wave 
equations with analytic nonlinear term .12 iV, 12 v 

B, The present formulation may be easily extended 
for the case of n-dimensional space-time, n = 2,3,4, ... , 
Again it is sufficient to use the corresponding results 
for the classical equations.1° iii 

C, To complete the present approach one should 
clarify the problem of local commutativity and unitary 
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implementation of the scattering operator (8.1), These 
problems for a time being are open. 
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Application of nonstandard analysis to quantum 
mechanics 

M. O. Farrukh 

Physics Department, Imperial College of Science and Technology, London, S. w: 7, England 
(Received 8 June 1973) 

Quantum mechanics is formulated using a nonstandard Hilbert space. The concept of an eigen vector 
of a linear operator, which applies to standard as well as nonstandard Hilbert spaces, is replaced by 
the more general concept of an ultra eigen vector, which applies to nonstandard Hilbert spaces 
alone. Ultra eigen vectors corresponding to all spectral points of internal self-adjoint operators are 
proved to exist. This result enables us to set up a formalism which is equally valid for the discrete, 
as well as the continuous spectrum. Finally, Dirac's formalism is reproduced, in a rigorous form 
within the nonstandard Hilbert space structure. 

1. INTRODUCTION 

Conventional quantum mechanics is usually formu
lated in a separable complex Hilbert space. 1 States 
are represented by unit rays in the space, and obser
vables are represented by densely defined self-adjoint 
operators. The relation between the measuring process 
and the spectral properties of self-adjoint operators 
can be established as follows. Let X be the separable 
complex Hilbert space. If f, g EX, then their scalar 
product is denoted by the complex number (f ,g) E C, 
and taken to be antilinear in the first argument, but 
linear in the second one. The norm II f II is defined as 
IIfll = ,f(f,j). 

If A is a densely defined self-adjoint operator, then 
there exists a spectral measure E, which assigns to 
every Borel subset A of the real line R, a projection 
operator E t>' and such that, if E t-. == E (-00, t-.), then by the 
spectral theory2 we have 

(1. 1) 

Now, if the system under consideration is in a state 
f(lIfll = 1), then the probability that the measurement of 
the observable A yields a result in the Borel set A C R 
is:1 

prob(A,j, A) = (f, E cJ) . (1. 2) 

Consider first the case where the spectrum of A is 
purely discrete (and nondegenerate for simplicity). In 
this case, there exists a sequence of real numbers 
{an: n EN} and a sequence of orthonormal vectors 
{ ¢ n: n EN}, such that 

A¢n = a" ¢n' for all n EN, 

(</>n' ¢n') = o~', for all n,n' EN. 

(1. 3a) 

(1. 3b) 

If X is the dual space of X (space of continuous linear 
forms on X), then, for every f EX, a continuous linear 
form L j may be defined such that for all cP E X, 
Lj(cp) = (f, cp). Conversel~, by the well-known Riesz 
theorem,3 any element of X is of the form L j for 
some f E X. 

If cp E X and ~ E X, then the tensor product cp 0 ~ is 
defined to be the bounded linear operator on X which 
sends f E X into 

(cp 0 ~){f) = ~{f) cpo 

By using these definitions, we can show that the spectral 
measure corresponding to A [as defined by (1. 3a) and 
(1. 3b)] is 

for all Borel sets A C R. 
(1. 3c) 
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In case A contains an infinite number of eigenvalues of 
A (but still a countable number), the convergence in 
(1. 3c) is the strong pointwise convergence. 

By taking A = {an} , Eq. (1. 2) reduces to 

prob(A,j,{an}) = (f,E{a }f) 
n 

= (f, (CPn 0 Lcp) {f) 

= (f, CPn (CPn,j» 

= (f, CPn) (CPn,f) 

= I(CPn,f)12. (1.4) 

Equation (1. 4) can be interpreted as follows: 4 

II: The result of any measurement of an observable 
can only be one of the eigenvalues of the corresponding 
operator. As a result of the measurements, the physical 
system finds itself in the state represented by the cor
responding eigenvector. 

12 : If the system is known to be in the state f, then 
the probability that a measurement of ari observable A 
on the state f yields the value an is given by 

prob(A,f, {an}) = I (f, ¢n) 12. 

Dirac tried to extend 11 and 12 to the continuous spec
trum by considering a larger space. 5 His bra and ket 
formalism, when applied to the discrete spectrum is just 
a short hand. He writes, for example, 

Aln)=anln) forallnEN, 

(n In') = 0 ~ , for all n, n' EN, 

:6 In) (n I = I. 
nEN 

(1. 5a) 

(1. 5b) 

(1. 5c) 

Equations (1. 5a) and (1. 5b) are just a shorthand for 
(1. 3a) and (1. 3b), respectively, while (1. 5c) is a short
hand for the special case of (1. 3c) obtained by setting 
A = R, I being the identity operator on X. 

In going to the continuous spectrum, Dirac assumed 
the existence of a set of objects { I ~) : ~ in the spectrum 
of A} satisfying analogous properties: 

A I ~) = ~ I ~) for all ~ in the spectrum of A, (1. 6a) 

(1; 11;') = o(~ - e) for all ~, e in the spectrum of A, 

(1. 6b) 

f d~ I ~) q I = I. (1. 6c) 

Unfortunately, these equations cannot be rigorously jus
tified in this form (Dirac never defined his larger space). 
We note, in particular, that Eq. (1. 6b) involves the so
called 0- Dirac function, which, mathematically, fails to 
exist as a function. 

Copyright © 1975 American Institute of Physics 177 



                                                                                                                                    

A lot of work has been done to make these equations 
rigorous. 6 We mention, in particular, the extension of 
X to a rigged Hilbert space (4), X, 4> ') introduced by 
Gel'fand, where 4> C X is a dense subset endowed with 
a finer topology and 4>' is the dual space of 4>, equipped 
with the strong dual topology. 

Because the topology of 4> is finer than that of X, we 
have the following. 

(i) The canonical embedding T: 4> -') X is continuous. 

(ii) :k c 4>' (sometimes written as X c .pI). 

The following conditions are required to be satisfied. 

(1) 4> is contained in the domain of the self-adjoint 
operator A under consideration, and is stable under it 
[i.e.,A(4)) c 4>]. 

(2) The restriction of A to 4> is a continuous map from 
<I> into itself, relative to the topology of 4>. 

(3) For every A in the spectrum of A, there exists an 
element ~A E 4>' such that ~A(Acp) = A~A(CP) for all 
<P E 4>. 

The operator A can easily be extended to 4>' uSing the 
definition 

(A'~)(cp)=~(A<p) forall~E4>' and CPE4>. 

In particular, 

A' ~ A = Ab. for all A in the spectrum of A . (1. 7) 

It can be shown that there exist a measure fJ. on the real 
line and a system of elements of 4>' denoted by {~A, n : 

n E N and A in the spectrum of A}, such that any element 
~ E 4>' satisfying A' ~ = A~ can be written as ~ = ~nEN 
()I n ~ A, n «()In E C) and such that, for all cp, ljI E 4>, we have 

(1. Sa) 

By defining ~~ n(CP) = (h,n(CP»* and fA n 0 ~A,n(cp,ljI) = 
~~ n (cp) ~A n (ljI) for the pair (cp, ljI), Eq. tl. Sa) can be 
written as' 

(1. Sb) 

Now, if ~ is a Borel subset of the real line, there exists 
a projection operator E;:, on X such that, for all 
cp, ljI E CP, we have 

This motivates the introduction of the symbolic defini
tion 

(1. 9) 

using which, Eqs. (1. 6a) and (1. 6c) can be put into the 
rigorous forms (1. 7) and (1. 9), respectively. However, 
Eq. (1. 6b) remains unjustified. 

The physical interpretation of the rigged Hilbert 
space is as follows: Physical states are represented 
by unit rays in cp (and not X!). Observables are repre
sented by self-adjoint operators densely defined in X, 
with their domains containing 4>. Experiments are rep
resented by elements of 4>', The result of any measure
ment of an observable can be one of its eigenvalues, 
when the eigenvalue equation is solved in 4>'; but the 
result, if it does not belong to the spectrum of the 
corresponding operator in JC, must be rejected! 
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The probabilistic interpretation of the rigged Hilbert 
space structure is as follows: Let a physical system be 
in a state cp E 4> (II cp II = 1). Let A be an admissible 
eigenvalue of a self-adjoint operator A. Let f E cp' be 
such that A'f = V. 

Now, if f E' :fC, then by Riesz theorem,3 there exists 
an element hEX such that f = L h' The probability that 
the measurement of A yields the value A in the state cp 
is I < h, cp) 1 2 (II h \I = 1). But if f t JC (A belongs to the 
continuous spectrum of A), then 1 f(cp) 12 is the probabi
lity denSity that the measurement of A yields the value 
A. The absolute probability that the measurement of A 
yields a value in ~ c R (a Borel subset) is ];,E;:' d/l(A) I 
~).(cp) 12 , where A'~A = Ah and fJ. is the measure used 
in (1. Sa). 

The difficulty with this formalism is that, instead of 
enlarging the space X of physical states to include 
eigenstates of the continuous spectrum, it reduces it 
to cp C X. Thus, we, still cannot talk about transition to 
eigenstates induced by the measuring process itself. 
The role of X is reduced to a minimum and seems 
artificial. Observables, which are linear operators on 
4> , continuous with respect to its fine topology, and sym
metric with respect to the scalar product in CP, must 
admit self-adjoint extensions to X. Also, the eigenvalue 
equation when solved in 4>' gives an admissible result if 
and only if it corresponds to a value in the spectrum of 
the operator under consideration in X. The space 4>', 
which is in a sense, an enlargement of X, fails to re
place X, because it does not have a scalar product. 

In this paper, we are going to extend the Hilbert space 
JC to a nonstandard Hilbert space *JC 7,8 in order to 
construct a formalism which has none of the disadvan
tages above. The additional properties of *X are gained 
at no price, because, except for linguistic modifications, 
all the properties of X are carried into *X, due to the 
transfer theorem. 9 The basic idea is the nonstandard 
extension of a well-known property of standard Hilbert 
spaces. In the standard theory, if A belongs to the con
tinuous spectrum of a self-adjoint operator A, densely 
defined on X, then for any E > 0 there exists a vector 
f E X, Ilfll = 1, such that II Af - VII < E. The vector f 
is said to be "almost" an eigenvector 1 0 with eigenvalue 
A and "error" not larger than E. This concept, in the 
standard theory, is not very helpful, because, due to the 
absence of the notion of absolutely small quantities, any 
vector f E JC, II f II = 1 is almost an eigenvector of any 
operator A, with eigenvalue being any number A. and 
error II Af - V II, Even if we put an upperbound for 
errors, the determination of the eigenvalue correspond
i.ng to an almost eigenvector of a given operator is not 
possible. 

In the nonstandard theory, the situation is different. 
The nonstandard real line *R, which replaces the stan
dard real line R and contains it as a subset (more pre
cisely,contains a subset isomorphic to R),has the addi
tional property of containing nonzero numbers (known 
as infinitesimal numbers), which are less in magnitude 
than any positive standard number (i. e. , element of R). 
By allowing the error to be an infinitesimal number 
only, the concept of an almost eigenvector can be re
placed by the concept of an ultra eigenvector. The 
crucial point is that for a given vector f, II f II = 1, there 
exists at most one standard number A, such that 
II Af - Af II is infinitesimal, A being a given operator. 
However, if A belongs to the spectrum of A (whether dis
crete or continuous), then there exists at least one vec
tor f, II f II = 1, such that II Af - V II is infinitesimal. 
The existence of f for a given A. (in the spectrum of A) 
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and the uniqueness of A (if restricted to be standard) 
when f is given, make the concept of an ultra eigenvector 
very useful. Hence, by using ultra eigenstates of dynami
cal observables instead of eigenstates, quantum mecha
nics can be formulated in such a way that no distinction 
between the discrete and the continuous spectra is re
quired. 

In Sec. 2, we state the main facts about nonstandard 
analYSis, and show how to construct a nonstandard Hil
bert space. Section 3 is concerned with the study of the 
spectrum of internal operators (mainly self-adjoint) in 
a nonstandard Hilbert space. While in Sec. 4, we con
struct probability functions associated with standard 
self-adjoint operators and defined on a ring of Borel 
subsets of the real line. They will serve as probability 
functions for values obtained during the measuring pro
cess. In Sec. 5 we use all the preceding results to 
formalize quantum mechanics USing a nonstandard Hil
bert space. In particular, we demonstrate the manner 
in which both the continuous and discrete spectra can 
be dealt with on an equal footing. Finally, Sec. 6 is con
cerned with the construction of wavefunctions of non
relativistic free particles as an illustration of the 
method, USing a nonstandard function similar to the 
"delta Dirac function". 

2. NONSTANDARD THEORIES 

Nonstandard analysis is a set theoretic tool which 
allows us to embed any given set D into a larger set 
*D in such a way that any structure on D can be ex
tended to a corresponding "internal" structure on *D. 
The procedure is very simple and universal. An equi
valence relation is defined on the class of all sequences. 
If D is a set, then *D is the set of equivalence classes 
of sequences of elements of D. If E is a structure on D 
(e. g. , E is a subset of D, or E is a function from D x D 
into D, etc.), then *E (constructed in the same way) is 
not a structure on *D, but is naturally isomorphic to a 
similar structure on *D. The natural isomorphism de
pends on the particular case concerned, and because 
we meet it very frequently, the procedure seems to 
lose some of its simplicity, but only superfiCially. 

The set D is naturally isomorphic to a subset of *D 
which we denote by D. If E is a structure on D, then the 
restriction to D of the structure on *D isomorphic to 
'" E is isomorphic to E itself. This allows us to identify 
D with i3 and consider *D as an extension of D. The 
crucial point is that the structure on *D isomorphic to 
*E satisfies, apart from some linguistic modifications 
to be stated later, the same properties satisfied by E. 
Hence, nothing is practically lost in going from D to "'D. 
What we gain is a wider concept of "convergence." 
Sequences which diverge in D with respect to its topo
logy can be represented in "'D by elements which are 
independent of any topology on D. The algebra applied 
to these elements is the same algebra applied to the 
"standard" elements. It appears as if we could make all 
sequences in D convergent. 

The universal equivalence relation on the class of all 
sequences mentioned above can be defined by USing the 
concept of a free ultra filter on the set of natural num
bers. The existence of at least one free ultra filter is 
guaranteed by the axiom of choice; but the choice of a 
specific free ultra filter seems to be irrelevant to the 
problems with which we are concerned. 

A. Ultra powers 

Definition (2.1): A class a' of subsets of the set of 
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natural numbers N (nonnegative integers) is called a 
free ultra filter, if an only if it satisfies: 

(Fl) ¢ Ej: a',butN E 5'. 

(F2) If A E a' and BE a', then An BEg:. 

(F3) If A E g: and A C Band BeN, then BEg: . 

(F4) If A eN then either A E g: or N'" A E g:. 

(F5) If A eN and A is a finite set, then N ',A Ea'. 

Let D be a nonempty set and denote by r(D) the set of 
all sequences of elements of D. If a E D, then the con
stant sequence in D having the value a is denoted by a. 
Let a' be a free ultra filter on N. We write XD.-.;'f x' for 
x E r(D), x' E r(D) and {n : n E Nand xn = x~} E g:. 
It can be easily seen thatV""S' is an equivalence relation 
on r(D), induced by the free ultra filter g:. Hence the 
equivalence class [x] D II of x E r(D) is defined to be 
the set {x': x D,.J x'}. The quotient set r(D) / ItJ is the 
set of equivalence classes of elements of r(D), i. e., the 
set {[x] D S' : x E r(D)}. We define I:y (D) as the subset 
of the quotient set r(D)/~3' whose elements are equiva
lence classes of constant sequences in D, i. e. , the set 
{[X]D.,,:XED}. 

We shall adopt one free ultra filter (but leave it un
specified!) and write * D for r(D)/ D""J and.8 for I J (D), 
g: being understood It is very clear that D C "'D. 

Theorem 2.1: The function 

~D~ .8 

tx ~ TD(X) = [X)D,J 

is a bijection. 

Proof: T D' by definition of D, is surjective. To show 
that it is injective, let x,Y ED such that x "'- y. Now for 
~1l n:: N: xn == ~ andYn == y.~H~ns..e\f~ all n EN, 
xn "'-Yn,l.e.,{n;,n EN lll!.dx n -Y"J - ¢. But by (Fl) 
¢ Q: g:. Hence [X]D.3' "'- [Y]D.J ,or TD(X) "'- TD(Y). • 

We shall identify D with.8, and call *D the nonstan
dard extension of D. 

Definition 2.2: we say that a statement P(n) is true 
for almost every n E N [and write it for short \1 n P( n)] 
if and only if it is true for a subset of N belonging to g:. 

Using Def. 2. 2 we show how structures on D may be 
extended to *D. We notice first that if x andy are two 
sequences of elements of D which coincide almost every
where (i. e. ,for almost every n EN, x = Y n)' then x and 
Y define one and the same element of ;PD. Let us be 
given a class T of subsets of Al x A2 X ••• x An' where 
(A I ,A2,.·. ,An) is an n-tuple of nonempty sets. *T is 
not a class of subsets of *AI x *A2 X ••• x "'An' How
ever, "'T is naturally isomorphic to a class of subsets 
of *AI x "'A 2 X ..• x "'An' This natural isomorphism 
may be visualized as follows: Let 5 E "'T. If R,R' c 5, 
then Rand R I are two sequences of subsets of 
Al x A2 ... x An which are equal almost everywhere 
(i. e., for almost every j EN, R j = R'j ). Let now 
(y l , ... ,yn) E "'AI X ." x "'An and let xl,x'i E yi 
(i == 1, ... ,n). Now xi and X'i are equal almost every-
where (i. e. , for almost every j eN, Xi == X'i). We can 
verify that for almost every j EN, (i'l, x~ 2 , ... , x~n) E R' 
if and o~ly if, for almost every j EN, J(x} /xJ, ... ,:Ij) ER~. 
Hence, glven an element 5 E "'T, we can construct an 
element 5 C "'AI X . " x "'An in such a way that 
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(y1, ... ,yn)E S if and only if for anyR E Sand 
Xi E yi(i = 1, ... ,n) the following statement holds: 

For almost every j E N, (x},xJ, ... ,xj') E Rj" 

Mainly, because o! (F4), we may verify that if S1 '" S2' 
S1' S2 E *T then S1 '" 52 (according to the above con
struction). These considerations motivate the following 
definition: 

Definition 2. 3: Let T be a class of subsets of 
A1 x A2 X ••• x An' and let S E *T. Then arAI' A

2 
• .•.• An) 

(S) C *Al x *A2 X ••• X *An is defined as 
follows: 

(Xl ,X2 ,··· ,xn) E arA A A) \ l' 2 I' •• , n 

(S) = 3 R 3 yI3 y 2'" 3 yn S = [R]T. \T ' 

Xl = [yl]A (T,X2 = [y2]A (T, ••• ,Xn = ryn]A \T, 
p ~ w 

and V'/yJ,YI"'" , yj) E R j • 

Now,ifR E T (Le.,R CAl X A2 X .•. X An) then 
TT(R) E *r (Theorem 2.1) and so afA

1
.A

2 
..... A

n
) 

(TT(R» C *Al X *A2 X '" x *An (Def. 2. 3). Write 
a(A

1
.A

2 
..... An) for aCf

1
.A

2 
..... An)O TTo with To being the 

class of all subsets of Al x A2 X '" x An [denoted by 
P(Al x A2 X '" x An)']' 

In the following definition, take T=P(Al XA 2 x· .. XA n ). 

Definition 2.4: A relationR C*A l x*A 2 x··· x*An 
is called: 

(i) Internal if and only if there exists an element 
S E *r such that R = 0'&1' A

2 
•.... An) (S). 

(ii) Standard if and only if there exists an element 
SE TsuchthatR=O'(A

1
.A

2 
..... A

n
)(S). 

(iii) External if and only if it is not internal. 

It is very clear that standard relations are internal. 
The following examples may illustrate the terminology: 
Consid€]" *N, the nonstandard extension of N (identifying 
N with N). Now: 

(a) N is an external subset of *N. (No sequence of 
subsets of N generates N.) 
¢ and *N are standard internal subsets of *N 
(generated by ¢ and N, respectively). 
If n E *N "-N (which is not empty), then {n} is 
an internal subset of *N which is not standard. 
(If KEn, then the sequence {{Kj } : j E N} 
generates {n}. ) 

(b) The function 

I *N -) *N 
f: I n -) f(n) = n 

is standard internal (generated by the identity 
map on N). The function 

\*N -) *N _ In 
fo:) n -) f(n) - 10 

ifnEN 
if n E *N"'-N 

is external. (No sequence of functions from N 
into N generates f 0') 

The function 

KE *N 
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is internal. It is standard if KEN, but not standard if 
K E *N"-N. 

We state now the most important theorem in nonstan
dard analYSis known as the transfer theorem. 9 It is in 
fact a meta-theorem whose proof needs a lot of mathe
matical logiC. Chapter II in Robinson's book7 is devoted 
to this assertion. 

Theorem 2.2 (The transfer theorem): Everyabs
tract theory possesses a nonstandard extension in which 
abstract sets go into their nonstandard extensions, and 
relations on these sets go into internal relations on the 
extended sets. Constant relations go into their corres
ponding standard relations. No statement about external 
relations is given a priori. 

We now apply these ideas to construct those nonstan
dard theories which are needed for a full understanding 
of the notion of a nonstandard Hilbert space. 

B. Nonstandard real line 

A standard theory of the real line is a second order 
theory given by 

(1) an abstract set of individualS R, 

(2) two ternary relations on R; namely Sand P 
(S, peR x R x R). 

(3) A binary relation on R; namely L(L C R x R), satis
fying the well-known axioms which make (R, S,P, L) a 
complete ordered field. 1l 

The interpretation of this is as follows: R is the set of 
real numbers, which we call individuals, where (a, b, c) E S 
means a + b = c, (a,b,c) EPa. b = c,and (a,b) E L 
a ~ b. 

Nonstandard Extension: This is the second-order 
theory given by 

(1) *R, a nonstandard extension of R; 

(2) 5 = ° (R.R.R)(S) and.? = o(R.R.R)(P),the standard tri
nary relations on *R corresponding to Sand P, respec
tively; 

(3) L = ° (R.R) (L), the standard binary relation on *R 
corresponding to L, and satisfying the corresponding 
axioms according to the transfer theorem (Theorem 
2.2): 

(a) (*R, 5,?, L) is an ordered field, because all state
ments about ordered fields are first order. (Domains 
of variables in the statements are sets of indivi
duals.) We shall identify"R with ii, and write again 
a + b = c for (a,b,c) E S, a. b = c for (a,b,c)E P, 
and a ~ b for (a, b) E L. 

(b) The statement concerning the completeness of B. 
which asserts: "Every nonempty lower bounded 
subset of R (unary relation on R) has a greatest 
lower bound," being of the second order (domain 
of its variable is a class of relations on R) becomes: 
"Every nonempty lower bounded internal subset of 
*R has a greatest lower bound." 

Dejinition 2.5: A nonstandard real number x E *R 
is said to be 

(i) finite.' if and only if their exists a standard 
positive real number r E R, r > 0 such that I x \ < r; 
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(ii) infinitesimal: if and only if for every positive 
standard real number r E: R, r> 0, we have I xl < r; 

(iii) infinite: if and only if it is not finite. 

We note that all standard real numbers are finite. We 
note also that all infinitesimal numbers are finite. The 
number zero is infinitesimal. In fact, it is the only stan
dard number which is infinitesimal. Nonzero infinitesi
mal numbers do exist. As a consequence, infinite num
bers, being the multiplicative inverses of nonzero infini
tesimal numbers do exist as well. We denote the set of 
finite numbers by M o(R) and infinitesimal numbers by 
M 1 (R), and prove in the appendix. 

Theorem 2.3: Let x E: Mo(R), then there exists a 
unique element r E: R such that x - r E: Ml (R). 

Definition 2.6: The standard part of a finite number 
x E: Mo(R) [written as st(x)] is the standard number r E: R 
for which x - r E: M 1 (R). 

Definition 2. 7: A number r 1 E: *R is said to be in
finitesimally close to r 2 E: *R (written as r 1 ~ r 2) if and 
only if r 1 - r 2 E: M 1 (R). 

Topology 

Let U be the usual topology on R (i. e., U is the class of 
open subsets of R). Lej: U be the image of *U under the 
isomorphism a ii [i. e., U = a%(*u)]. The eleIl!.ents of U 
are called the internal open subsets of * R. U is closed 
under finite union and intersection operations, which 
means that if A, B E: iJ, then A U B E: iJ ang An B E: 0. 
But the union of an arbitrary subclass of U need not be
long to U unless we restrict ourselves to internal sub
classes. 

However, since U is closed under finite intersections, 
it serves as a basis for a topology on *R. This topology 
coincides with the order topology on "R. 

We state now a property of nonstandard extensions of 
general topological spaces. 

Let (X, T) be a topological space. Let *X be a nonstan
dard extension of X and T be the image of *T under the 
iso~orphism a§.. Let r be the topology on *X generated 
by T as a basis. It can be shown that the T- closure 
operator on the class of subsets of X, extended to the 
class of internal subsets of *X, coincides with the r
closure operator on the class of subsets of *X restricted 
to the class of internal subsets of *x. This property 
applies in particular to R. If A is an internal subset of 
*R generated by a sequence {An: n E: N} of subsets of R, 
then the closure of A relative to the order topology on 
*R (denoted by A) 1s the internal sub~et of *R generated 
by the sequence {An: n E: N}, where An is the closure of 
An relative to the order topology on R. 

Sequences 

In the standard theory, a sequence s of elements of R 
is a function s: N --) R. It is well known that every 
Cauchy sequence in R converges to some element in R. 

Going to the nonstandard theory, a sequence s of ele
ments of *R, is defined to be a function s: *N --) *R, and, 
being by definition a subset of *N x *R, it may be inter
nal, standard, or external. It can be shown that a 
sequence s: *N ~ *R can converge at most to one point 
in *R, which, when it exists, we denote by lim sn 
n E: N. A convergent sequence in "R is Cauchy; but the 
converse is not true in general. However, an internal 
Cauchy sequence in *R is convergent. 
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There exists a unique standard function, which assigns 
to every internal sequence s: *N --) *R, and every num
ber n E: *N, a number called the partial sum of s up to 
and including n, and denoted by :0 ~=o S K ' satisfying the 
following conditions: 

0 
(i) :0 

K=O 
SK = SO 

n+l n 

(ii) :0 S = :0 SK + Sn+l K 
K=O K=O 

If the sequence of partial sums {:01=0 SK: n E: *N} is 
convergent, we say that the internal sequence {Sn: n E: *N} 
is summable,and its sum is denoted by :0 nE *N Sn and 
defined to be 

n 

:0 Sn = lim :0 SK' 
nE*N nE*N K=O 

C. Nonstandard measure theory 

Let (M, S, /-L) be a measure space. 12 Here, M is the 
space, S is the a-Ring of subsets of M, and /-L is the ex
tended real-valued measure defined on S. ("Extended 
real-valued"means ranging in l[ = R U {- C1J, + co}). 
According to the general scheme outlined above, the 
nonstandard theory becomes: 

(1) *M, the nonstandard extension of M, is a nonempty 
set. 

(2) S, the image of *S under the isomorphism a~, is a 
nonempty class of internal subsets of *M, satisfying the 
following conditions: 

(i) A, B E: 5 implies A ~B E: S. 
(ii) If {A : n E: *N} is an internal sequence of 

v n ... 
elementsofS,then UnE*NAn E: S. 

(3) 11: 5--) *R,given by 11 = a(S,R) (/-L) o(a~)-l. It satis
fies 

(i) 11(A) :;, 0, for all A E: S; 
(ii) 11(1,»= 0; 
(iii) if {A : n E: *N} is an internal diSjoint sequence 
of element~ of 5, then 

Definition 2.8: ltet B be the class of Borel subsets 
of the real line. Let B be image of B under the isomor
phism a~. A function f: *M --) *R is said to be '!:. meas
urable function if and only if for every set ~ E: B, we 
have N({) n rl(~) E: 5, where NU) = {x: x E: *M and 
f (x) "" 0 . External measurable functions may exist. 
However, we shall adopt a definition for Simple functions 
which makes all Simple functions internal. 

Definition 2.9: Let D be a nonempty set, and let 
n E: ·'N be some nonstandard natural number (finite or 
infinite). A function t: [n] --) *D, where [n] = {K: K E: *N 
and K < n}, is said to be an n-tuple of elements of *D 
if and only if their exists an internal sequence s: *N --) *D 
such that SK = tK for K< n. 

Definition 2.10: A function f: *M --) *R is said to 
be simple if and only if there exists an n-tuple {A K: K < n} 
of elements of S and an n-tuple {aK : K < n} of elements 
of'7l suchthatf= :0 K <n aKXA ,whereXA is the 
characteristic function of A . K 

Definition 2.11· A simple function f: * M --) *R is 
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said to be integrable if and onl¥ if ~ (N(fl) < + ex) where 
N(f) = {x: x E *M and /(x) "" OJ. The integral of / is 
defined to be 

K<n 

Definition 2.12: An internal measurable function 
/: *M --7 *R is said to be integrable if and only if there 
exists an internal mean fundamental sequence {j~ : n c * N} 
of integrable simple functions which converges in mea
sure to /. The integral of / is defined to bel2 

J d~ / = lim J d~ /n. 
nE*N 

D. Nonstandard Hilbert space 

Let (JC, a, x, y) be a separable complex Hilbert space. 
Here, JC is the set of vectors, a C JC x JC x JC is the 
vector addition function, 1J C C x X x X is the scalar 
vector multiplication function, and y C X x X x C is the 
scalar product function. We shall write / + g = h for 
(f,g,h) E a, A./ =g for (A,j,g) E 1J,and (J,g) = A for 
(f, g, A) E y. The scalar product in particular is taken 
to be antilinear in the first argument, but linear in the 
second one. We define the norm II / II = ~(J,j) for all 
/ E JC. The nonstandard version of the theory is given 
by 

(1) *JC, the nonstandard extension of JC; 

(2) a: *JC x *JC --7 *JC, the standard function correspond
ing to a under the isomorphism a (X, JC, X); 

(3) Ii: *C x *JC --7 *JC, the standard function correspond
ing to 1J under the isomorphism a(C,X,JC); 

(4) y: *JC x *JC --7 *C, the standard function correspond
ing to y under the isomorphism a(X, X, C). 

We shall write again / + g = h for (f,g, h) cO-, A./ = g 
for (A,j,g) E iT, and (J,g) = A for (f,g, A)E .y. The norm 
is defined again as II / II = ../(J,j) for all / E *X. The 
norm on *JC induces a topology called the strong topology. 

Definitiol1 2.13: An element / E *X is called 

(i) finite, if and only if II/II is finite; 

(ii) in/il1itesirnal, if and only if II/II is infinitesi
mal; 

(iii) iI/finite if and only if II f II is infinite; 

(iv) near standard if and only if there exists an 
element g c X such that II / - g II ~ 0 [being 
unique, we denote g by st(f)]. 

Defillition 2.11: 

(i) *j{; is the class of all internal bounded linear 
forms defined on *JC and ranging in *C. 

(ii) L: *X --7 *JC is defined such that for all 
/ 0' *JC and cp E *JC, we have L j E *JC such that 
Lf(cp) =(J,cp). 

By the Ricsz theorem 3 extended to *JC, L is a stan
dard anti isomorphism. 

Definition 2.15: Let / E *JC and ~ E *:iC, then their 
tensor product f QI) ~ is defined to be the bounded inter
nal linear operator on *JC which sends cp E *JC into 
(fC!;O(cp) = ~(tf')j c *JC. 
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Theorem 2.4: 

(i) If {/n: n E *N} is an internal Cauchy sequence of 
elements of *JC, then it converges to an element in *JC. 

(ii) There exists an internal sequence {CPn: n c *N} of 
elements of *JC such that 

(a) (CPn' cp~) = o~' for all n,n' E *N, 

(b) 6 nE * N cP n (9 Lcp n = I (the identity operator on 

*JC). 

The convergence in (b) is the pointwise strong conver
gence. 

Prooj: Since JC is complete and separable, the 
above statements hold in *JC as a direct application of 
the transfer theorem 2. 2. • 

De/inition 2.16: Let A be a linear operator defined 
on a subspace D C * JC. A pair (A,j) where A E * C and 
I E D(II / II ;;tc 0) is called 

(i) An eigen pair of A, if and only if II A/ - AI II = O. 

(ii) An ultra eigen pair of A, if and only if II A/ - AI II / 
II III ~ O. 

It is clear that an eigen pair of A is an ultra pair of A. 

1. Related standard linear forms 

If / E *JC, then L j , defined in Def. 2. 14 is a bounded 
internal linear form on *X; but, in general, it is not 
standard. We would like to construct a (not necessarily 
bounded) standard linear form ° L j , defined on a stan
dard subset of *JC, denoted by D j' and such that, for all 
standard cP E D j , we have 

Since 0D j (the set of standard elements of Dj ) generates 
D j ,and ° L j is standard, it is sufficient to define ° L f 
on 0D j , then extend it to Dj • 

Now,for every cP E °D , OLj(cp) = st(L/(CP», which 
implies that Lj(cp) E Mic). But Lj(cp) = (J,cp),hence 

OD j = {cp: cP E JC and (J,cp) c Mo(C)}. 

It is easily verified that D f is a linear subspace of *JC 
over *C. If / is a finite vector, then 0D j = JC, and 0 L f 
is a bounded standard linear form on *JC. Now, by the 
Ricsz theorem3 extended to *JC, there exists a standard 
vector g j E X such that 0 L f = Lgf 

In particular, if / is near standard, then g f = st(f) 
and OL f = Lst(f). However, if I is standard, then 
o L = L f' The linear form (or functional) 0 L f is 
cafred the related standard linear form (relative to 
/ c *JC). 

3. SPECTRAL PROPERTIES OF INTERNAL 
OPERATORS IN NONSTANDARD HILBERT SPACES 

In this section we study the spectral properties of 
internal operators in a nonstandard Hilbert space in 
detail, and show that every pOint in the discrete spec
trum of an internal self-adjoint operator is an eigen
value, and that every point in the continuous spectrum 
of an internal self-adjoint operator is an ultra eigen
value. At the end of this section, we relate the new 
concept of an ultra eigenvector which we introduce, to 
that of an eigenfunctional, used in the Rigged Hilbert 
space approach. 
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A. Analysis of the spectrum 

Let A be a linear operator defined on a subspace 
DC *X. Let A E: *C be any nonstandard complex num
ber. If I is the identity operator on *X, define 
~(A) = (A - AI)D. Let Li"Wbe the closure of ~(A) with 
respect to the strong topology on *X. 

Definition 3. 1 : 

(i) The resolvent set of A is p(A) = {A: ~(A) = *X}. 

(ii) 

(iii) 

The discrete s.pectrum of A is a d(A) = 
{A: MA) '" *XI. 

The continuous spectrum of A is a c(A) = 
{A: ~(A) '" ~(A) = *X}. 

We notice that the three sets p(A),ad(A),ac(A) are 
disjoint and their union is *C. In the following theorem 
we relate the spectrum of internal operators in *X to 
the spectrum of the generating operators in X. 

Theorem 3.1: Let A be an internal linear operator 
defined on an internal subspace D C *X, and generated 
by a sequence {An: n E: N} of linear operators defined on 
a sequence of subspace {D n: n E: N}. Let A be a nonstan
dard complex number generated by a sequence {An: 
n E: N}. Then, A belongs to the resolvent set of A, dis
crete spectrum of A or continuous spectrum of A if and 
only if for almost every n E: N, An belongs to the resol
vent set of An' discrete spectrum of An of continuous 
spectrum of An' respectively. 

Proof: Let 10 be the identity operator on X, and 
define 

~(A) = (A - AI)D, 

~n(An) == (An - AnIO)D". 

Since the sequence {D n: n E: N} generates D and the 
sequence {An - AJo: n E: N} generates A - AI, then the 
sequence {~n(An): n E: N} generates ~(A). The three 
sets {n: ~n(An) = X}, {n: ~n(An) '" X} and {n: ~n (An) '" 
~n(A,,) = X} are disjoint and their union is N. Hence, 
by (Fl), at most one of them can belong to if, and by 
(F4), (F2), and (Fl) (in this order), at least one of them 
should belong to 5'. Hence, one and only one of them 
does belong to 5'. We then have the following: 

(i) If for almost every n E: N, ~n(An) = X, then 
~(A) = *X. 

(ii) If for almost every n E: N, ~n(An) '" X, then 
~(A) '" *X. 

(iii) If for almost every n E: N, ~n(An) '" ~n(An) = X, 
then ~(A) ;c ~(A) = *X. 

The converse is also true by the tautology (see the 
Appendix): 

IvnP(n)= vn I P(n). 

By applying Def. 3. 1, the theorem follows. • 
If A is an internal operator defined on a dense subspace 
DC *X, then we define a set D' = {f: f E: *X and 
03 aPR such that V"'ED I (j,A<p) I ~ QI II <p II}. If f E: D', 
then the linear form 

( D -? *C 
o~ . ) 

f' l <p -? ~f('P) = (j,A<p) 

is bounded and internal, hence it can be extended to 
15 = *X. Let ~f be the extension of o~f to *X. ~f is 
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still bounded and internal, hence by the Riesz theorem3 

extended to *X, there exists an element g f E: *X such 
that ~f = Lgf,i.e., 

or 
~f(<P) = Lgf (<p) for all <p E *X, 

(j, A<p) = (g f ' <p) for all <p E D. 

Put g f = A + f. It can be shown that A + is an internal 
closed operator defined on a subspace D' C *X. It is 
called the adjoint operator. An internal operator A is 
called self-adjoint, if and only if it satisfies the relation 
A =A+. 

Theorem 3.2: Let A be an internal self-adjoint 
operator densely defined on *X. Let A E: a d(A), then: 

(i) There exists a vector f E: *X such that II f II = 1 
andAf= Aj. 

(ii) If A' '" A andAj' = A'f', then (j'!') = O. 

Proof: Since this theorem holds for standard Hil
bert spaces, it holds for nonstandard Hilbert spaces 
(A is internal), by direct application of the transfer 
theorem (2. 2). • 

Theorem 3.3: Let A be an internal self-adjoint 
operator densely defined on *X. Let A E a c(A), then: 

(i) There exists a vector f E: *X such that II f II = 1 
and II Af - VII,-;:: O. 

(ii) If A' E: ac(A), A'" A, IU'II= 1, and IIAf'-A'!'Ii,-;::O, 
then (j'!') ,-;:: 0. 

Proof: It is well known! 0 that if A belongs to the 
continuous spectrum of a self-adjoint operator in a 
standard Hilbert space, then for every QI> 0 (QI E: R), 
there exists a unit vector f E: X such that 11 Af -v II,,; a. 
Now, by the transfer theorem (2. 2), this is true for inter
nal self-adjoint operators in nonstandard Hilbert spaces. 
By taking QI to be infinitesimal we get 

II f II = 1 and II Af - V I! ,-;:: 0. 

This proves (0. To prove (ii), define 

d =Af- V, 
d' =Af'-A'f', 

i.e. , 
Af = V + d, 

AI' = A'f' + d', 
hence 

II d II ~ 0, 

IId'll ~ 0, 

(j',At> = A(j',!) + (j',d), 

(j,Af') = A' (j'!') + (j,d'). 

(3. 1) 

(3.2) 

(3.3) 

(3.4) 

By taking the complex conjugate of the first equation in 
(3.4), and by using the fact that A is self-adjoint (A, A' 
are real), we get 

(j, AI') = A(j'!') + (d,!'). (3. 5) 

By subtracting (3. 5) from the second equation in (3. 4) 
we get 

(A' - A) (j,!') = (d,!') - (j,d'), (3.6) 

since IIdll ,-;::0, IId'l! ~ 0, Ilf'll = Ilfll = 1 and 

I(d,!') I,,; II d 11'11 f' II, I (j,d') I ~ II f Hld'il ,then 

(d,!') - (j,d') ~ 0, 
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i.e. , 

(A' - A) (f ,f') ~ 0, (3.7) 
but 

A' 'f A (given), 

hence 

(f,f') ~ 0 (3.8) 

and the theorem is proved. • 
We show now how to write the orthonormality condi

tion for the standard part of the full spectrum. We shall 
talk about ultra eigenvectors only (b.ecause eigenvectors 
are a special case). 

Theorem 3.4: Let 0a (A) be the standard part of 
the spectrum of a self-adjoint operator A (i. e., the set 
of standard real numbers which belong to the spectrum 
of A, whether discrete or continuous). Let {fA: A E °a(A)} 
be a family of ultra eigenvectors of A, indexed by the 
corresponding ultra eigenvalues and normalized to unity 
(i.e., II fA 11= 1, II AfA - VA II ~ 0). Then,for all 
A,A' E °a(A), st(fA,fA'» = or. 

Proof: We notice first that 

(fA,fJ=lIfd 2 =1. (3.9) 

Now,if A"'" A', A,A' E Oa(A),thenA 'f"A' [otherwise, if 
"A ~ "A', then A - A' E M 1 (R) n R == {O},hence"A = A' con
trary to the assumption]. By using now Theorem 3. 3, 
we get 

(1) becomes: A = "A' implies st(fA,fA') = 1; 

(2) becomes: "A "" A' implies st(fA,f A.) = 0; 

(3) and (4) can be written as 

(3. 10) 

(3.11) 

(3. 12) 

o (3.13) 

The orthonormality condition proved in the preceeding 
theorem cannot be extended to that part of the spectrum 
which is not standard, because if A ~ A', A "" A', then all 
what we know is (A - A') (fA,fA') ~ 0 (see Theorem 3.4). 
By taking the standard parts of both sides we get 
o x st (fA' fA') = 0 which gives no information about 
st(fA ,fA')' However, if fA ,fl..' are eigenvect~rs of A 
with eigenvalues A and A', then (fA' fA') = 6~ exactly, 
without any restriction. 

B. Relation with eigenfunctionals 

Let A be a standard self-adjoint operator, densely 
defined on *JC. We assume for the time that there exists 
a standard subspace of *JC (which we denote by <1» satis
fying the following properties: 

(i) <I> is dense in *JC (i. e. ,<Ii = *JC); 

(ii) <I> is contained in the domain of A; 

(iii) <I> is stable under A [i. e., A (<I> ) C <I> 1. 
The existence of such a subspace for any densely de
fined self-adjoint operator is a well-known property of 
standard Hilbert spaces. By the transfer theorem 2. 2, 
it holds for any nonstandard extension. 

We assume here that <I> is subject to the extra property: 

(iv) There exists a system of ultra eigenvectors whose 
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eigenvalues belong to the standard part of the spectrum 
of A, which we denote by {f A: A E 0a(A)} such that, for 
all A E 0a(A), 

(a) <I> CD fA 

(b) 0L "'" 0 h 
(c) OLd = 0 

A 

(see Sec. 2D) 

where d A = AfA - VA , 

The system {fA: A E °a(A)} is a system of ultra eigen
vectors of A, not necessarily normalized to unity. 

Property (iv) holds for the discrete part of the stan
dard spectrum of any standard self-adjoint operator A. 
If "A E 0a d(A), then there exists an element f A ('~ JC such 
that 

Af A = VA' 

Hence, Dh = *JC and d A = 0, where d A = AfA - AIA , 

leading to OLd = 0; and ° L f "" 0 because ° L J. (f J == 1. 
A A A 

This proves that (iv) holds in the discrete case. But (iv) 
does not necessarily hold for the continuous part of the 
standard spectrum of an arbitrary standard self-adjoint 
operator. However, it holds for the absolutely continuous 
part1 3 of the standard spectrum of any standard self
adjoint operator A, because in the A space, the subspace 
of *JC corresponding to that part of the spectrum of A 
which is absolutely continuous with respect to the Lebes
gue measure can be represented by equivalence classes 
of nonstandard functions which are square integrable 
with respect to the Lebesgue measure (extended to *R). 
Apart from minor modifications, due to the fact that the 
absolutely continuous part of the standard spectrum of 
A may not be the whole real line, one can construct ultra 
eigenvectors of A following the same procedure applied 
in Sec. 6 of this paper to construct ultra eigenvectors of 
the momentum operators. As shown in Sec. 6, these 
ultra eigenvectors would automatically satisfy properly 
(iv). 

Now, since "apart from the discrete case, measures 
which are not absolutely continuous do not seem to 
occur in phySical problems,,,13 we assume (iv) to hold 
in any case of interest. 

We introduce now the definition: 

Definition 3.2: 

(i) If A E 0a(A) (standard part of the spectrum of A), 
then ~ A is the restriction of ° L fA to <1>. 

(ii) If A E a(A)'" 0a(A) (the part of the spectrum of A 
which is not standard), then ~ A is the internal linear 
form generated by {O~A : n EN}, where {An: 11 EN} 

n 
is a sequence generating A and O~ A is the restriction 

n 
to 0<1> (the set of standard vectors in <1» of the linear 
form ~An' An being standard. 

The possibility of the second part of this definition 
follows from the fact that ~ A (when A is standard) is a 
standard linear form. 

Theorem 3. 5: Let A be a standard self- adjoint 
operator densely defined on *JC. Let <I> be a standard 
subspace of *JC subject to the conditions (i)- (iv) stated 
above. Let {~A : A E a(A)} be as in Def. 3. 2, then, for 
all "A E a(A). cP E <1>, we have ~",(Acp) == A~",(cp). 

Proof: Let "A E 0a(A) and cp c= 
of a(A) and <1>, respectively], then 

~A(CP) == OLfA(cp) 

= st(f", , cp) 

0<1> [the standard parts 

(Def. 3. 2) 

(Sec.2D) 
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~A(A<p) = °LIA (A<p) 

= St(jA ,A<p) 

= st(AfA , <p) 

(A is a standard operator) 

= st(V A +dA,<p) 

= A st(jA'<P) + st(dA,<p) 

= A st(j A' <p ) 

NOW,from (3. 14) and (3. 15) we have 

(A is self-adjoint) 

[see (iv):(c)above] 

(A is standard) 

[see (iv): (c) above] 

(3.15) 

(3.16) 

Since (3.16) holds for any standard A E 0a(A) and <p E 0<1>, 
it holds for any >t E a(A) and <p E <1>, because 

j a(A) x <I> -7 *C 
~ . . t (A, <p) -7 ~A(<P) 

is a standard function. This completes the proof. • 

Let T be the weakest topology for which the restric
tion of A to <I> is a continuous linear operator, and all 
the elements of the set {~A : A E a(A)} are continuous 
linear forms on <1>. Let <1>' (the dual space of <1» be the 
set of all T continuous internal linear forms defined on 
<1>. Clearly, for all A E a(A), h E <1>'. 

Let A' : <1>' -7 <1>' be the linear operator defined as 
follows: If ~ E <1>' then A' ~ is the linear forms which 
assigns to every <p E <I> the complex number (A'~)(<p) = 
~(A<p) E *C. A' is a standard linear operator. If <1>' is 
embedded with strong dual topology T', we see that A' 
is continuous with respect to T'. 

Now, since ~A(A<P) = A~A(<P) for all <p E <1>, A E a(A) 
(see Theorem 3. 5), we have A'h = A~A for all A E a(A). 
This shows that the related standard linear forms asso
ciated with ultra eigenvectors, are preCisely the eigen
functionals used in the Rigged Hilbert space approach. 

The relation between these eigenfunctionals and the 
spectral measure has been established in the introduc
tion in connection with the Rigged Hilbert space app
roach to quantum mechaniCS, and there is no point in 
repeating it here. It is worth emphasizing that our 
approach has the advantage over that using Rigged Hil
bert spaces, of the existence of "genuine vectors" de
fining the eigenfunctionals. Theorem (3. 4) which states 
the orthogonality condition for the ultra eigenvectors 
corresponding to the standard points of the full spectrum 
of a self-adjoint operator is remarkable. Instead of the 
two separate orthogonality conditions stated by Dirac, 
which read: (n In') = o~' for the discrete spectrum and 
(~ I ~') = o(~ - n for the continuous spectrum (the 
latter being not rigorous), we have a rigorous statement 
for both, stating that 

This statement has no analog in the rigged Hilbert 
space approach. 

4. PROBABILITY FUNCTIONS 

In this section, we try to define a probability function 
associated with a given standard self-adjoint operator 
A densely defined on *:re, and a unit vector f E *:re. In 
the standard theory, if A is a self-adjoint operator 
densely defined on a Hilbert space :re and E(A) is the 

185 J. Math. Phys., Vol. 16, No.2, February 1975 

spectral measure 2 associated with A, then, for every 
unit vector f E :re, the function 

prob(A,j,~) = (j,Ec,,(A)f), 

where ~ is a Borel subset of R, is a probability measure 
on the Borel subsets of the real line. According to the 
transfer theorem (2. 2) this can be readily extended to 
nonstandard Hilbert spaces. If A is an internal self
adjoint operator densely defined on a nonstandard Hilbert 
space *:re and E(A) is the nonstandard spectral measure 
associated with A, then for every unit vector f E ":re, the 
function 

ns - prob(A,j,~) = (j,Ee:,(A)f), 

where ~ is a Borel internal subset of *R, is a nonstan
dard probability measure on the Borel internal subsets 
of the nonstandard real line. However, this is not a 
probability measure. The result of a measurement can 
only be a standard real number. So, for a physical inter
pretation of the nonstandard theory, we need to have a 
standard probability function, defined on a ring of Borel 
subsets of the standard real line, associated with a given 
standard self-adjoint operator, densely defined on a 
nonstandard Hilbert space. We shall see that the function 
we are going to define is not generally a-additive, and, 
hence, cannot be extended to the a-ring of Borel subsets 
of the real line. However, the probability functions 
associated with standard and near standard vectors are 
a-additive. In this case, the probability measure defined 
here coincides with the corresponding one in the stan
dard Hilbert space. 

A. Construction of the measu re (11 fA) 

Let f be a nondecreasing standard real-valued func
tion defined on the standard real line. If >t.E R, then 
f(A) is an upper bound for the set {f(A - E): E> O}. 
Since this set is not empty, it has a supremum which 
we denote by f (A). Hence: 

Definition 4.1: If f is a nondecreasing standard 
real-valued function defined on the standard real line, 
then we define f(A) = suppo f(>t - E). 

Theorem 4.1: Let f:R -7 R be nondecreasing; then 
f: R -7 R is nondecreasing and continuous from below. 

Proof: Let A < A', A, A' E R. By definition f(A') == 
sUPpo f(A' - E),hence 

f(A) "" f(A'). (4.1) 

Now 
f(A) "" f(A) [j(A) is an upperbound of {f(A- E): E> O}]. 

(4. 2) 
Hence, from (4. 1) and (4. 2) we get 

A < A' = f(A) "" f(A') 

which shows that f is nondecreasing. 

(4.3) 

To show that f is continuous from below, let E> O. Then, 
by definition, there exists a number 0> 0, such that 

f(A - 20) "" f(A) - E. (4.4) 

Since A - 0 > A - 20, we have (by definition) 

f(A - 0) "" f(A - 20) (4.5) 

and so, from (4.4) and (4.5) we get 

f(A - 0) "" f(A) - E. (4.6) 
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Now~' > ~ - Ii ~ f(~'):;.. f(~ - Ii) [by (4. 3)], and thus, 
for every E> 0, there exists a number Ii> 0 such that 

~ - Ii ~ ~' ~ ~ implies f(~) - E ~ f(~') ~ f(A). (4.7) 

Hence,f is continuous from below. • 
Let A be a standard self-adjoint operator densely de

fined on *JC. By the spectral theory2 extended to *JC, 
there exists a nonstandard spectral measure E(A) de
fined on the Borel internal subsets of the nonstandard 
real line *R, and assigning to every Borel internal sub
set l!. C *R a projection operator E 6. (A), such that, if 
EA(A) == E (-oo.A)(A) then 

A = fAE*R ~dEA(A). 
If f E *JC and II f II = 1, then the function p. I. A defined 
as follows: 

ill.A(l!.) = U,Et;(A)f) 

for every Borel internal subset l!. C *R is a nonstandard 
probability measure. In particular, 

o ~ ill. A (l!.) ~ 1 for every Borel internal subset l!. C "R. 

We now introduce the definition: 

Definition 4.2: Let ~ E R, f E *JC, II f II = l,and 
A be a standard self-adjoint operator densely defined 
on *JC. If E(A) is the nonstandard spectral measure 
associated with A, then define: CPl. A (~) = stU, E A (A) f). 

Theorem 4.2: The real-valued function cP I. A de
fined in Def. 4. 2 is nondecreasing and lies between zero 
and one. 

Proof: Let ~ < ~'; then U, E A (A)f) ~ U, E A' (A)l) 
(from the standard theory extended to *JC). Now: 

CPI.A(~) = stU,EA(A)f) ~ stU,EA,(A)f) = CPI.A(~'); 
therefore ~ < ~' = CPI A (~) ~ CPI A (~'). Also, for every 
~ E R, since 0 ~ U, F" (A)f) ~ 1 (extension of the stan
dard theory), we have 0 ~ stU, E A(A)f) ~ 1, i.e., for all 
~ E R, 0 ~ cP I, A (~) ~ 1. 0 

Theorem 4, 3: The function q; I, A is non decreasing , 
continuous from below and lies between zero and one. 

Proof: By Theorem 4. 2, cP I, A is nondecreasing. 
Hence, by Theorem 4. 1, q; 1. A is nondecreasing and con
tinuous from below. Now, if ~ E R, then for every E> 0 
we have 

o ~ cp(~ - E) ~ q;(~) ~ cp(~) ~ 1. 

thus, for every ~ E R, 0 ~ q;(~) ~ 1. • 
Theorem 4. 4: There exists a measure /l I, A on the 

Borel subsets of the real line R, such that /l I A ([ a, b)) = 
tf'1,A(b) - f{JI,A(a) for a ~ b and such that /l1,~(R) ~ 1. 

Proof: We shall give here an outline of the proof 
only. 
If g: R -> R is a nondecreasing function which is con
tinuous from below, and <P is the class of all semi
closed semi-open intervals on the real line (i. e., 
<P = ([a, b): a ~ b, a, b E R}), then the set function /lo: 
<P -> R defined according to 

Ilo([a,b)) = g(b) -g(a) 

is finite, positive, and (J additive. 1 0 

If (; is the ring generated by <P, then there exists a 
unique finite measure /l on (;, such that, whenever E E <P, 
Il(E) = llo(E). If ill is the (J ring (of Borel subsets) gene
rated by &, then /l has a unique extension ji to ill such that 
ii is a (J-finite measure on ill, and whenever E E (;, 

ii (E) = It (£) , 
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Now, in particular, 

ii([ a, b» = /l([ a, b» = /loera, b» = g(b) - g(a). 

Since our function cP I, A is nondecreasing and continuous 
from below, there exists a (J-finite measure /l I, A on the 
Borel subsets of R, such that 

ItI.A ([a,b» = f{JI.A(b) - f{JI,A(a). 

To show that /l j A is finite (and has 1 as an upper bound), 
let l!.n = [- n,nj. 

The sequence {l!.n: n E N} is increasing with U nEN l!.n ==R. 
Hence, 

/l I. A (R) == /l I. A (n~N l!.n) = ~~~ It I, A (l!.n) 

= sup [q; I.A (n) - q;1,A (nl]. 
nEN 

But, for all ~ E R, 0 ~ CPI.A(~) ~ 1 (Theorem 4.3), 
thus f{JI,A(-n) :;..0, f{JI.A(n) ~ 1 orCPI,A(n)- f{Jf,A(- n)< 1, 

Since for all n EN, /l I. A (l!.n) ~ 1, we have 

sup Itf.A(l!.n)~ 1 
nEN 

and, therefore, It I. A (R) ~ 1. 

This completes the proof, [J 

Definition 4.3: A unit vector f E *JC is called a 
probability measure inducing vector with respect to a 
standard self-adjoint operator A densely defined on *JC, 
if and only if the function f{J I, A satisfies the properties: 

(i) If {~n: n EN} is an increasing sequence of real 
numbers tending to + <Xl, then lim q; I. A (~n) = 1, n EN. 

(ii) If {~n: n EN} is a decreasing sequence of real 
numbers tending to - <Xl , then lim f{J f. A (~n) = 1, n E N. 

It can be easily verified that we may replace cP I, A in 
Def. 4. 3 by CPl. A without affecting it [i. e. ,conditions (i) 
and (ti) in the definition hold for CPI,A if and only if they 
hold for q; I,A]. 

Theorem 4.5: Let f be a probability measure in
duCing vector with respect to a standard self-adjoint 
operator A densely defined on *JC, then, /l I. A is a proba
bility measure satisfying 

/l1,A«- <Xl,a» = q;I,A(a) for every a E R. 

Proof: Let a E R, and define ~n = a - n for every 
n E N. Now'{~n: n EN} is a decreasing sequence con
verging to - <Xl, and so 

lim f{J I. A (~n) = O. (4. 8) 
nEN 

Let l!.n = [~n' a). By Theorem 4. 4 

(4.9) 

which, since {l!.n: n E N} is an increasing sequence and 
UnEN l!.n = (- <Xl, a) implies 

IlI,A«- <Xl,a)) = Ill, A (u l!.) = sup Ilf,A(l!.n) 
nEN nEN . 

= sup [f{JI.A(a) - f{JI.A(~n)] [by Eq. (4, 9)] 
nEN 

= q; I A (a) - inf CPl. A (An) 
, nEN 

= f{J1 A(a) - lim CPI.A(A n ) = f{JI.A(a) 
• ncN 

[by Eq. (4. 8)] 
i.e. , 

(4.10) 
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To show that J.L / A is a probability measure, we have to 
show that J.L /. A (R) = 1. 

Let A~ = n for every n E N, hence {A~: n EN} is an in
creasing sequence of real numbers converging to + co , 
and therefore 

lim cP f. A (A~) = 1. 
nEN 

(4.11) 

Let 6~ = (- co, A~) and by (4. 10), we have 

J.Lf.A(6~) = CPf.A (A~) (4.12) 

and since {6~: n E N} is an increasing sequence with 
R = U nEN 6~, we find 

J.Lf.A(R) = J.Lf.A (U 6~) = sup J.Lf.A(6~) 
nEN nEN 

= sup CPf.A (A~) [by Eq. (4. 12)J 
nEN 

= lim cP /. A (A~) = 1 [by Eq. (4. l1)J; 
nEN 

thus 

• (4. 13) 

Dejinition 4.4: Let A be a standard self-adjoint 
operator densely defined on *JC. Let j E *JC be a 
probability measure inducing vector with respect to A. 
Define 

°prob(A,f, 6) = J1 f. A (6) 

for every Borel subset 6 C R. 

We relate now the probability measure °prob(A,j,6) 
with the probability measure prob{OA, st(j) , 6) where 
° A is the restriction of A to JC and j is a near standard 
vector. The meaSure prob{OA, st(j) , 6) is defined as 
(st(j),Et.',(OA)st(j»,where st(j) E JC andE(OA) is the 
slandard spectral measure associated with 0A. 6 is a 
Borel subset of the real line R. 

Theorem 4.6: Let A be a standard self-adjoint 
operator densely defined on "JC. Let j E *JC be a unit 
near standard vector. Then j is a probability measure 
inducing vector relative to A, and, for every Borel sub
set 6 C R, 

°prob(A,j,6) = prob{OA, stU), 6), 

where °A is the restriction of A to JC. 

Prooj: Since j is near standard, there exists a 
standard vector g E JC and an infinitesimal vector 
d E *JC such that . 

j = If + d. 

Now 

(j,j) = (If,g) + (g,d) + (d,g) + (d,d). 

But 

(d,d) = Ild11 2 "" 0, 

l(d,g)l= l(g,d)1 ~ 1/IfI/Iid/l""'O; 

hence 

(If,d) + (d,lf) + (d,d) "'" 0, 

st (f,j) = st ( g, g) , 

i. e. , st /I f II 2 = st II If /I 2 . 
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(4.14) 

But II j II = 1 and II gil E R (g is a standard vector), 
hence 

II gil = 1. (4.15) 

Now let A E Rand E(A) be the nonstandard spectral 
measure associated with A, then 

(j,E",,.{A)j) = (g + d,E,I.(A) (g + d» 

Now 

= (g,E,,'<A)g) + (d,E,I.(A)d) 

+ (g,E)..(A)d) + (d,E,I.(A)g). 

l(g,E,I.(A)d) I = I (d,E,I.(A)g) I ~ Ildll'll E,I.(A)gll 

(4. 16) 

~ II d II . II g II = II d II "'" 0, 

" I (g, E,I.(A) d) 1= l(d,E)..(A)g) I "'" 0; 

also 

(d,E,I.(A)d) = IIE)..(A)dI1 2 ~ Ild11 2 ",,0 

hence 

or 
(d,E,I.(A)d) + (g,E,I.(A) d) + (d,E)..(A)g) "'" 0 

st( j,E,I.(A)f) = st(g,E,I.(A)g). (4.17) 

But, sinceg E JC and A ER, then (g, E ,I.(A)g) = (g, E )..(OA)g), 
where uA is the restriction of A to JC. 

Equation (4. 17) can be written in the form 

(4. 18) 

Now, since the function A ~ (g, E ,I.(OA)g) is continuous 
from below, we get 

(4.19) 

Now, if {An: n E N} is an increasing (decreasing) 
sequence of real numbers converging to + co (- co), then 
limnEN(g,E,I. (OA)g) = 1 (= 0). Hencejis a probability 
measure indU'cing vector with respect to A. 

Using this fact, Eq. (4. 19) yields to 

°prob(A,j,6) = prob(OA,g, 6) 

or, for all Borel subsets 6 C R, j E *JC is near standard; 

°prob(A,j, 6) = prob{OA, stU), 6). • (4.20) 

In the special case where j is standard, we have stU) = j, 
and so 

0prob(A,j,6) = prob(OA,j, 6). 

However, vectors which are not near standard have 
interesting properties, some of which are dealt with in 
the following subsection. 

B. Measure of point sets 

The probability measure prob(A,j, 6) in a standard 
Hilbert space gives a zero measure for a point set {A} 
if A does not belong to the discrete spectrum of A. The 
proba.bility measure J.L f. A in a nonstandard Hilbert space 
has dIfferent properties. We shall show that if f is an 
ultra eigenvector of A with ultra eigenvalue A E" R, then 
J.Lf.A({A}) = 1 or, equivalently, 

if A E 6 

if A¢.6 for every Borel subset 6 L R. 
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Theorem 4. 7: Let A be a standard seU-adjoint 
operator densely defined on *JC. Let / E *JC, II/II = 1 
be an ultra eigenvector of A with ultra eigenvalue A E R, 
then 

if A' < A 

ifA'>A. 

Proof Letd=A/-A/, IIdll~O,since IIA/-VII/ 
IIJII ~ 0 and 11/11 = 1. Now 

lid li2 = (d,d) = «A - A)/, (A - A)J) 

= (/, (A - A)2 f) (A is seU-adjoint). 

But, from standard spectral theory extended to *JC 

therefore 

J (A' - A)2d(j,E Ic ,(A)f) ~ O. (4.21) 

Let 6> 0, 6 E R then (4. 21) becomes 

1::"(A'-A)2 d(f, E Ic, (A)/) + .t:O(A' - A)2d(j, EIc,(A)/) 

+ !\'+7 (A' - A)2d(j,E>..,(A)/> ~ O. (4.22) 

From the fact that the integrand in each of the three 
integrals in (4. 22) is nonnegative, we deduce that each 
of these integrals is infinitesimal. In particular, 

1~-6 (A' - A)2 d(j,E Ic, (A)j) ~ 0, 

reo (A' - A)2d(j,E Ic, (A)J) ~ O. 
A+ b 

(4.23) 

(4.24) 

But 

A' < A - 6 implies that (A' - A)2 ~ 62; (4.25) 

also 

A + 6 "" A' implies that (A' - A)2 ~ 62, (4.26) 

Hence, from (4. 23) and (4.25) we get 

o ~ 1~1i (A' - A)2d(j,E Ic , (A)f) ~ 621~" d(j,E>..,(A)J) 

= 62(j,E Ic _o(A)/) 

i. e., 

(f, E,_6(A)f) ~ 0 for all 6 E R, 6> 0 

Also, from (4. 24) and (4. 26) we get 

(4.27) 

o c::; J"'o (A' - A)2 d (f, E" (A)f) ~ 6 2 J+oo d (j, E" (A)/) 
>"+6 I\. >..+c5 f\. 

i. e .. 

(f,EA+O(A)f)C::; 1 fora1l6ER,6>0. 

From (4. 27) and (4. 28) we finally conclude: 

(4.28) 

if A' < A 

if A' > A. 

Theorem 4.8: Let A be a self-adjoint operator 
densely defined on *JC. Let / E *JC, II/II = 1 be an 
ultra eigenvector of A with ultra eigenvalue A E R . 
Then, / is a probability measure inducing vector rela
tive to A, and satisfies Il j, A ({A}) = 1. 
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• 

Proof By Theorem 4. 7 we have 

\ 0 if A' < A 
'PI,A(A')=\l 

! ifA'>A. (4.29) 

It can be directly verified (using Def. 4. 1 that 

if A' "" A 

if A' > A. (4.30) 

Equation (4.30) may be obtained from (4.31) without 
any knowledge about the specific value of 'PI. A (A), ex
cept, of course, the fact that 0 ~ 'PI. A (A) ~ 1 which is 
a consequence of Theorem 4. 2. It can also be directly 
verified that 'PI. A satisfies the conditions of Def. 4. 3 
which make / a probability measure inducing vector 
relative to A. 

Now define 6. n = [A,A + (l/n», then {6. n : n EN} is a 
decreasing sequence of Borel subsets with {A}=iln€N 
6. n ' Hence, 

(4.31) 

But 

Jl I. A (6.) = CPl. A [A + (l/n)]- cP I, A (A) (Theorem 4. 4) 

= 1 [by Eq. (4. 30)]. (4.32) 

From (4.31) and (4. 32) we deduce that 

Jlj,A({A}) = 1. • (4.33) 

C. General probability set functions 

We study here the case where a unit vector / E *JC 
does not satisfy the conditions of Def. 4.3. In this case, 
the measure Il{ A defined on the Borel subsets of the 
real line is no 'a probability measure [because Jl I. A (R) < 
+ 1]. We substitute it by a set function v f. A defined on 
a ring erR) of Borel subsets of the real line, and satis
fying: 

(0 v/. A (1)) = 0; 

(ii) v;. A (R) = 1; 

(iii) for all E E erR), vl.A(E) ~ 0; 

(iv) If E 1 ,E2 E erR), E1 n E2 = 1>, then v;,A(E1 U E2 ) 

= v;.A(E 2) + v j • A (E 2 ), 

We notice that if /: R --> R is a nondecreasing function, 
then for every A E R the set {/(A + E) : E > O} is not 
empty and has /(A) as a lower bound. Hence it has an 
infimum. 

De/inition 4.5.' Let/: R --> R be a nondecreasing 
function. Define f(A) = infE >0 /(A + d. 

Theore m 4. 9: Let /: R ~ R is nondecreasing, then 
l: R·, R is nondecreasing and continuous from above 

Proof: If A < A', then I (A) "" I(A') (by definition). 
But I(A') "" .f(A') , hence f(A) "" j(A'), and I is nondecreas
ing. 

Also for every E > 0 there exists a 6 > 0 such that 
/(A + 26) "" .f(A) + E. 

But I(A + 6) ~ I(A + 26) (because A + 6 < A + 26), hence 
1 (A + 6) "" {CA) + E. 

Now leA) "" l(A + 6) (proved) hence, for every E > 0 
there exists a 6 > 0 such that for every A < A' < A + 6, 
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we have leA) .,;;; leA') .,;;; leA) + E. Hence 1 is continuous 
from above. • 

Theorem 4.10: Let f: R --7 R be a nondecreasing 
function, then, for every A E R, 

(i) inf f(A + E) = leA); 
« 0 

(ii) sup J (A - E) = f(A). 
< > 0 

Proof: Since f(A) .,;;; f(A) for every A E R, then 

inf f(A + E) .,;;; inf f(A + E) = f(A). (4. 34) 
<>0 <>0 

Let g(A) = inf< >0 f(A + E), hence for every E> 0 there 
exists a 6 > 0 such that f(A + 26) .,;;; g(A) + Eo 

But f(A + 26) ~ f(A + 6) ~ f(A) (by definition) hence 

[(A) .,;;; g(A) + Eo (4. 35) 

Since E> 0, but otherwise arbitrary, (4. 35) implies that 

leA) .,;;; g(A) = inf f(A + E). (4.36) 
<>0 

From (4.34) and (4.36) we conclude that leA) == inf< > 0 
f(A + d. Similarly, we can prove that sup. >0 f(A - E) = 
f(A). • 

Definition 4.6: 

(i) 'r_ = {(- OCI, a): a E R}; 

(ii) 'r+ = {(a, + OCI): a E R}; 

(iii) 'r = 'L u 'r+ u {cp}. 

Definition 4. 7: G(R) is the minimal ring containing 
'r (defined in Def. 4. 6). 

Definition 4.8: Let A be a standard self-adjoint 
operator densely defined on *JC. Let f E *JC, II fll = 1, 
and define v/A : 'r --7 R as follows: 

(i) /I J A «- OCI, a» = If' f. A (a); 

(ii) /lJA «a, + OCI)) = 1- CPl. A (a); 

(iii) /lJA (cp) = 0; 

where q; f. A is the function defined in Def. 4. 2. 

Theorem 4.22: Let A be a standard self-adjoint 
operator densely defined on *jc. Let f E *JC, II f II = 1, 
then the function /I J A has a unique extension /If. A to 
G(R), such that: 

(i) /If. A (cp) = 0; 

(ii) v f. A (R) = 1; 

(iii) 

(iv) 

for every E E G(R), /If.A(E) ~ 0; 

if E 1,E2 E G(R), E1 n E2 = cp,then vf .A(E1 U E?-) 
== /If. A (E1 ) + /If. A (E2)· 

Proof: Let a < b then [a, b) == (- OCI, b)"(- OCI, a) 
which means that G(R) contains the ring 81 generated 
by semi-closed semi-open intervals of the real line. 

By Theorem 4. 4 there exists a measure mp} on 81 
such that 

m}1). ([a,b)) == If'I.A(b) - If'I.A(a). (4. 37) 

We have also (a, b] == (a, + OCI )"(b, + OCI) which means that 
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G(R) contains the ring 8 2 generated by semi-open semi
closed intervals of the real line. 

Bya similar argument, there exists a measure m}~ on 
8 2 such that 

(4.38) 

Let Go(R) be the minimal ring generated by 8 1 U 8 2, 

Hence Go(R) C G(R) [by definition of Go(R)]. 

As a result of Theorem 4. 10, it can be shown that there 
exists a measure m I.A on Go(R), such that: 

(i) if A E 8 1 , then m f.A (A) == m.?l (A); 

(ii) if A E 8 2 , then m f. A (A) = m).~ (A). 

Now, a general element E E G(R)"{R} can be written as 

E = A_ U Ao U A+, A_ n Ao == Ao n A+ == cp, 
where 

A_ E 'r_ U {cp}, A+ E 'r+ U {cp}, Ao E Go(R). (4.39) 

Since E "" R, we can easily see that A_ n A+ == cpo 
Assume now that 

with 

A~ E 'r_ U {cp}, A~ E 'r+ U {cp}, Ao E Go(R). 

If 

A~ = A_ U (A~ '" A_ ) 

A~ == A+ U (A~"'A+) 

and hence, Ao == Ao U (A~ " A_) U (A~ '" A+) 

with 

(4.40) 

Ao n (A~ '- A_) == (A~"AJ n (A: '-AJ == (A~'-AJ n Ao== cpo 
(4.41) 

Now 

/I 0 (A') == /I 0 (A) + m(1) (A'" A ) f.A - I.A - I.A - - , 

vJA(A:) = vJA(A+) + mpl (A:'" A+), 

(4. 42a) 

(4. 42b) 

m f.A(A o) == m f.A(Ao) + m f.A(A~ "A_) + m f.A (A: '-A+). 

(4. 42c) 

From Eqs. (4. 42a)-(4. 42c) we get 

vJ.A(A~) + /lJ.A(A:) + mf,A(Ao) == vJ.A(AJ 

+ v9 jAJ + m f. A (A o). (4.43) 

Result (4.43) which holds for case (4.41), holds also for 
other cases. Hence we may introduce the definition 

(4. 44) 

This function is unambiguously defined, irrespective of 
the decomposition of E used. We define also 

(4.45) 

The set function /I I. A thus defined, is an extension of 
both vJ. A and mi. A' It satisfies conditions (i), (ii), and 
(iii) required by the theorem. To show that condition 
(iv) is satisfied as well, let E 1 , E2 E G(R) withE1 n E2 == cpo 
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Now, if E1 = R then E2 = cp and 

"1,A(E1 U E 2) = "1,A(E1) + "1,A(E 2). (4.46) 

Similarly, (4. 46) hOlds for the case E2 = R. Let now 
E1 '" Rand E2 '" R then, 

E = t.(1) U t.( 1) U t.(l) 1 - 0 +, 

E = t.(2) U t.(2) U t.(2) 
2 - ° +, 

t.~1) n t.b1) =t.V) n t.~1) = cp, 
t.~2) n t.h2) = t.b2) n t.~2) = cp 

with 

t.<"l), t.<,,2) E J_ U {cp}, t.P), t.P) E J+ U {cp}, 

t.\P ,t.~2) E G o(R). 
Now 

E1 U E2 == (t.~1) U t.~2» U (t.h1) U ~h2» U (t.i1) U t.i 2». 
(4.47) 

But, since E1 n E2 = cp, then 

(a) t.~ 1) = cp or t.~ 2) = cp, 
(b) t.~1) = cp or t.\2) = cp, 

(c) t.'rP n t.h2) = cp, 
(d) (t.~ 1) U t.~ 2» n (t.bl) u t.b2» 

= (t.b1) u t.b2» n (t.~1) u t.~2» = cp. 
From (a) we get 

VJ,A(t.~l) U t.~2» = VJ,A(t.(l) + VJ,A(t.~2». (4. 48a) 

From (b) we get 

vo (t. (1) U t. (2» - ,,0 (t. (1» + vo (t. (2» (4. 48b) I, A + + - I, A + I, A + • 

From (c) we get 

m I, A (t.b
1

) U t.~;» = mi. A (t.~1) + m t, A (t.b2». (4. 48c) 

From (d) we get 

VI ,A(E1 U E 2) = V~,A (t.~1) U t.~2» + m l ,A(t.b1) U t.~» 

+ vJ, A (t.~1) U t.~ 2». (4. 48d) 

By using (4. 48a)-(4. 48d) we get finally 

(4.49) 

Thus, the theorem is proved. 0 

We have now to link the probability set function v j, A 

(which need not be a measure) with the probability mea
sure Ill, A • 

Theorem 4.12: Let A be a standard self-adjoint 
operator densely defined on *JC. Let f E *rrc, II f 11 = 1 
be a probability measure inducing vector, then for every 
E E G(R), IlI,A(E) = VI,A(E). 

Proof: By Theorem (4. 5) 

III.A«- lO,a)) = lfJf.A(a) = vI . A«-IO,a)), 

II I, A (R) == 1. (4.50) 

Let t.n = [a + (l/n), + 00), then {t. n : n EN} is an in
creasing sequence with U nEN t.n = (a, + 00). Hence 

iJI.A«a, + 00)) = IIf.A (u t. n ) == sup iJf,A(t. n ) 
nEN nEN 

= sup iJf,A(R,,(-IO,a + (l/n» 
nEN 

= sup [1- 9'/.A(a + (l/n))) = 1- inf 9't.A(a + (l/n)) 
nEN nEN 

= l-cpt.A(a) = v9.A«a, + 00» (4.51) 
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Now, 

(4. 52) 

hence for all E E <1, II I, A (E) == v J. A (E). 

The extension of II J. A to an additive function v I A on 
G(R) is unique. Since Il.t: A is also additive on G(R) and 
coincides with II J. A On i, we have for every E E G(R). 

o 

Definition 4.9: Let A be a standard self- adjoint 
operator densely defined on *JC. Let f E *JC, II f " = 1. 
Define the probability function q - prob(A,j, t.) = v I A (t.) 
for every t. E G(R). ' 

The function: t. ~ q - prob(A,j, t.) is a quasi probability 
measure. The only condition which is not satisfied in 
general is the a-additivity. 

5. FORMULATION OF QUANTUM MECHANICS 

In this section we reformulate quantum mechanics 
using the concept of a nonstandard separable Hilbert 
space. There are two methods by which the problem 
may be solved. In the inductive method, one starts with 
a formalized physical structure (e.g., the lattice of 
propositions associated with a set of yes-no experi
ments1 ), and proves that it is isomorphic to a mathe
matical structure (e.g., a complex Hilbert space). In 
the deductive method, one starts with a mathematical 
structure and deduces the physical results. 

We shall follow here the deductive method. The rea
son for this choice is that is is very difficult (if possible 
at all) to prove that a given structure is isomorphic to 
a nonstandard Hilbert space, because we cannot con
struct any specific nonstandard Hilbert space. All that 
we know is that the existence of nonstandard Hilbert 
spaces is a consequence of the axiom of choice. Al
though it is usually postulated that the dynamical 
variables of a quantal system satisfy some Lie algebra, 
we are not going to assume anything of this sort here. 
Our approach is quite general. It may be applied to 
relativistic as well as nonrelativistic quantum mechanics. 

A. Kinematics 

In standard quantum mechanics, states (or pure states) 
are represented by unit rays in a separable complex 
Hilbert space. If f E JC is a unit vector, then f and e i 'I' 

f(({! E R) represent the same state. Hence, if we define 
the relation: f ~ g if and only if there exists a <P E R 
such that f = e i <P g, we immediately see that A is an 
equivalence relation on JC. If U(JC) is the set of unit 
vectors, then the set of phySical states is the quotient 
set S(JC) = U(JC)/ A. What is significant about this 
definition is that the expectation value of any operator 
is a property of the state and not the specific vector 
representing the state. Thus,if f E JC, \If 1\ = 1 be
longs to the domain of an operator A on JC, then 
(f,Aj) = (ei<p f,Aei<p j). 

In the nonstandard theory, we meet another possible 
degree of freedom (other than the phase). Infinitesimal 
vectors should not be distinguished from the zero vec
tor. This means that if dE *JC, f E *JC, 1\ d II "" 0, 
II f II = " f + d 1\ = 1, then f and f + d should repre
sent the same state. Hence we introduce the definition: 

Definition 5.1' f ~ g if and only if f,g E *JC, 
II f 1\ = " g" = 1, and there exists a ({! E *R such that 
1\ ei.p f - g 1\ "" o. 
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Theorem 5.1: Let U(*JC) be the set of unit vectors 
in *JC, then "~,, defined in Def. 5. 1 is an equivalence 
relation on U(*JC). 

Proof: Let 1 E U(*JC), then II 111 = 1 and 111- fll = 0, 
hence 1 ~ f and" ~" is reflexive. 

Assume now that 1 ~ g. It follows that IIfll=IIg1! = 1 
and that there exists a number cp E *R such that 
IIe i <Pf-gll:::::O. But IIe- i <pg-fll=IIe i <pf-gll. 
Hence g ~ 1 and "~,, is symmetric. 

Assume, finally, that 1 ~ g and g ~ h. Hence 
II 1 II = II g II = II h II = 1 and there exist two numbers 
cp,l/I E *R such that lIe i <Pl -gil::::: 0 and IIe i i!g- h 11::::: O. 
But II ei(cp+~) f - ei~ gil = II e icp f - g II and II ei(<p+i!) 
1 - h II ~ II ei(cp+~) f - ei~ g II + II ei~ g - h II, thus 
II ei(<p+if;) f - h II ::::: O. Hence 1 ~ h and "~,, is 
transitive. This completes the proof. • 

Definition 5.2: The set of physical states S( *JC) is 
defined as S(*JC) = U(*JC)j ~,where U(*JC) = 
{j: 1 E *JC and 11111 = 1}. 

We prove now that all vectors corresponding to the 
same physical state define one and the same probability 
function v j, A with respect to any standard self-adjoint 
operator A' densely defined on *JC. 

Theorem 5.2: LetA be a standard self-adjoint 
operator densely defined on *JC. Let f ~ g. Then 
v f. A = v ¥, A ,where v f, A is the probability function in
troduced in Theorem 4. 11. 

Prool: By definition of the relation 1 ~ g, there 
exists a number cp E *JC and a vector d E *JC, II d II ::::: 0, 
such that g = ei<p 1 + d, II 1 II = II gil = 1. Let E(A) be 
the spectral measure associated with A. Let A E R. Now 

(g,E>..(A)g) = (ei<p 1 + d,E>..(A) (ei<p f + d) 

= (j,E>..(A)I) + (d,E>..(A)d) 

+ eicp(d,E>..(A)f) + e-iCP{j,E>..(A)d); (5.1) 

but 
l(d,E>..(A)d)l~ lid 112::::: 0, 

I ei<P (d,E>..(A)f) I = I e-i<p (j,E>..(A)d) I ~ II d II ,;:;j O. 

(5.2) 

Hence, from (5. 1) and (5. 2) we conclude that 

(5.3) 

However, (5. 3) is equivalent to 

(5.4) 

and (5. 4), finally, leads to v g, A = v f, A' • 
We introduce now the following axioms: 

Axiom 1: Physical states are represented by 
classes of equivalent unit vectors in a nonstandard Hil
bert space *JC. The equivalence relation is defined in 
Def. 5. 1. 

Axiom 2: Observables (dynamical variables) are 
represented by standard self-adjoint operators 
densely defined on *JC. 

Axiom 3: The result of any measurement of an 
observable can only be one of the standard spectral 
values of the corresponding operator. As a result of the 
measurement, the physical system finds itself in a state 
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represented by an ultra eigenvector of the operator 
representing the measured observable, corresponding 
to the measured spectral value. 

Axiom 4: If a system is known to be in the state 
represented by the vector 1, then the probability that a 
measurement of an observable A on the state repre
sented by 1 yields a value in a Borel set ~ E G(R) is 
given by 

q - prob(A,j, ~) = v f, A (~). 

Axiom 5: If a system makes a transition between 
the state represented by the vector f1 and the state 
represented by the vector f2' then the transition proba
bility is given by 

In these axioms we have two definitions for probability. 
We want to show here that no contradiction may arise 
between these two definitions. 

Let a system be in a state represented by the vector 
f E *JC. Let A be an observable, and let A belong to the 
standard spectrum of A. Hence,'\ is a possible outcome 
of a measurement of A carried out on the system in the 
state represented by f. The probability of getting this 
value is 

q-prob(A,j,{,\}) == Vf,A({'\}) =~f,A(A)-l'pf.A(A). 

(5. 5) 
As a result of this experiment, the system finds itself 
in a state represented by an ultra eigenvector of A with 
ultra eigenvalue '\. Let {g i: i E J} be a system of vec
tors satisfying 

II Ag i - >..g ill::::: 0 for all i E J, 

st(gi ,gj) = 6{ for all i,j E J. 

(5.6) 

(5.7) 

The probability that the system undergoes a transition 
to the state represented by g i is 

(5.8) 

By (5.7), there is no probability that the system may go 
from state g i to state gj ,if i "t j. Hence, the probability 
of transition to one of the states belonging to a countable 
subclass {gi: i E J} is 

(5.9) 
iEJ 

However, by (5. 6), the probability calculated in (5. 9) is 
the probability of getting the value>.. as a result of a 
measurement of A carried out on the system in the state 
represented by 1 and subject to the condition that the 
system undergoes a transition to one of the states 
{g i : i E J}. Obviously, this probability should not ex
ceed the unconditioned probability of getting the value >.. 
as a result of the same measurement. Mathematically, 
it is required that 

(5. 10) 

We show now that this condition is satisfied. 

Theorem 5.3: Let A be a standard self-adjoint 
operator densely defined on *JC. Let>.. belong to the 
standard spectrum of A. Let {g i : i E J} be a countable 
set satisfying (i) II Agi -:- ,\gj II ::::: 0, II gj II == 1 for all 
i E J; (ii) St(gi ,gj > = 6{ for all i,j E J. 
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Let f E *X, II fll == 1, then 

2!J stl(gi J) 12 ,,; ~/,A(A) - 'P/,A(A). 
,(c 

Proof: Let E(A) be the spectral measure associated 
with A and write E A' for E(<.! , A')' Let J 0 be any finite 
subset of J. Define the operator 

B==E A+0 -EA-O'-6 gi 0Lg., 
iEJo ' 

(5. 11) 

where 6,0' E R, 0, 0' > O. 

We can easily verify that B+ == B. Hence, 

(j,B2!> == (j,B+Bf)== (Bf,Bf)? O. (5. 12) 

Now, 

B2==(E A+o -EA_0,)2+ 6 6 (gi 0Lg}(g0Lg) 
iEJo jEJo I J ) 

- (E A+o- E A- O') 6 gi 0 Lg 
iEJO ' 

- 6 g i 0 Lg. (E 1..+0 - E A-O')' (5. 13) 
iC:::Ju z. 

However, 

(E A+O - E A_0,)2 == EA+o - E A- O" (5.14) 

6 6 (gi 0 Lg ) (gj 0 Lg) 
iEJO jrc.Jo ' I 

6 6 gi 0 Lg. (g;,gj) 
iEJo jEJo ) 

(5. 15) 

Let 

C = (1- EA+o + E A- O') 6 gi 0 Lg. 
iE'Jo I 

(5. 16) 

using which, we conclude 

B2 = B + C. (5. 17) 

(5. 12) and (5. 17) imply that 

(j,Bf) + (j, C!> ? O. (5. 18) 

But 

(j, Cf) = 6 (f, (1- EA+o + EA-O,)gi) (gi'/) 
iEJO 

+ 6 (j,g) (gi' (1 - EA+o + E A-o')!> 
iEJO 

(5. 19) 

By using Theorem 4. 7 we can show that II (1 - E A+6 + 
EA-O,)gi II:::; 0 for all i E Jo,from which it follows that 

+ 6 (j,g;>(gi,(1-E A+6 +E A- o,)f):::;0. (5.20) 
iCJ 

o 

By using condition (ii), given in the theorem we conclude 
that 

(5.21) 
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By inserting (5.20) and (5.21) in (5. 19), one gets 
(j, Cf) :::; 0, from which it follows that 

st (j, Bf) ? O. (5. 22) 

But, by using (5. 11) and (5. 22) we get 

st(j,EA+oj)-st(j,EA_o,j)- 6 stl(giJ)12~0, 
iEJo 

which is equivalent to 

.6 stl(gi J) 12 ", cP I,A (A + 6) - cP I,A(A - 6'). 
l,iCJ

O 

(5.23) 

Since (5.23) is true for every 0,0' > 0, 6,6' E R we get 

6 stl(gi,/)12", inf [CPIA(A+6)-CPIA(A-O')j 
iEJo 0,0'>0' , 

= inf cP I A (A + 0) - sup cP I A (A - 6') 
0>0' 0'>0' 

== ip I, A (A) - 'PI, A (A). (5. 24) 

Since for every partial sum (over a finite index set 
J o C J) we have 

6 stl(gi,/)12 ~ <PI,A(A)-'P/,A(A), 
IEJo 

we conclude that the supremum of these partial sums 
(which is the total sum) satisfies the same relation. 

Hence 

6 (5. 25) 
iEJ 

This completes the proof of the theorem. • 
Expectation values 

In standard quantum mechanics, the expectation value 
of an observable A when the system is in a state repre
sented by a vector f E X is given by (j, Af) = f Ad <;; 
EA(A)f). 

In the nonstandard theory, the expression (j, Af) cannot 
serve as an expectation value. The reason is as follows: 
Let {cp n: n E *N} be a standard orthonormal basis for 
"X. Let A be the linear operator whose domain is the 
set of vectors D = {f: f E *X and 6 nE *N n 2 1(cpn J) 12 < 
+ IX)}, and which maps fED into the vector Af = 6 nE * N 

nCPn(CPnJ). A is a standard self-adjoint operator. 

Let E c *R be any infinitesimal number and let 
W E *N'--N be infinite. Let n E N be any natural number. 
The two vectors CPn and/ == (1 + E2)-1/2 (CPn + Ecp ) 
satisfy the relation CPn ~ f. But (j,Af) ==(1 + E~)-l 
(n + E2W) = (1 + E2)-1 «CPn,ACPn) + E2W). Since E and w 
are arbitrary, we may choose w ~ 1/ E3 which leads to 
an infinite difference between the two values (j, Af) and 
( cP n' Acp n) , though cP nand f define the same physical 
state. We introduce now the definitions: 

Definition 5.3: Let A be a standard self-adjoint 
operator densely defined on *X. Let f E *:rc, II fll = 1. 
Define: 

(i) PI,A - 1- lim cP I,A (A); 
A -+ + 00 

(ii) PI,A - lim cP I, A (A). 
1..-)0 - 00 

Definition 5.4: Let A and f be as in the preceding 
definition. A measurable function u: R ---> R is said to be 
integrable with respect to the set function ZI I, A if and 
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only if it is integrable with respect to the measure p, /. A' 

and the two limits 

lim U(A)p/,A as A -> + co, lim U(A)Pj,A as A -> - co 

exist. The integral of U with respect to the set function 
v j. A is defined to be 

J urAl dv f A (A) == J urAl dp, j, A (A) + lim urAl Pf.A 
, A~+OO 

+ lim u(A)Pj,A' 
'\"-"'-00 

It is not difficult to ::.erify that J d v f, A (A) = 1 knowing 
that p,j,A(R) = 1- (PJ.A + Pj,A)' 

Definition 5,5: An observable A is said to have a 
strong expectation value in the state defined by the vec
tor f E *JC, II I II = 1 if and only if the identity map 
I: R -> R defined as I (A) = A for all A E R is integrable 
with respect to the set function v j, A' The strong expec
tation value of A is then defined to be 

Definition 5,6: An observable A is said to have a 
weak expectation value in the state defined by the vec
tor I E *JC, II f II = 1 if and only if the identity map 
I: R -> R defined as I(A) = A for all A E R is integrable 
with respect to the measure P, j,A' The weak expectation 
value of A is then defined to be 

If I is a near standard unit vector, then the following 
relation is true for every standard self-adjoint operator 
A: 

(A) j = (A) j = (st(f),A st(f». 

If I is a unit ultra eigenvector of A with ultra eigenvalue 
A E R, then (A)j = (A)j = A. 

B. Dynamics 

The laws of dynamics depend to a great deal on the 
underlying symmetry. In nonrelativistic quantum mecha
nics, a physical system develops with time, i.e., a state 
1/1(1) is given at every instance of time t. The relation 
between states of the same system at different times is 
established through a one-pal'ameter unitary group: For 
every time interval T there exists a unitary operator 
U T such that 1/I(t + T) = U T l/I(t). In relativistic quantum 
mechanics, a state should be defined on a spacelike sur
face 0, The development of the system takes place as 
we pass from one spacelike surface to another. In any 
case, a concept of initial and final states is given. Final 
states are connected with initial ones through a unitary 
transformation. 

In our approach we postulate the existence of such 
transformation: 

Axiom 6: There exists a standard unitary operator 
5 defined on "'JC which maps "initial" states into "final" 
states. 

The 5 operator introduced in Axiom 6 above, is nothing 
but the nonstandard extension of the corresponding 5 
operator in the standard theory. Axiom 6 asserts that 
the dynamics of the nonstandard theory is the nonstan
dard extension of the dynamics of the standard theory. 
The nature of this S operator is left unspecified. It may 
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have some labels (denoting a one-parameter group of 
transformations) or it may be label free, connecting 
asymptotic states (as in a classical scattering problem). 
However, we are only concerned with the unitarity of 5, 
from which the following theorems follow. 

Theorem 5.4: If f ~ g, then 51 ~ Sg. 

Proof: Let f ~ g, then, there exists a number 
cp E 'OR and an infinitesimal vector d E *JC such that 
g==ei<Pf+d. 

From linearity of 5 we have 

Sg == ei<p Sf + Sd. (5.26) 

But II Sd 112 == (Sd, Sd) == (d, SSd) == (d,d) = lid 112 (due 
to unitarity of 5), hence 

II Sd II ~ o. (5. 27) 

In general,S (due to unitarity) does not change the nor
malization of any vector, hence, 

II Sf II = II Sg II = 1. (5. 28) 

From (5.26)-(5.28) it follows that Sf ~ Sg. • 
The significance of this theorem lies in the fact that 

dynamics is independent of the specific vector chosen to 
represent a given state. An infinitesimal variation in 
the initial conditions does not lead to more than an infi
nitesimal variation in the final conditions. Hence, the 
solution of any dynamical problem is stqble. We prove 
now the conservation of the whole spectrum, of a self
adjoint operator densely defined on *JC and commuting 
with S. 

Theorem 5.5: Let A be a self-adjoint operator 
densely defined on *JC. Let [5, A 1 == O. Let I E *JC be 
a unit ultra eigenvector of A with ultra eigenvalue 
A E *R. Then, Sf is a unit ultra eigenvector of A with 
ultra eigenvalue A E *R. 

Proal: Let d = AI - V, hence II dll ~ 0 by definition 
( II! II = 1). Now 

ASI = SAl == S(V + d) == ASf + Sd (5.29) 

But II Sf II == 1, II Sd II ~ 0 (Theorem 5. 4), hence Sf is a 
unit ultra eigenvector of A with ultra eigenvalue 
A E *R. • 

In the special case where f is a unit ultra eigenvector 
of A with ultra eigenvalue A E R, we see that p, f. A ({A}) == 1 
as a result of Theorem 4.8. Since 51 is also a unit 
ultra eigenvector of A with ultra eigenvalue A E R 
(Theorem 5. 5), it follows that iJ.SjA ({AI) == 1. Hence, the 
probability measure is conserved. 

Theorem 5.6: Let A be a (standard) self-adjoint 
operator densely defined on *JC. Let {I>..: A E DorA)} be 
a family of unit ultra eigenvectors of A indexed by their 
standard ultra eigenvalues. If (S,A] == 0, then: For every 
A,A' E DorA), stU>..,SI>...) = or stU>..,Sf>..). 

Proof: By Theorem 5. 5, Sf>... is an ultra eigenvector 
of A with ultra eigenvalue A' E R. If A "" A', A, A' E R, 
then by Theorem 3. 4 

(5.30) 
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However, when A = A', we have 

(5.31) 

(5.30) and (5.31) combine to: For every 

• 
Theorem (5. 6) proves the conservation of the standard 
spectrum of a self-adjoint operator commuting with S. 
Our results are equally valid for both the discrete and 
the continuous spectra. 

6. APPLICATION TO WAVE MECHANICS 

In this section we try to construct wavefunctions rep
resenting a nonrelativistic free particle. In the standard 
theory, the wavefunction of a free particle of definite 
momentum turns out to be a function which is not square 
integrable in the position representations or a sort of 
delta function in the momentum representation. As a 
way out of this Situation, Dirac suggested the use of a 
function 6 (rt) (x) defined on an n- dimensional Euclidean 
space, such that, for every complex valued function cp, 
defined on the n- dimensional Euclidean space R rt, and 
belonging to the class <l> of good functions, the following 
conditions are satisfied: 

(A good function cp: R rt -) C is a CO() - function such that it 
and all its derivative vanish faster than x ~m for every 
m c: N as II x II -) + w, II x II == (Xt + Xt + ... + x~) 
xc=: Rn) 

It is well known that no such function exists. The distri
butions theory proves the existence of a linear functional 
6 defined on <l> and continuous with respect to an appro
priate topology on <l>, such that 

6(cp) = cp(O), (6.1) 

and the differentiation of a distribution T is defined in 
general as 

(Dfl D;z, .. D:n T)(cp)=(-1{1+P2 + '" + PnT(D{\D'~2 ... D:n cp), 

(6.2) 
where 

p. 
DPi =_0_' 

I p. ' 
oX i ' 

i=1,2, ... ,n. 

But the 6 distribution defined above is not a complex 
valued function defined on R n. Hence the expression 
6( n) (x - x') which is used extensively in quantum mecha
nics and quantum field theory is meaningless (no one 
can tell what 6 ~oL for example, means). The expression 

J dnx' 6(n) (x - x') cp(x') 

is just a ''bad'' way of writing 6~n) (cp). It is even worse 
when the integration sign is not there. 

We construct first a nonstandard function defined on 
the nonstandard n- dimensional Euclidean space *R n. 
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We shall give it the symbol 6(n). If cp is a complex
valued standard function defined on *Rn and continuous 
at the origin, then 6(n) has the property that 

stJ d n x6(n)(x) cp(x) = cp(O). (6.3) 

Furthermore, if cp has all the derivatives required in 
D2, then D2 holds exactly. 

We shall use this function to construct the momentum 
wavefunctions of a nonrelativistic pal'ticle, and show how 
we can reproduce a great deal of Dirac's notation for 
the continuous spectrum. 

A. Construction of [, (n) 

It is known that if {f n: n c=: N} is a sequence of func
tions defined on Rn and ranging in C, such that for every 
good function cp: R n -) C (where a good function is a 
COO function, such that it and all its derivatives vanish 
faster than II x " ~ m for every mEN as "x" -) + w, 
II x Ii = (Xt + x~ + ... + x~)1!2, xC=: Rn), the following 
condition holds: 

lim J dnx f m (x) cp(x) = cp(O) (6.4) 
rtlE::N 

and, if 6 is the internal function, defined on *R nand 
ranging in *C, which is generated by the sequence 
{fn: n EN}, then for every standard good function cp: 
*Rn -) *C the following condition holds: 

st.f dnx 6(x) cp(x) = cp(O). (6.5) 

We want to construct here a function I)(n) such that (6.5) 
holds for a wider class of functions (not necessarily 
good functions only). In addition to the mathematical 
requirement that I)(n) be at least a fairly good function 
in order to justify (D2) (infinite differentiability) and 
(6. 5) (integrability with good functions), 1)( n), from a 
physical point of view, must be a good function, in order 
to justify taking its Fourier transform (when going from 
X space to P space, etc). It is very useful to impose the 
extra condition on Mn) of having a compact (infinitesi
mal) support (in the internal sense) in the neighborhood 
of the origin, a fact which is used in proving many 
theorems in this section. Any good (real nonnegative 
even) function with a compact infinitesimal support (in 
the internal sense) in the neighborhood of the origin, 
and normalized such that its integral is unity, would 
serve the purpose. However, we construct here a speci
fic one, but we emphasize that our choice has no effect 
on the proofs of the following theorems. All theorems 
remain valid if we replace the I) function adopted here 
by any other member of its equivalence class mentioned 
above. 

Definition 6.1: Letx c=: *Rn, x = (x l' X 2' ... ,x,,), n (C N 
(a finite natural number). Define II x II n = .6 ?11 Xi 12)112. 

Definition 6.2: LetA(x)=e(x)e~1!x, xc=: *R,where 
e (x) is the Heaviside step function extended to * R r e (x) = 1 
fx> 0, e(x) = ° if x< 01. Define: 

(i) 
c e~ (c~x)~1 

I (e) = J xn~1 dx 
n 0 e-(c~x)~1 + e~l/x 

fornc=:N, C0~ *R, c>O; 

(iil 

fornc=:N, ec=: *R, C>O, xC=: *Rn. 
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Theorem 6.1: The function 6.~n) defined in Def. 6. 2 
has the properties: 

(i) 

(ii) 

(iii) 

II xii n? C = 6.~n)(x) == 0; 

it is a Coo function; 

f dnx 6.(Il)(x) == 1. 
A:E*Rn C 

Proof: To prove (i), we notice that II x lin> C im
plies that e (c - II x II n) = 0, from which it follows that 
A(C - II xli n) = 0, hence 

II x II n > C => 6.~n) (x) = 0 (6.6) 

Also lime-(c-llxl' n )-l = Oas Ilxli n ~cand Ilxll n < c, hence 
lim A(C - II x II n) = 0 as II x II n --7 C and II x II n < c, and 

IIxll n = C = 6.~n)(x) = O. 

(6. 6) and (6. 7) proves (0. 

(6. 7) 

To prove (ii) we notice that 6.~n) is analytic in the domain 
D1 = {x: x E *Rn and 0 < II x lin < c} and the domain 
D 2 ={x:XE *Rnandllxlln>c}. HenceitisCooinD 1 
and D 2 • 

Let x be a point on the surface E = {x': x' E *R nand 
II x'II n = c}. We have shown that 

lim 6.~n)(Xl) = lim 6.~n)(x') = 0, 
x'-x 
x'ED2 

(6. 8) 

which guarantees continuity across E. 

Let(P1 ,P 2 ,···,Pn)E *N n withP=P1 +P2 +···+Pn· 
It can be shown by mathematical induction that for every 
x E D 1 , 

P 2P 3P P+1 

6.~n)(x) = 6 6 6 6 
a.6=1 j=2 K=3 r =2 

x 

where Q (J; :"J;,~:: .. P n) (x) are polynomials in the components 

(x1 ,x2, ... ,xn). Now, let x' E E,hence 

lim 
x-x' 
XED, 

Hence 

lim 

lim 
IIxll n-c 
II x II n < c 

e -a/(c-IIx II n) 

-----=0. 
(c - II x II nl j 

6. ~ n) (xl = lim 
x-x' 
XED2 

a P, aP2 a Pn 
X 6.~n)(x) = O. (6.10) 

axi' aXf2 a<n 

(6.8) and (6. 10) prove that 6.~n) is Coo across E. At the 
origin 

lim 6.(n) (x) = r(tn) lim e-(c-IIxllnr' 

x-o c 2[r(t)r In (c) x-o c(c-Ilxllnr' + e-(lIxlln)-' 
XED,' XED, 

r(t n) 
(6.11) 

2[rW]n In (c) . 

-
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Hence 6. ~n) (x) is continuous at the origin. Also 

P 2P 3P 1"1 

6.(n)(x) = 6 6 6 6 
c 

a.B=l j=2 K=3 r=2 

Q a.S.j .K.r (0) e-S/llxlln 
(P,.P2· .... Pn) 

lim = O. 
c j e-r-xl c IIxlln-O 

IIx II n> 0 
(II xlln)K 

Hence 

lim 
a P, a P2 aPn 

6.~n) (x) = O. (6.12) 
a P, a P2 a<n x-o 

XED, Xl x 2 

(6. 11) and (6. 12) prove that 6.~n) is Coo at the origin. 
This completes the proof of (ii). 

To prove (iii) we have 

~E*Rn 

= 1. 

Hence the theorem is proved 

The number c in 6.~n) need only be positive, but, other
wise, arbitrary. We choose some infinitesimal number 
E > 0 and set c = E (but leave E unspecified.) 

Definition 6.3: The function (j( n): *R n --7 *R is de
fined as (j(n) = 6.\n) for some E> 0, E »:: O. 

Theorem 6.2: Let cp: *Rn ~ *C be a standard 
function continuous at the origin. Then 

Proof: 

I
f * n dnx (j(n) (x) [cp(x) - cp(O)]/ 
xE 'R 

= I f dnx (j(n) (x) [cp(x) - cp(O)]/ 
IIxlln~ f 

• 

:s I J dnx (j(n) (x) I cp(x) - cp(O) I. 
IIxlin " f 

(6. 13) 

But if cp is standard and continuous at a ERn (a standard 
point), then for every x E *R n, II x - a II n »:: 0 implies 
that7 

cp(x) - cp(a) »:: O. 

Hence, setting a = 0 we get 

II x II n :s E implies cp(x) - cp(O) »:: 0 (6. 14) 

because E is infinitesimal. 

Let 0' > 0, 0' E R (a standard positive number), then, 
from (6. 14) 

II x II n :s E implies I cp(x) - cp(O) 1< 0' . (6. 15) 

Now, (6. 13) and (6. 15) imply 

I ~E*Rn dnx (j(n) (x) [cp(x) - cp(O)]/ :s 0' f 
II x II n" f 

x dnx (j(n) (x) = 0'. 
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Hence, for all Q! > 0, Q! E R, we have 

I ~E *Rn dnx 6(n) (x) [rp(x) - rp(O)li < Q! , 

i. e., 

(6.16) 

or 

J d"x 6(n)(x) rp(x) - rp(O) E M 1 (e). 
XE*Rn 

But rp(O) E e, hence (from the definition of the standard 
part of a number) we get 

stJ dnx 6(n) (x) rp(x) = rp(O). 
xE*Rn • 

Theorem 6.3: Let rp: *Rn ~ *e be a standard 
function such that all its derivatives up to Dil Df2 . .. D:n rp 
exist and are continuous (Dri = aP' / aX;i, i = 1,2, ... ,tI), 
then 

Proof: First, notice that if Pi < P 1, P z ~ P 2" •. , 

P~ ~ P n , and that if for every tJ;: *R n ~ *C, for which 
p' p.' p' 

D11 Dl .,. D" n tJ; exists and is continuous, we have 

tJ;(x), 

then (6. 17) 

~E*Rn 

(6. 18) 

196 J. Math. Phys., Vol. 16, No.2, February 1975 

P' P' P' 
But D11 D 22 •.• D n n (D, rp) exists and is continuous 
(given), hence, by applying (6. 17) to (6. 18) we get 

J n (a PI'+1 aP
';' aP~ (nl) 

.. E * R" d x ~ ---;;; '" ---;;; Ii(xl rp(x) 
ax11 aX2 axn

n 

rp(x) 

( p' + 1)+ p' ~ ... + P' J = (- 1) I 2 n 
xE*Rn 

(6.19) 

Equation (6. 17) is true if we set tJ; = rp and Pi = P z = 
••• :=: P~ = O. Now, setting tJ; = rp in Eq. (6. 17) and 
assuming that it is true, Eq. (6. 19) follows. So, by 
mathematical induction we get 

J Jt (a Pl aPz ap" (n») p+p+oo+p d x - - .. , - Ii( l rp(x) = (-) I 2 n 
xe*Rn x 

aXl aX2 ax" 

rp(X)} 

(6.20) 

x rp(x) = (_)PI;-Pz+"+P n Di l Df2 .. , D:n rp(O) .• 

Higher orders of Ii (n) 

We shall call 6(n), the n-dimensional Ii function of the 
first order. We define now n-dimensional Ii functions 
of higher orders. 

Definition 6.4: The n- dimensional 6 function of the 
P 9rder is the function 6~n): *R n ~ *R defined as follows: 

6(n)(x) z J d"x f dx~ '" f d"x _ 
p XIE*Rn 1 X2E*Rn Xp_IE*Rn p 1 

x 6(n) (x - Xl) 6(n) (Xl - x
2
)··· 6(n) (xp - 2 - x p - 1 ) 

x 6(n) (x
P

- 1 ). 

Theorem 6.4: The n- dimensional 6 function of the 
p order satisfies the following properties: 

(i) 

(ii) 

(iii) 

If x E *Rn, II xii" ? PE, then 6}n) (x) = 0; 

f d n x6(n)(x) = l' 
xE *Rn p , 

If rp: * R n -) * C is a standard function which is 
continuous at the origin, then 

stJ dnx 6 (pn) (x) rp(x) = rp(O). 
xE:*Rn 

Proof: To prove property (i), consider the function 

f(x,x l , ... ,xp-
1

) = 6(n)(x- x 1 )6(n)(xt - x 2 ) 

'" 6(n) (xp-
2 

- x p-1 ) 6(n)(xp_1 )' (6.21) 
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Let II x II n ? PE. If II xIII n ~ (p - 1) E, then IIx - xIII n ? 

III xlln -II xlII n I? E which leads to /l(n){x- xl):::: 0 
and, hence,! (x, Xl' ... , X P-I) :::: O. So, in order that 
f{x, xl' ... , x p- l ) does not vanish we should have 
II xlII n > (p - 1) E. If we continue in this fashion, we 
find that a necessary condition for the function f to be 
different from zero is that 

IIxllln> (p-1)E,1Ix2 I1 n > (p-2)E, ... ,lIxp - l ll n> E

(6. 22) 

But, if II X P-lil r> E, then /len) (xp-l ) = 0 and f vanishes 
again. Hence I x II n ? PE implies that 

f(x,x l ,·.· ,xp- l ) = O. 

But 

o~n)(x) = ~ E*Rn dnxl ~ E*Rn d n X2 
1 2 

X dnxp _l f(X,X I ,X2, ... ,Xp- l ), 

Therefore, by uSing (6.23) in (6. 24) we get 

II x II n ? PE implies that o~n)(x):::: O. 

To prove properly (ii) we notice that 

/len) (x) = J dnx' o(n)(x - x') o(pn) (x'), 
p+l x'E*~ 

thus 

(6. 23) 

(6.24) 

(6. 25) 

(6. 26) 

J dnx/l(n) (x)=J dnxJ dnx'o(n~x_x/) o(n)(x/) 
xE*Rn P+l xE*Rn X'E*Rn P 

= ~E*Rn dnx o~n)(x). (6.27) 

Equation (6. 2), together with the fact that LE* n 

dnx o(n) (x) = 1 (/lin) = /l(n» implies property (iD. 

Finally, to prove (iii), we use (i) and (ii), and apply 
Theorem 6. 3. This completes the proof of the 
theorem. • 

Although the n- dimensional /l functions of all orders 
satisfy the "definition" of the /l function in the conven
tional sense, yet they are different functions. They 
coincide on the whole nonstandard real line, save for 
an infinitesimal neighborhood of zero. 

B. Nonrelativistic particles 

The nonstandard Hilbert space of a nonrelativistic 
particle (in the momentum representation) is the set 
*JC of equivalence classes of square integrable internal 
complex-valued functions defined on *R3. If f,g E *JC, 
then, their scalar product is defined to be 

(f,g) = ~E*R3t13Pf*(P)g(P)::::(21T)-3 ~E*~d3p f*(P)g(p). 

The momentum operator Pi in the ith direction is the 
standard operator whose domain is the set of vectors 

D(Pi) == {j:f E *JC and J d 3 pP? If(P)12< + co} 

and which maps f E D(P i) into P J defined as follows: 

(PJ) (p') :::: p/ f(p'). 

The position operator Xi in the ith direction is the stan
dard operator whose domain is the set of vectors 

D(Xi) == {f: f E *JC and Di f exists and J d 3 P 

x / a/ap j f(P) /2 < + co} 

197 J. Math. Phys., Vol. 16, No.2, February 1975 

and which maps f E D(X j ) into Xi f defined as follOWS: 

(XJ) (p') = i _a f(P'). 
ap,; 

Each of the six operators {PUP2,P3,Xl,X2,X3} is 
self-adjoint. One can easily verify that on a common 
dense domain: 

[Xi,Xj ]:::: 0, [Pj,Pj ]:::: 0, [Xj,P j ]:::: iOij" 

Definition 6.5: Let A C *R be a Borel subset. The 
operator ED. (P i) (i :::: 1,2,3) is defined on *JC as follows: 
For every f E "X, 

(ED. (Pj)f) (p') = XA(P;lf(p'), 

where X A is the characteristic function of A. 

Definition 6.6: Let A C *R be a Borel subset. The 
operator E A (Xi) (i = 1,2,3) is defined on a dense domain 
in *JC as follows: For every f E *JC for which the 
function 

{(x) = J cJ:3P' ei(p'-p}ox f(P') for every p E *R3 
P P'E*R3 

exists and is integrable, we define 

(EA(Xi)f)(P) = J dXj n J * dX), 3 rf3p'e i(p'-p}oxf(P'). 
XjEA j"j XjE R P E*R 

Then E A (Xi) is extended to *JC by continuity. 

It is easy to verify that E(P i)' E(X j ) (i = 1,2,3) are 
the nonstandard spectral measures associated with Pi 
and Xi (i = 1,2,3). 

Definition 6. 7: Define the vectors fp(p'),fx(x') E *JC 
as follows: 

(fP(P'»(p") = .eP)(pll - p'):::: (21T)30(3) (p" - p'), 

(f (X'»(p") = 1 d 3x" e-ip".x" /l(3)(x" - x'). 
X x"E*R3 

Theorem 6.5: 

(i) fp(P') is an ultra eigenvector of (P l ,P2,P3) with 
ultra eigenvalues (Pi,P2,P3)' 

(ii) fX(X/) is an ultra eigenvector of (Xl' X 2 , X 3 ) with 
ultra eigenvalues (xLx 2,x3)' 

Proof: 

II(Pj -Pj)fp(p')11 2 =jP"E*R3 (f3p/~P'[- Pi) 2/ o-(3)(P" - p') /2 ; 
(6.28) 

but if (P;'- p;)2? E2(E "" 0), then .0'(3) (p" - p') = O. 
Hence Eq. (6. 28) becomes 

II(P·-PI)fp(P I) 112 ~ E2 j cJ:3p"/ b(3)(p"_p/)/2 
I. ;I. P"E*R3 

::::E 2 I1fp (P/)1I2 (6.29) 

i.e., II (Pi - pt)fp(P') II ~ E" fp(p')11 or 

II (Pi - Pi)fp(P')1I /" fp(P') II ~ O. (6.30) 

This proves (i). 

To prove (ii), we proceed as follows: 

II (Xi - xi)fx(X') " 2 

:::: J tf3p" J d3x lll (x'" - ') ip".x'" 
P"E*R3 XmE*R3 i Xi e 

x o(3~x"'-x')1 d3x"(x~/-x~)eip"'X" o(3)(x,,-x/) 
x"E*R3 1 1 

X (XIII - x') ( ,,_ ') ,,(3) ,,(3) 
i i Xi Xi v (XIII_X') U (x"-x ') 

f d3x"(X,'! - x',V/ /l (3) (x" - x') /2. :::: x"E*R3 (6.31) 
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Now 

"fx (x')112 = j~"~*R3 d 2x" 1 6 (3)(X " - x') 12. (6.32) 

In the same way as we concluded (6. 30) from (6.28) and 
(6.29), we get from (6.31) and (6. 32): 

!I(X j - xi)fx(x') !I / "fx(x') 11::::l O. (6.33) 

This completes the proof of the theorem. 

Eigenfunctionals 

(See Sec. 2D; related standard linear forms, and Sec. 
3B; relation with eigenfunctionals). 

• 

Let 0D be the set of standard good functions (OD c X) 

and let D be the standard subset of ·*X generated by °D. 
n is well known that D is dense in *X, because, from 
the standard theory, °D is dense in X. Let ~ p' ~ x: 
*R3 x D --7 *C be the standard functions defined as 
follows: If A EO R3 (a standard triple) and g EO °D (a 
standard vector), then 

~p(A)(g) = stU p(A),g), ~X(A)(g) = StUX(A),g) 

the existence of ~ p follows from the fact that 

St(fp(A),g) = stJ d 3p" 6(3) (p" - A)g(P") =g(A) 

since g is continuous at A EO R3 (Theorem 6.2). The 
existence of ~x follows from the fact that 

StUX(A),g) =:: stJ li3p" J d 3x" eip".x" 6 (3)(x" - A)g(P") 

=:: stJ d 3x" 6 (3) (x" - A) J d 3p"e i p".x"g(p") 

=:: J cf3p" eip".x g(p") 

since g is a good function. 

The uniqueness of ~ p and h follows from the fact that 
they are standard. 

Theorem 6.6: Let f EO D (where D is the subspace 
defined above). Then 

~p(p')(PJ)= p~ ~ p(p')(f) and ~x (x')(X;f) =:: xi h (x')(f). 

Definition 6.8: 

Proof: Let p' EO R3 (a standard triple) and f EO 0D 

(a standard vector). Now: 

~p(P')(PJ) = stUp(p'), PJ) 

= stJp"E*R3 d 3p" h(3) (p"- P')Pif(P") 

= Pif(P') 

= p' stJ d 3p" .0'(3) (p" - P')f(P") 
~ P"E*R3 

= P~ stU p(p'), 1> 
= p; ~ p(p') (f). (6.34) 

Since ~ p and Pi are standard functions and (6. 34) is 
true for every standard p' EO R3 and standard f EO 0D, 
Eq. (6.34) is also true for all p E "8 3 andf E D. 

Let again x' EO R3 (a standard triple) and f EO °D (a 
standard vector). Now: 

~x(x') (XJ) = stUx(x'),XJ> 

= stf d 3p"J d 3x"e iP".x"6(3)(X"-x')i-
a
-f(P") 

P"E*R 3 x"E*R3 ap'i 

= stl d 3x"6(3)(x"-x')x':f d 3p" eip".x" f(p") 
x"E*R3 1. P"E*R3 

= x', J d 3p" eip".x'f(P") 
1. P"<::*R3 

= x',stl d 3x"6(3)(x"-x')j' d 3Jf' eip".x" f(p") 
~ X"E*R3 P"~*R3 

= x', stJ d 3 p" r d 3x"e i p". x"6(3) (x" - x')f(P") 
t p"E *R 3 Jd3x ,. 

= xi stU x (x'),!) 

= x; ~x(x') (f). (6.35) 

Bya similar argument, (6.35) holds for all x' E *R3 and 
fED. Hence the theorem is proved. • 

{ 

D x D --7 *C 
(i) 1;+ (p') ® 1; (P'): 

P P (f,g) --7 (~p(p') 0 ~p(p'»(f,g) = (~p(P')(f»*(~p(P')(g» 

for every p' E *R3. 

for every x' E *R3. 

Theorem 6. 7: Let f,g E D and b. C *R be a Borel 
subset. Then: 

(i) (f E (P ) ) - J lip' n J liP' 
, 60 i g - P'E6o j" P'E*R j 

1 J #-1. J 

X (~p(P') c;) ~p(P'»(f,g); 

(ii) U, E 2> (X;lg) = J, dx'; n j 'E~R dx; 
XiE::il j#i x) 

x (1;;(x') ® 1;x(x'» (f,g). 

Proof: 

U,E2>(P)g) = J
p

'E*R3 d 3p' f*(p')x6o(pj)g(P') 

= J , liP; n J p'" *R liPj f*(p')g(p') 
PiE 60 j'<i J 
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J (f E (X» J d 3p" f *(p") f. dx',' n 
, .:,. j g = P"E*R3 

XiE6 ) ~i 

X J ax' J d 3p' ei(p'-p")ox' g(p') 
xjl...::::*R J P'E*R3 

xd3p"(eip".xj(p"»*J ([3p' eip"x' g(p') 
P'€*R3 

= JX'E6o dx~ n t,= *R dxj(~x(x'Xf))*(~x(x')(g)) 
t J ;t!1· J-

= ,ere 60 dxi n tC*Rdx;(~x(x')®~x(x'»(f,g). 
~ J""l J 

• (6.37) 

Since D is dense in *JC, Theorem 6.7 allows uS to intro
duce the symbolic definition. 

Definitiol! 6 . .9: Let b. C *R be a Borel subset. 
Define: 
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Theorem 6. 6 together with Def. 6. 9 reproduces the re
sults obtained in the rigged Hilbert space approach to 
quantum mechanics. 

Uncertainty principle 

The states j p(P'), j x(x') satisfy the properties 

<J p(p'), j p (p"» = h~3) (p' - p,,), 

<Jx(x'), j x (x'» = 6~3) (x' - x") 

as may be easily verified. 6~3) is the three-dimensional 
{) function of the second order. 

To normalize the states to unity, define the following. 

Dejinition 6.10: 

(i) IIp' '= [o~3)(0)l-1/2 j p(p') for any P' E *R3. 

for any x' E *R3. 

As a result of Theorem 4. 8 together with Theorem 6. 5, 

/lIlp"Pi ({pj}) = 1 

/lYx"Xi ({xi}) = 1 

for any p! E Rand 

for any x; E R. 

Hence if a particle is in the state represented by the 
vector IIp'' p' E R 3, it is certain that it has momentum 
p' , and if a particle is in the state represented by the 
vector Yx " x' E R 3, it is certain that it is at the point 
Xl in space. We wish to prove now that a complete cer
tainty in the momentum of a particle gives rise to com
plete uncertainty in the position of that particle, and 
vice versa (i. e., complete certainty in the position 
gives rise to complete uncertainty in the momentum). 

Theorem 6.8: Let p E R3, then for every,\ E R, 

st(llp,EA(Xi)II) =~, 

Proof: 

i= 1,2,3 

(ll P' E A(X illl p) 

1 A 
I d3p"fP)(p" -p) fO() dx, . . n. 

= .o~3)(0) P"E*R3 J'" 

= _1_ fA dx n f dx (I ((3 e-ip".x 
~~3)(0) -0() i J"i x/,c*R j P"E*R3 "" 

x {j-(3) (Pill) (I
p
'E*R3 d3p'eiP.x ~(3) (P,~ 

=_1_ 1° dx 11 J dx 
~~) (0) -0() 'Vi x/,c *R J 

x (I d 3p" cop"'X ~(3) (P,,~ 
p"re *R3 'l 

x (I d 3p' eip"X ~(3)(P'») 
P'E * Ji1 

+_1_ FI. dx fI J dx 
.{j-~3)(0) ° 'j"i XjE*R J 

x (I d 3p" e-ip".x ~(3)(P")~ 
P"E*R3 'l 

x (I d 3p" e-ip"X M3) (Pl)\ 
P'E* Ji1 ') 
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f d3x (f d3p" e-ip"'x ~(3)(P"~ 
xE * R3 P"E*R3 'l 

X (f ri3p' eip·x ~(3)(P')\ 
P'E*[t3 'J 

1 1 jA f = - +-- dx n dx 
2 ,,( 3) (0) ° i.. x E *R j 

"'2 J'" J 

= ~ + _1_ J" dx n 
{}~3) (0) ° 'j"i 

X d3p" e-ip"'x .{j-~3) (p,,) 

1 + 1 jA d f dP',. e-iPi"i n =" ~~3)(0) ° Xi P'iE*R j"i 

x f dx. I e -ipj x j ~(3) (p') dp' 
XjE*R J PjE*R 2 J 

= .!+_l_j"dX J dp'e- iP't X i.{j-(3)( ')[ 
2 {)~3)(0) ° i IPW'2€' 2 P Pj=Ofor j"i 

(6.38) 

But 

{)~3)(p) = I d3p' ~(3)(p _ p,){)(3)(p') 

= 1 I d3p,~(3)(p - p,)~(3)(p') 1 

"" (Id3P'1~(3)(p-p/) 12)1/2(1 a3p'I~(3)(p')12)1/2 

= .{j-~3) (0) 
or 

max .{j-~3)(p) = ~~3)(0), 
PE*R3 

hence 

I I~ dX i Jp~I"2£ riP! e-
iP

!xiJt(3)(p') Ip'.=o forj"'i I 
, J 

f
max(o,A) j 2101,\1 

~ dx ([p~ ~(3)(0) = -- ~(3)(0). 
min(O,A) 'IP'il<;2£ ' 2 1T 2 

Hence 
(6.39) 

l(llp,E,,(X,)llp) - ~ I"" 2EI'\I/1T "" 0 (6.40) 

or 

Theorem 6. 8 shows that II pis not a probability measure 
inducing vector relative to Xi' The probability of find
ing the particle in any interval [a, b 1 is zero. However, 
the probability of finding the particle in the interval 
(- co, a) or (a, + co) is ~. Xi has no strong expectation 
value in the state TIp (because P1j x. = Pn X. = t, and 
1 'P', p" " ,\ does not tend to any limit as ,\ -> ±co ). But Xi has 
a weak expectation value in the state II p: 

(XUn = 0 p 

because the measure /In x. = O. 
p' , 

Theorem 6. 8 still holds if we replace the momentum 
by the position and vice versa. 
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Dirac's notation 
Let us write the following shorthand: 

I p') for fp (p'), I x') for fx(x'), I p') for ~p(p'), 

I x,) for ~:\:(x'), (p'l for ~p(P'), (x'i for ~x(x'), 

(p'l p") for Up(P'), fp (p"), (x' Ix") for Ux(x'), fx(x"), 

(x'i p') for (fx(x')'/p(p'), Ip')(p'lfor~~(p')0 ~p(p'), 

I x')(x' I for ~:\:(x') Q9 ~x(x'). 

By using these notations we may transform a lot of ex
pressions proved above into Dirac's language. 

Normalization: 

(p'l p,,) = {)-~3)(p' - p"), (x' I x") = 6~3l(x'- x'). 

Fourier transform: We find 

st(x'i p') = stJ ([3 P"J d 3 x"e i P"'x"6(3)(x" - x,)(pl(p''--tf) 
P"E*R 3 x"E*R3 

== eip'-x' , 

hence 
st(x' I p') = eip'·x'. 

Eigen functionats: The results of Theorem 6. 6 
may be written in the form 

(p'IP i If) =Pi(p'If), (x'i Xi If) = xi(x'lf), 

which allow the introduction of the definition6 

P; I p') = Pi I p'), Xi I x') = xi I x'). 

Finally, Def. 6. 9 can be written in the form 

EL>.(P i ) = J ([p; n J dp' Ip')(p'l, 
Pi EL>. j"i PjE*R J 

EL>.(X) = J dX i n J dx' I x')(x' I. 
~ xi cD. j~i xi E*R J 

As a special case where t. = R we get 

J ([3p'l p')(p' I = I J ([3 x'l x')(x' I = I. 
P'C*R3 ' x'E*R3 
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APPENDIX 

Theorem A: The quantifier v satisfies the tautology 

I VnP(n)«= Vn -1 P(n) 

CI P reads not" p"). 

Proof: 

(i) Assume I Vn P(n) i.e.,{n: n EN andP(n)} ¢ g: 
hence, by (F4) N', {n: n EN and P(n)} E g:, i.e., 
{n: n c Nand -l P(n)} E g: or V n I P(n). Hence 

I VnP(n) => vn I P(n). (A1) 

(ii) Assumev I P(n),i.e.,{n:nENand IP(n)}E 3' 
hence, by (h) and (F2) N "{n: n EN and 
I P(n)} ¢ g:,i.e.,{n: n EN andP(n)} ¢ 3' or 
I V n P(n). Hence 

\ I 
V n 

by (AI) and (A2) we get 

IVnP(n)«=Vn I P(n). 

Theorem B: Let x c M o(R), then there exists a 
unique element r <?: R such that x - r E Ml (R). 
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(A2) 

• 

Proof: By definition, there exists a positive r' E R 
such that I x I < r' i. e. , 

- r' < x< r'. (A3) 

LetA(x) = {r": x.,; r" andr" E R}. By (A3),r' E A(x) 
and - r' is a lower bound for A(x). Hence A(x) has an 
infimum inR. Let r = infA(x). 

To show that x - r E 1111 (R), assume the contrary, i. e. , 
x- r ¢ M1(R), which means that 

'3 0ER,O>O such that 6 < I x- r I (A4) 

if x - r > a, then 

6 < x - rand r + 6 < x. (A5) 

But (A5) means that r + 6 is a lower bound of A(x). 
Hence 

r + 6 .,; r by definition of r, 

:. therefore 6 .,; 0 contradicting the definition of 6. 

If x - r < 0, then 

6 < r - x and x < r - 6 (A6) 

But (A6) means that r - 6 E A(x) and so r .,; r - I), 

leading to the same contradiction 6 .,; O. 
The case x - r = 0 gives an immediate contradiction 
to (A4). Hence 

x- r E M1(R). (A7) 

To prove uniqueness, let x - r' E M 1 (R). It can be 
shown that Ml (R) is a commutative ring. Hence 
(x-r)- (x-r') E M1(R) i.e., 

r' - r E M1(R). (A8) 

Now, if r' '" r, then 6 = 11r' - r I satisfies 6 E Rand 
6 < I r' - r I contradicting (A8), hence r = r'. • 

Theorem C: The sets *R "-Mo(R) andM1(R)"-{0} 
are not empty. 

Proof: Since R is an infinite set, it follows thaU 
*R ',R '" cpo Let x E. *R ", R. 

(i) If x E *R "Mo(R),then x '" 0[0 E Mo(R)j and l/x 
exists. Now, for all r E R, r > 0 we have l/r < I x I 
(by definition of x); hence 1/ I x I < r, which means 
that l/x E Ml (R) but l/x '" 0, hence l/x c Ml (R)', 
{a}. i.e., 'R"M1(R) '" cp and M1(R)",{0} '" cpo 

(ii) If x ¢ *R"- MO(R) , then x E Mo(R). Now st(x) c R 
and x - st(x) E Ml (R). But st(x) '" x (because 
x ¢ R). Hence x - st(x) '" 0 and x - st(x) E Ml (R)" 
{a}. Also l/[x- st(x)] E *R' 1V1 o(R). Hence 
*R"Mo(R) '" cp and M1(R)"{0} '" cpo Hence the 
theorem is proved. • 
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From the logic approach to quantum and classical mechanics, the W*-algebraic approach is deduced 
in dependence of a suitable "prestate." An algebraic representation of the logic description is in fact 
constructed in a framework in which continuous superselection rules can be present. Logic 
propositions, observables, and states are represented by decomposable projections, decomposable 
self-adjoint operators, and normal states in a direct integral of Hilbert spaces. In this representation 
each algebraic term becomes the representative of a homologous logic one and the expectation 
values as well as the superselection rules are conserved. When a principle of "undistinguishability" is 
taken into account, the representation is faithful. In the classical case, the representation 
results in Koopman's formalism. 

INTRODUCTION 

Recently, much interest has been devoted to the logic 
and algebraic axiomatic approaches to the foundations 
of physical theories. Both approaches describe as par
ticular cases the usual models of quantum and classical 
mechanics. 

The logic (or "lattice" or "events") approach has been 
developed in recent years 1 according to an idea advanced 
by Birkhoff and von Neumann. 2 It encompasses the essen
tial features and conceptual problems of other axiomatic 
approaches and, owing to its semplicity and direct ad
herence to the phenomenological interpretation of the 
physical "experiments", has made possible a better 
understanding of some of the physical concepts, such as 
the definition of symmetries and their representations, 3 
the nonoccurrence of hidden variables in quantum 
theory,4 the nature of superselection rules. 5 

The interest in the algebraic approach is mainly a 
consequence of the work of Segal,6 who, generalizing an 
idea of Jordan, von Neumann, and Wigner,7 assumes 
that the observables of a physical system are properly 
represented by the self-adjoint elements of a C*-algebra 
and the states by the normalized positive linear func
tionals on it. The prinCipal aims of this approach are: 
to show that some of the difficulties encountered by 
quantum mechanics when applied to situations involving 
an infinite number of degrees of freedom are due to 
some intrinsic limitations of the traditional framework; 
to provide a scheme in which these difficulties could be 
by-passed. Moreover, by GNS construction,8 it brings 
to physical theory the entirely new concept that the 
representations of the algebraic picture depend on the 
states of the physical system which we want to describe. 
Segal's algebraic approach has been widely applied to 
statistical mechanics and quantum field theory. An im
portant standpoint related to this approach has been 
expressed by Haag and Kastler. 9 

In a previous paper,lO developing an idea of Jauch,l1 
we examined the possibility of a complete description of 
a quantum system (including superselection rules) by a 
formalism based on W*-algebras and normal states. 
The choice of these algebras and states instead of the 
more general C* -algebras and positive linear functionals 
is almost unavoidable if one wants an algebraic model 
deducible from a logic one, since the set of the projec-
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tions of a W* -algebra forms a a-complete orthocomple
mented lattice; moreover, normalcy of states amounts, 
for a separable Hilbert space, to a-additivity on the 
"logic" of the projections. Furthermore, von Neumann's 
model of quantum mechanics12 is in fact a model with a 
W*-algebra and normal states and, under fairly general 
conditions, the Gibbs state of a statistical system is 
"locally normal."13 Finally, also a classical system can 
be described with W* -algebras and normal states by 
means of the following construction. Take for a classi
cal system an Abelian C*-algebra (t (to describe the 
observables) and the set of normalized positive linear 
functionals on it (to describe the states). Then, by 
Gel 'fand-Naimark isomorphism, (t is isomorphic with 
the C* -algebra of the continuous complex functions van
ishing at infinity on a locally compact space A (the 
phase space of the system) and, by a representation 
theorem of Riesz, the states are represented by proba
bility measures on A. Hence, fixing a distinguished 
state jJ., by Koopman's formalism 14 we get the C*
algebra Dc of continuously decomposable operators 
on L2(A, jJ.), 15 in which only the probability measures 
which are absolutely continuous with respect to jJ. can 
be faithfully represented. If compatibility of this des
cription with the logic approach is now required, we 
have to replace Dc with the W* -algebra D generated 
by Dc (which contains decomposable operators of gen
eral kind)15 because Ludwig's axiom of sensitivity in
crease 16 in a sense holds for a C*-algebra if and only 
if the algebra is in fact a W* -algebra. 17 Moreover the 
states selected in the previously described way (namely, 
absolutely continous with respect to jJ.) can be easily 
shown to be normal states on D. 

For the important and partially complementary roles 
played by the logic and algebraic approaches, an im
portant task is to investigate the correlations between 
them. Plymen has shown how it is possible to deduce 
from an algebraic picture a logic one. 18 In the afore
mentioned paperlO we succeeded in the converse de
duction for a physical system in which just discrete 
superselection rules 19 were allowed. This was indeed 
a rather serious limitation which, for instance, excluded 
the possibility of encompassing in our investigation also 
classical systems. 

In the present work we solve the problem of dedUCing 
the algebraic picture based on W*-algebras and normal 
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states from a logic description "a la Jauch"20 in which 
superobservables with purely continuous spectrum 
(namely continuous superselection rules) can be present. 
The algebraic representation that we get is ruled by a 
"prestate" which selects a part of the physical system 
described in the logic picture in such a way that the dif
ferent superselected sectors are linked in a measurable 
way. The representation we get is therefore dependent 
on a state, in accordance with the spirit of GNS con
struction, and it furnishes a faithful representation for 
propositions, observables and states when "undistinguish
able" elements are identified; moreover, this representa
tion sets up a complete correspondence between the 
algebraic and logic pictures since each algebraic object 
is the representative of a homologous logic one. The 
representation we construct sets up also a complete and 
faithful correspondence between logic and algebraic 
superobservables. Finally, it is worthwhile to mention 
that, seeking what our construction results in, if the 
physical system is a classical one, we are led to re
cover Koopman's formalism. 

For the definitions and the results of the algebraic 
picture that we use (expecially for superselection rules, 
sectors, decomposable operators) see our aforementioned 
paper .10 Most of the mathematical tools we use in con
nection with W* -algebras, direct integrals, and normal 
functionals are the content of book of Dixmier, 15 to 
which we refer also for the notations and the terminology 
on these subjects. 

1. THE LOGIC PICTURE 

The propositions of a physical system are represented 
by the elements of an orthocomplemented, weakly modu
lar and a-complete lattice £.20 Such a structure will be 
called a logic. 21 Assuming £ atomic and complete, it can 
be decomposed22 into a direct union23 of nontrivial 
irreducible logics £tA) (the superselected sectors): 
£ = V~EA£(A). The center e(£) of £ is a Boolean logic; 
hence24 it can be considered to represent a classical 
system (namely, the classical part of the physical sys
tem represented by £). Therefore A can be considered 
as the phase space of a classical system, since e(£) is 
isomorphic25 (in an obvious way) to the power set PiA). 
For this reason we may reasonably make the assumption 
that a a-algebra <B exists on A such that A results in a 
standard Borel space (for instance, A could be a locally 
compact topological space with a countable open basis or 
a complete separable metric space). 

A state if; is a mapping 

if; :~,p -7 [0, 1] 

such that 

(a) 

(b) 

(c) 

~,p is a sublogic26 of £, 

if; «(/)'D ) = 0, if;(I'D ) = 1, 
,p ~ 

if; (VPn) = 6 if;(Pn ) for any sequence {Pn} of 
n n 

mutually orthogonal elements of :Dlji' 

While £ represents the set of all the "elementary 
detectors" for the physical system, the set S of the 
states represents in a sense the set of all the "prepara
tion procedures". We have not defined the states on £; 
this amounts to assume that not any pair" source de
tector" makes sense as a physical arrangement to get 
measures (an analogous standpoint can be found in 
Sec. 1. 5 of Ludwig's book quoted in Ref. 1). If, for in
stance, ~lji is isomorphic to the Borel a-algebra <B 
existing by assumption on A, then through this isomor-
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phism if; reduces to a probability measure on A, and we 
have in fact a classical description for the classical part 
of the system represented by £. If at the opposite side 
~lji is isomorphic to £P.) for some \ E. A, then:D is ir
reducible and if; provides a purely quantum desC~iption, 
since ~ljJ is centerless and no classical part is then 
allowed. 

For a state if; , the set Olji of if;-observables is the set 
of a E. hom(ffiR , :D ,I) such that aiR) = I'D (ffiR stands for 
the Borel a-algebra on the real line IR).ljJ The spectrum 
of an observable, bounded and constant observables, 
functions of an observable, are defined in the usual 
way.21 In particular, if k is an element of R different 
from zero and O! is a if;-observable, by kO! we denote the 
if;-observable defined by (ka)(E) = 0!(k- 1E), 'VE E. ffin-(' 
while for k = ° we define, for E E. ffi R , 

{

I:o ifO E.E, 
(Oa)(E) = ~ 

(/):!)lj> if ° rt E. 

For any k E. R, the observable ka just defined coincides 
in fact withh(a), where f k : R -7 ~,jk(t) = kt. The if;
questions are if;-observables of considerable importance. 
A if;-question O!p (with P E. ~lji) is the if;-observable such 
that O!p({O, 1}) = I:!) and O!p({1}) = p. A if;-superobserv
able is a nonconstlnt element of 0 lji' with range in the 
center of ~ljJ' If O! is a bounded if;-observable, if;oO! is a 
bounded probability measure on ~ and 

(O!)lji: = J R td(if;oa)(t) 

is the expectation value of O! in if;. The set of bounded if;
observables will be denoted by 0wo. We point out that for 
a if;-question O!p the expectation-value (O!p> ~ can be in
terpreted as the probability that a sample of the physi
cal system represented by £ possesses the "property" 
p when it is prepared in the state if;,since (a p>", = if;(P). 

2. THE PRESTATE 

To get an algebraic picture from the logic one out
lined above, the first step is to take into account a re
presentation theorem 22 along with other results,27 
from which it follows that each £(A) can be identified 
with the logi.c G'(X(\» of the projections of a real, com
plex or quaternionic (depending on \) nontrivial Hilbert 
space X(\). We shall assume X(\) to be complex for 
any \; this seems in fact to entail no loss of generality. 28 
In each sector £ (A) it is then possible to obtain an alge
braic picture from the logic one in a standard way based 
on Gleason's theorem and spectral theory.29 It seems 
sensible that it will be possible to achieve the same 
result for the overall picture carried by £ if the sec
tors £ (A) will be linked in a suitable way. In our picture, 
such a link is in fact established by a state in the way 
which will be expounded in the assumption below. First 
we need a rather technical result. 

Proposition 2.1: Let {x,J be a sequence of ele
ments of n AE/\ X(\) (namely of fields of vectors) such 
that L.;;ool Ilx,,(x).112 = 1, 'Vlr.. E. A, and I-L a measure on A 
such that the function A:3 \ -7 (x,,(\)lx m(\» is I-L
measurable, 'Vn, m; let Po(\) be the element of G'(X(\» 
with range the subspace Xo(\) of XiX) spanned by 
{xn(\)}. Then30 

dl 
:D:= {p = V p(\) E. .c;pp.) "" Po(\), 'V\ E. A and 

AEA 
(xn(\)lp(\)xm(\» I-L-measurable, 'V 11 , m} 

is a sublogic of £ with unit element I'D = V'fEA po(\). 
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Two elements P and q of :D are orthogonal iff P(A)q(A) = 
01.. [the null projection on JC(A)], VA E A, and compatible 
iff [P(A), q(A)] = 01.., V,\ EA. The center of :D is e(:D) = 
{p E £';,p = Vl'EA X E(A)PO(A), E E CB M},31 where CB M is the 
Il-completion of the a-algebra CB. 

Proof: Let PI and P2 be two elements of :D; then 
(PI /\ P2)(A) = PI(A) /\ P2(A) "" PO(A) trivially holds, 
VA E A; next, since 

from Il-measurability of (Xn(A) I (P I(A)P 2(A))kx m (A» for 
any k (II. 2.1 in Ref. 15), Il-measurability of (Xn(A)! (PI /\ 
P2)(A)X m (A» follows for any nand m, whence PI /\ P2 E:D. 
We get the same result for PI V P2' since (PI V P2)(A) = 
PI(A) V P2(A) "" PO(A) trivially holds, PI V P2 = (P~ /\ P2)' 
(' means orthocomplementation in £,) is true and, if 
(xnP .. )Jf(A)X m (A» is Il-measurable for an element 
P = VAEA P(A) of £', the same holds for p', since 

In this way we have shown that :D is closed with respect 
to finite join and meet. Moreover:D has least element 
f/J'IJ = (/; £ = V'rEA 01.. and greatest element I'IJ = V'rEA Po 
~A). Take now a sequence {Pn } of elements of :D. Setting 
q,:= V':=I Pn , we get V n Pn = Vi qi' since for any element 
P of £, we have P ;, q i' Vi iff P ;, Pn.' V n' Moreover 
Viqi E:D, as (Viq)(A) = Viq;(A) ~ PO(A) trivially holds 
VA E A, and for Il-measurability we have 

(Xn(A)!V;qi(A)X",(A» = lim (Xn(A)!qi(A)Xm(A», 
i_OO 

since {q i( A)} is an increasing sequence of projections in 
the Hilbert space JC(A).33 Therefore Vn Pn E :D. In the 
same way we can prove /\n Pn E :D. Finally, for any 
P E :D we get (P' /\ I'IJ)(A) = (I A - P(A» /\ PO(A) = PO(A) -
P(A) rwhere II.. is the unit operator on JC(A)], VA E A, 
whence p' /\ I'IJ E :D easily follows. Hence :D is a sub
logic of £; the orthocomplement in :D of an element P of 
:D will be denoted by p (hence p == p' /\ IJ. 

Two elements PI and P2 of :D are said orthogonal if 
Pt "" P2 (Ref. 21, Chap. VI, Sec. 1), namely if Pt(A) = 
Pt(A)P2 (A) == PI(A)(PO(A) - P2(A» = PI(A) - P t (A)P2(A), 
which is equivalent to PI(,\)P2 (A) = 01.., VA EA. 

Two elements P and q of :D are said compatible if 
there are 

'iJ 
i)l = V P1(A), 

ACA 

U) 
q1 == V qI(A), 

AE:.A 

ttl 
r == V r(A) 

AEA 

mutually orthogonal in :Dsuch thatp = PI V r andq = q 1 V r 
(Ref. 21,Chap,VI, Sec.5). If this is the case,p(A) = P1 (A) + 
r(A) andq(A) = q1(A) +r(A)withPt(A)qI(A) ==PI(A)r(A) = 
ql(A)r(A) = 0A' whence P(A)q(A) = r(A) = q(A)P(A), VA EA. 
If conversely for p, q E :D we have [P(A)q(A)] = 0A' 
VA E A, we can construct r, PI' q 1 in :D setting r(A) := 
p(A)q(A), P 1(A) := P(,\) - r(A), q l(A) :== q(A) - r(A); these 
are easily shown to be mutually orthogonal elements of 
:D such that P == P I V rand q == q 1 V r. 

If E E CBM, V~EA XE(A)PO(A) is obviously an element of 
:D CQmpatible with any element of :D, namely it is an 
element of e(:D). If conversely P E e(:D), then [P(A), 
q(A)] == 0A' Vq E:D, VA E A, and this condition can be 
shown (easily by absurd) to imply P(A) E {OA' PO(A)}, 
v,\ E A. Hence a subset E of A exists such that 

CD 
P = V XE(A)PO(A). 

AEA 
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The function 
00 gO 

XE(A) = ~ XE(A) IIxn (A)1I2 = ~ (xn (A) I XE( A)PO(A)Xn (A» 
n~ n~ 

is Il-measurable since P is an element of :D, whence 
E E CB

M
• QED 

Assumption: The passage from the logic description 
of Sec. 1 to an algebraic one is ruled by a state cP which 
can be attained in the following way. 

Let a "purely classical" situation be given in £, 
(namely a probability measure Il on CB) along with a 
"purely quantum" situation in each superselected sec
tor £, (A) (namely a state cP A defined on £, (A» in such a 
way that if {Xn(A)} is the sequence of vectors in JC(A) 
related to CPA by Gleason's theorem, the function A :3 A ---7 

(Xn(A)!Xm(A» is Il-measurable, Vn, m (this is in fact the 
most important point, because this is the only link that 
we require among the £(A),s). Denoting by poP ... ) the 
~rojection in JC(A) onto the subspace JCO(A) spanned by 
tXn(A)}, define 

(/) 

:D := {p = V P(A) E £';P(A) "" PO(A), VA E A, and 
'f AEA 

A :3 A ---7 (Xn(A) !P(A)X m (A» Il-measurable, Vn, m} 
and 

cp::D'f ---7 [0,1], cp(P) == J CPA(P(A»dll(A) 
A 

(the definition of cP is consistent, namely the integral 
exists, just by the definition of :D 'f)' The mapping cP is a 
state [:D'f is a sublogic after Prop. 2.1 and properties 
(b) and (c) of Sec. 1 are easily verified]. It is the state 
which rules the picture which we are going to construct. 

We notice that if a (E) is the cp-question related to the 
proposition V~EA XE(,\)PO(A), where E E CB, then we can 
easily show that Il(E) == (a (E»'f' Hence Il(E) is the prob
ability that if a sample of the system represented by £, 
is prepared by the preparation procedure cp, it will be 
found in the sectors £, (A) with A E E. Therefore, cp can 
be thought of as a "continuous" classical superposition 
of states concentrated in the superselected sectors, 
with weights which are the probabilities in cp of the 
sectors. In the description which we will now construct 
in dependence of the assumption above, cp will play the 
role of a "prestate." It is in a sense a "coarse" state, 
while the cp-states which will be soon introduced repre
sent a refinement of cpo This process is particularly 
transparent for the conditional states we are going to 
define, since in this case the "filtering" subsequent to cp 
is performed observing a "property" of the system. 

From cp we can get in fact other states in the following 
way. From a component CPA of cp [which is a state on the 
sector <P(JC(A»] and a component P(A) of an element P of 
:D 'f such that cp A (P( A» "" 0, we get in a standard way34 
the new state on <P(JC(A» 

(p~P): <P(JC(A» ---7 [0, 1], (p~P)(q>J == [cp\(p(I"»]-lcp~P)(qA)' 

where 
00 

cp~P)(q)..) == ~ (P(A)Xn(A)!qAP(A)X,,(A». 
n=l 

The state cpA(P) is interpreted as the preparation pro
cedure described by CPA and conditioned by P(A) [namely, 
after cp A the occurrence or nonoccurrence of the "prop
erty" P(A) is determined and the resulting physical sys
tem is accepted as a sample physical system if and only 
if P(A) occurred; CPA(P(A» is a normalization factor which 
represents the frequency of accepted cases]. Then, from 
cp and an element P of :D 'f such that cp( p) "" 0 we can get a 
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new sta~e cP P defined on :.D '" composing the conditioned 
states cp~A) resulting in each £ (A) from the compon
ents CPA and P(X), each with its own "frequency of trans
mission," and normalizing after the composition (since 
after cp we observe the "property" P as a whole); 
namely, 

CPjJ::D", -> [0, 1], 

cP p(q) = cP P C~i\ Q(X») = _1_ J cP~pJ(q(X»dJ,l.(X), 
cp( P) i\ 

where cp~)(q(~»: = 0 if CPA(P(X» = 0 [hence, in any case, 
00 

CP)P)(q(x» = ~ (P(X)xn(X) I q(X)P(X)xn(X»] 
"~l 

It is a matter of direct inspection to control that the 
definition of cP P is consistent and that cP p is really a 
state. We notice that cP p includes also a classical des
cription, since 

Ell 
<i:={PE.:D:p== v XE(X)Po(;\),EE.<E} 

'" AEi\ 

is a sub-a-algebra of the center of :D", isomorphic (in an 
obvious way) with <E and, through this isomorphism, cP p 
defines on <E the probability measure 

"IE E <E. 

The state CPp can be interpreted as "the conditional state 
with respect to P and cp". 3 5 We shall denote by :D~ the 
set of the elements P of :D '" which give rise in this way 
to states, namely for which cp(P) '" O. 

We shall now define as cp-states the states defined on 
:D '" which preserve the "sum" of two observables when
ever such a sum exists with respect to the states which 
can be constructed from cp and :D~ in the aforementioned 
way. 

Definition 2.1: The elements of the set 

S ",:= {l/I E. S;:D~ = :D '" and (a) ~ + ({3) ~ = (y) ~ whenever 

0', {3, y E. O~ are such that (O')",p + (f3)",p = (r)",p' Vp E :D~} 

are called cp-states. 

Obviously cp p E. S "" V P E. 'J:;!l. It is not in general true 
that such states exhaust S "" as it is shown by the counter
example of Sec. 4, in which elements of S'" can be found 
different from cp P' VP E. :DS· 

Remark 2.1: Let a l and a 2 be two elements of O~ 
such that (O'l)"'j> = (0'2)",p' V P E ~. Since for any l/I E. 5 and 
0' E. O~ we have <kO')~= JR td(l/IoO')(k-1t) = J R ktd(l/IoO' )(t') = 

k(O')~,VkE.IR-{O},then(al>'" =H(0'2>'" +(0'2>",)== 
I lOP PI P 

("20'2>'" + (2"0'2>", ,Vp E :D""whence (0'1>~ = (2"0'2>~ + 
I P P 
(20'2)~ = (0'2>1/>' Vl/I E 5",. 

The next defintion amounts to conSider, in the picture 
ruled by the prestate cp of the assumption, as states only 
the elements of 5 ",' In that case two cp-observables 
result in fact to be undistinguishable when their expecta
tion values are the same in each element of 5 "'. 

Definition 2.2: Two elements 0', f3 E 0° are said 
to be equivalent if (0')", = (13)11" V I/> E. S",. In that case we 
write 0' R J3 and R is easily shown to be an equivalence 
relation on O~. 
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Remark 2.2: Particular elements of O~ are the cp
questions. For two cp-questions 0' PI and 0' p (P v P2 E :D",), 
O'pRO'p is equivalent to l/I(h) == (a p )", = (&p)", = l/I 
(p~), V: E. S",. Hence the equivalence I relation 20n O~ 
involves the equivalence relation ~ on :D '" defined in the 
following way: for 

We could try to define, for cp-states, an equivalence 
relation which is the dual of that introduced by Def. 2. 2, 
namely to call equivalent two elements l/Iv l/I2 of S'" if 
(O')~ = (0')"" Va E 00. However, this is a trivial rela
tion lndeed, ~ince for two such elements of S",- we get 
(0' P>"'l = (0' jJ)"'2' whence l/Il(P) = l/I2(P), Vp E. :.D"" namely 
l/Il == i/l2' 

3. THE ALGEBRAIC REPRESENTATION 

We shall now construct an algebraic representation 
of the logic concepts previously introduced in depend
ence of the prestate cp, namely of <p-propositions (the 
elements of :D ",), cp-observables (the elements Of. O~) and 
cp-states (the elements of S ",). We have at our dIsposal 
the field [l~Ei\ JCo(X) of the complex and separable (by 
construction) Hilbert spaces JCo(X), wherein a sequence 
{xn} exists of fields of vectors (xn takes up in X E A the 
value xn(X) which appears in the assumption of Sec. 2) 
which fulfils the conditions of II. 1. 4 Prop. 4 in Ref. 15. 
Hence we can define a measurable structure for 
[lAEIl JC{)(X) and the Hilbert space 

JC", := Ji\EfJ JCo(X)dJ,l.(x). 

We point out that since A has been assumed to be a 
standard Borel space, '~1 results in a separable Hilbert 
space (II. 1. 6 Coroll. in Hef. 15). We shall denote by 
R(JC",) and D(JC",) (3 in the notation of Ref. 15) the W*
algebras of decomposable and diagonal operators on 
JC", and by £, the set of the projections of R(JC",) (for 
the content of this paragraph, see Chap. II in Ref. 15). 

The set £, is easily shown to be a logic under the 
usual partia{ ordering and orthocomplementation for 
projections. We will prove in fact that £, '" gives rise to 
a suitable algebraic representation of cp-propositions. 

Proposition 3. 1: Let i be the mapping 

i(P) = JEt! P(X)df..L(X) 
i\ GJ 

if P = V P(X). 
AEA 

Then i is a homomorphism of :D '" onto .£, ",' 

In A",:= :.D",/~ (where ~ is the relation of Remark 
2.2) a partial ordering and an orthocomplementation 
can be defined such that A", results in a logic and the 
natural mapping 1J of :D '" onto A '" in a homomorphism. 
An isomorphism j of 6. '" with £, '" exists such that i can 
be decomposed into i = jo1J. 

Proof: First we notice that i is well defined. If 
P = V~EII P(A) is an element of :.D "" then A :=3 X -> P(X) is 
a f.J.-measurable field of projections in the f.J.-measur
able field of Hilbert spaces [l)..Ei\ JCo(X), by definition of 
:D", and by II. 2.1 Prop. 1 in Ref. 15. 

Next we show that i is a homomorphism onto. If {Pn } 

is a sequence of elements of :DI'" both lin i(Pn) and i(lInPn) 
are elements of £, . Moreover, th~ have the same 
range, since, for ari. element x = III x(X)dJ,l.(X) of JC "" we 
get 
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iff (A Pn(l))x(l) = x(l), Jl a.e., 
n 

iff P,,(l)x(X) = x(l), 'tn, Il a.e., 

iff Pn(l)x(l) = x(l), Jl a.e., 'tn, 

iff i(P".lx == x, 'tn, 

iff ~ i( P n)x = x. 

Hence i( Ali P n)= An i( P" ). Denoting by P the orthocom
plement P' A I'J)<p of ~ element P of :DI'" from the proof of 
Prop. 2.1 we have P(l) = poll) - P(l), whence i(Pl = 

ft po(l)dJl(l) - iJ! P(~)dJl(l) = Ix - i(P) (where Ix 
denotes the unit operator on JC 1"). I"Hence i fulfils con
dition (b) of Footnote 25. Since i preserves the meet 
and the orthocomplementation, it preserves also the 
join. Therefore, it is a homomorphism. It is onto by 
definition of cC 1'" 

Let h = viBc:ft h(l) and P2 = V~c:ft P2(l) be two ele
ments of :DI'" Because of 11.2.3 Coroll. in Ref. 15, the 
condition i(P l ) = i(P2) is equivalent to PI(A) = P2(l) Jl 
a.e. Before introducing in fl.1" a structure of ortho
complemented partially ordered set, we need to prove 
that these two conditions are in turn equivalent to 
PI ~ P2' Suppose in fact PI(~) = P 2(l) Jl a.e. Then 

cpp(P 1 ) = [l/cp(p») ift cp1P1(P l (X»dJl(X) 

= [1/cp(P») Jft CP~P)(P2(A))dll(l)=CPp(P2) 

holds for any P E :D~, whence 

(a p) I"p = cpp(P 1 ) = cpJP2) = (a p) I"p' 'tp E :D~, 

and this implies (Remark 2.1) (a p) ~ = (a p)~, 't</J E S 1'" 

namely (Remark 2.2) PI ~ P2 • If conversely PI ~ P2 , 

then in particular 

cP pCP 1) = [1/ CPt P)] ift ~ (P(X)x n (A) IP 1 (X)P(l)xn(X))dJl(X) 
n 

= [1/cp(P)] Jft L (P(~)XIl(X) /P2(A)P(\)X Il (A»dJl(A) 
II 

=cPp(P2), 'tPE:D~, 

whence, setting q = J~ q(A)djJ.(X) := i(P l ) - i(P2)' we get 

[1/ CPt p») 1ft ~ (P( A)X n (A) / q(A )P(~)x" P »djJ.(A) 
n 

= 0, 't P E :D~, 

and this in turn implies 

J ft E (P(l)x II (A) I q(A)P(l)x" (A))dJl(l) 
n 

=0, 'tPE:D1" 

[if cp(p) = 0, then p(X)xn(l) = 0, Jl a.e.]. Let now 

X:= {x E n Jeo(X);x square integrable 
and \c:ft 

Itx(\) II E to, I}, 't A E A} 

and, for x E X, 

Px(\): JC(A) ~ JC(A), P,,(A)YO = (x(A)IYo)x(l) 

[X(A) denotes the l-component of x). Then VEfE{I. P,,(A) E 
:D'i' for any x E X, since P,,(A) "" Po(\)' 'tA E A LX(A) E 
JCO(A), 'tA E AJ and (xn(A)!p,,(l)Xm(A)) = (x,,(\)IX(l» 
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(X(l) Ix m(l)) is a jJ.-measurable function, 'tn, m (11.1. 4 
Prop.2 in Ref. 15). Writing the last equality to ° above 
with P" in the place of P, we get 

0= ift ~ (xn(A)Ix(A))(X(A)Ixn(x)) (x(l)Iq(A)X(~»dJl(A) 
n 

= Jft ~ (xn(l) Ip,,(l)Xn(A)) (x(l) /q(A)x(l))dJl(l) 
Ii 

= Jft cp\(P,,(l»(X(A)Iq(A)X(A» dJ.l(l), 'tx EX. 

If x E X and E E ffi~ then Xex E X, whence 

0= i ft cp\(PXEX(l»)xE(l)(x(l)Iq(A)X('A))d/l(l) 

= 1ft XE(A)cp\(Px(l))(x('A) / q(A)x(l)) djJ.(A), 

'tE E ffi~, 'tx EX. 

Hence cp\(Px(l))(x(l) I q(l)X(l» == 0, J.l a.e., 'tx E X. 36 If 
lEA is such that cp\(P,,(A)) = 0, then p,,(A)X,,(l) = 0, 
'tn, whence p,,(X) = 0\ [since X(A) E JCo(l) and JCo(l) is 
spanned by {x,,(l)}), and this implies X(A) = O. Therefore 
(x(l)/q(l)x(l» = 0, Jl a.e., 'tx EX. If Y is now any ele
ment of JC , let y be a square integrable field of vectors 
such that: = I~ Y('A)dJl(l) and x be the field of vectors 

{ 

(IIY(A) /I t ly(l) 
x(X) := 

° 
if y(l) ,,0 0, 

if y(~) = o. 

The field of vectors x is an element of X, whence 

(y/ qy> = ift (y(l) I q(l)Y(l»dJl('A) 

= ift IIY('A)112(x('A)Iq(l)x(l»d/l(l) = 0, 

since (X(l) Iq(l)x(l» = 0, Il a.e. Therefore, q = lOx (the 'i' 
null operator on JC'I')' In this way we have shown that 
i(Pt) = i(P2 ) follows from PI ~ P2 • 

Now we define in A'I' a partial ordering and an ortho
complementation. If cf>(P I ) and cf>(P 2 ) are two elements 
of AI'" we define: cf>(P I ) "" ¢(P2 ) iff Pl(l) ~ P2(l), Jl a.e. 
(this definition is consistent since, for P and q in :D'I" 
P ~ q is equivalent to P(l) == q(l), Jl a.e.). The relation 
now introduced in A'I' is easily shown to be a partial 
ordering, with least element (/J t:,. = cf> «(Z)'J) ) and greatest 
element If!, = cf>(I~ ). The mapping AI" 3'1' cf>(P) -7 

(cf>(P»' := '¢(Pl E XI" is well defined [Since, for P and q 
in :D'I" P ~ q is equivalent to PtA) = q('A), Jl a.e., !1am~ly 
to Po(l) - p(l) = poll) - q(l), Jl a.e., namely to P ~ q] 
and it is easily shown to be an orthocomplementation. 

We will now show that A'I' is a a-complete lattice. If 
{¢(Pn)} is a sequence of elements of AI'"then for an 
element cf>(P) of A we have cf>(p) ? cf> (Vii Pn) iff p(l) ? 

Vn P,,('A), /l a.e., iff p('A) ? PIl('A). 'tn, Jl a.e., iff P(l) ? 

Pn(l), Jl a.e., 'tn, iff cf>(P) ? ¢(Pn ). 'tn. Therefore, 
V Ii cf>(P n ) exists and V Ii cf>(P n ) = ¢(V n PrJ. In a similar 
way the existence of An cf>(Pn ) can be proved along with 
An ¢(Pn ) = cf>(An P

Ii
). To prove weak modularity in A'I" 

take ¢(P) and ¢(q) in A such that ¢(p) ~ ¢(q). Since 
P(l) ~ q(A), Jl a.e., and cP(JCo(l» is a logic for any lEA, 
then, by property 2, ii, Chap. VI, Sec. 1 in Ref. 21, we get 

q(l) = p(l) V «Po(l) - P(l»A q(A)) 

= (P v (j) A q»(l), Jl a.e. 

Hence cf>(q) = cf>(P v (j) A q)) = ¢(p) v «cf>(P))' A cf>(q)). 
Therefore, weak modularity (property 2, ii, Chap. VI, 
Sec. 1 in Ref. 21) has been proved in A<f' which results 
in a logic. 
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Cirelli, Gallone, and Gubbay: Continuous superselection rules 

The mapping ep results in a homomorphism of ~'" onto 
D."" since we have ep(V n Pn) = V n ep(Pn) and ep(A n P~) = 
An ep(Pn). for any sequence {Pn } of elements of :DI" along 
with ep(PI = (ep(p»' for any element P of :D", (by the very 
definition of the orthocomplementation in D.",). 

Let j be the mapping 

j(ep(P» = i(P) 

[this definition is consistent, since we have shown that, 
for Pt and P2 in :D'I" P1 ~ P2 is equivalent to i(P1) = 
i(P 2 ) • It is a homomorphism since 

j(~ ep(Pn » = j(ep(~ Pn» = i(~ Pn ) = ~ i(Pn ) = ~ j(ep(Pn» 

for any sequence {ep(Pn )} in D.'I" the analogous relation 
holds for the meet and 

j«ep(P»') = i(f) = Ix - i(P) 
'I' 

= lx'l' - j(ep (P», Vep(P) E D.'I" 

The mapping j is onto since i is onto. Moreover, if 
CP(P) E D.'f. is such that j(ep(P» = Ox ,then i(P) = Ox , 
whence P~X) = 0 A' Jl a.e. and this in"'turn implies 'I' 
P ~ (/)'I) ,namely ep(P) = (/)6, . Hence j is one-fo-one 
(P rop. r. 5 in Ref. 23). Ther~fore j is an isomorphism 
of D. 'I' with .J3 'I' and, by the definition of j, i = jeep. QED 

We next come to the problem of finding an algebraic 
representation of qI-observables. To avoid unessential 
complications, we will limit ourselves to bounded cp
observables. If also unbounded cp-observables were taken 
into account, the same results that we are going to ex
pose would hold, if in Prop. 3. 2 the class of the Hermi
tian elements of R (JC '1') were enlarged to include also 
the self-adjoint operators affiliated withR(JC~) [namely 
self-adjoint operators whose spectral projectIons are 
elements of R(JC,£)] and in the discussion after Prop. 3.3 
care were taken tor the domains of the operators and 
the existence of expectation values. We remark that if 
a is a cp-observable, then, because of Prop. 3.1, ioa is a 
projection-valued measure in JC which defines a self
adjoint operator-usually denoted by iR td(ioa)(t)-on a 
suitable domain.37 We shall denote by R h the set of the 
Hermitian elements of R(JC",). 

Proposition 3. 2: Let w be the mapping 

w(a) = iR td(ioa)(t). 

(a) If R is the equivalence relation on O~ of DeL 2. 2, 
then w can be decomposed into w = w1°w 2, where w 2 is 
the natural mapping of O~ onto OS /R and 

w 1 : OS/R ~R h, w 1(U,2(a» = w(a) 

is a one-to-one mapping. 

(b) Let 

~~ := {a E hom(ffiR , D. '1'); a bounded and a(JR) = I A",}; 
then 

is a bijection and w can be decomposed into w = w]o w ~, 
where 

w~ := pow2 [w~(a) = cpoa, Va E O~] 

is a maJlping of O~ onto ~~ and wI := W1°p-1~ [wI(a) =
w(a), '<to' E ~o, if a E O~ is such that cpoa = a] IS a 
bijection of ~ ~ with R h. 
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(c) Along with w l' also wand w 1 are mappings onto R h, 

whence w 1 is a bijection of OS /R with R h. 

Proof: First we show that the definition of w is 
consistent. If a E O~ then ioa is a bounded projection
valued measure and 1 R td(ioa)(t) is a Hermitian (namely 
bounded and self-adjoint) operator. Its spectral pro
jections (ioa)(E), E E ffi R , are elements of the W*
algebra R (JC ) on account of the definition of i. Hence 
ill. td(ioa)(t) is an element of R h.3 8 

Next we establish a fact which turns out to be useful 
in the sequel. If a E O~, then 

S! 

(0')'1' = iRtd(cppoa)(t) ~lim ~ tls)cpp(a(Ek(s») 
P , 5_00 k=- s~ 

= ~~ k~S! t k(S{~ 1 (y ~p) 1 i(a (ElS»)Yn(P~JC",) 

;1) Er (y!p)1 ~i~ k~/k(S)i(a(Ek(S»)Yn(P»)x'l' 
00 

;;) ~1 (y~p)1 w(a)y~p»x"" '<tp E :D~, 

where 

y~P):= [CP(;)]l/2 r: P(X)xn(X)dJ..L(X) 

[A ~ P(A)Xn (A) is a square integrable field of vectors 
since P E :DS], Ek(s) = [k/2 s, (k + 1)/2 S) and lk(s):= k/2 s 
if k ? 0, := (k + 1)/2 S if k < 0; setting 

s! 
f . - L t (s)x (S) 
s·- k=-s~ k Ek 

we have that iff} is a sequence of simple Borel functions 
on JR such that fs(t) 1 ~ 1 tl and 

lim fs(t) = t, 'It E JR, 
S--OO 

whence (0) holds39; 

restricting now the integral iR td(qlpoa)(t) and the func
tions f s to -the spectrum a( 0') of 0', which is a bounded 
Borel set of JR (see p. 110 of Ref. 21), we notice that 

sup 1 t - fs(t) 1 ~ 0 
tEO(a) 

and from this it follows that 

w(a) = i td(ioa)(t) = lim 
a (a) S--oo 

= lim 

s! 
~ lk(s)i(a(Ek(s) n a(a» 

k = - s ~ 
s! 
~ t k(s)i(a (E k(s~) 

k=-s! 

where convergence is in the uniform topology of bounded 
operators on JC'I'40; from this argument the equality2 
follows as well as 1 if we take into account that the 
mapping 

00 

CB(JC",):3 A ~6 (y.~P)IAy~P» E C 
"'1 

[where CB(JC'I') stands for the algebra of bounded opera
tors on JC'I' and C for the complex field] is continuous 
with respect to the uniform topology of operators (it is 
in fact a normal state). In this way we have proved that 

Va E O~, '<tp E :D~. 

(a) Let a 1 and a 2 be two elements of O~ such that 
w(a 1 ) = w(a 2 ). From (*) then we get (a 1>'I'p = (a 2>'I'p' 
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't P E :D~, whence (Remark 2. 1) O! 1 R O! 2' If conversely 
O! 1 R O! 2' then in particular (O! 1) '" = (0!2) '" ,'t P E ~, 
and by (*) p p 

00 00 

~ (y,\P) I w(O!I)Y~P»= ~ (y~P)lw(~)y~P», 
n ~1 n ~1 

whence, setting 

1 00 -(-) IA L; (Px(~)xn(~)IA(~)Px(~)xn(~»dll(~) = 0, 'tX E X 
<p P n o 1 

[where X and Px(~) have the same meaning as in the 
proof of Prop. 3.1]. Then we have (by the same argu
ments as in the proof of Prop. 3. 1) A = 0 R(X ), namely 
w(O!b) = w(0!2)' Thus,for any two elements (/1 and 0!2 
of 0 'f' w(O! 1) = w(0!2) is equivalent to O! 1 R 0!2' There
fore the definition of wI is consistent and wI is one-to
one. The equality w = w1

ow2 holds by the definition of 
wI' 
(b) The definition of p is consistent and p is one-to-one 
since, for two elements O! 1 and 0!2 of O~, ¢o O! 1 = ¢o0!2 
is equivalent to O! 1 R O! 2' We have in fact ¢o O! 1 = ¢o0!2 
iff (the mapping j of Prop. 3.1 is one-to-one) iO O!l = 
jo¢oO!l = jo¢o0!2 = i 0 0!2 ifL(by the definition of w, since 
the correspondence between self-adjoint operators and 
projection valued measures is one-to-one, see Theorem 
VIII. 6 in Ref. 37) w(O!l) = w(0!2) iff [see the przof of 
part (a)] O! 1 R 0!2' Besides, p is onto, since i! O! is an 
element of nu, an O! 0 E OS exists such that O! = ¢o O! 0 

~y the Appendix (with :Dj' and t:.", in the place of .)3 and 
.)3 and ¢ in the place of n). 

The mapping w2 is from O~ onto n~, since both w2 
and p are onto. The mapping wI is one-to-one since 
both p-I and wI are one-to-one. We shall now show 
that it is onto. Let in fact A be an element of R h; 
then38 P E horn (CBR , £Ii') with P(R) = IJC exists such 
that A = IR tdP(t). The mapping r10 p is"'an element 
of n~ and O! in O~ exists such that ¢o O! = rIo P (since 
w2 is onto), whence 

w1U1oP) = w(O!) = J
R 

td(io O!)(t) 

= fR td( jo ¢o O!)(t) = J R tdP(t) = A. 

The decomposition w = w 1. 0 w2 follows from wl o w2 = 
W 1 °W 2 · 

(c) The mapping w is from 00 onto R h since both wI 
and w2 are onto. Therefore, °1 as well is onto R hand 
thus it results in a bijection of OS /R onto R h. QED 

The task of obtaining an algebraic representation of 
the logic concepts introduced in Sec. 2 will be accom
plished if a suitable representation for <p-states will 
be found. Because of the important role they will play 
with respect to this problem, we need to define properly 
the ~ogic states related to t:. "'. First we no}ice that, 
for P E t:.~ := ¢(:D~) and P E :Do such that P = ¢(P), the 

• 'P 
mappmg 

is defined in a consistent way just by the definition of 
the relation ~, and 

(a) <pp(¢t",,) = <pp(f/)~ ) = 0, <PpA(It" ) = <pp(I'I:J ) = 1, 
T '" '" '" (b) if {¢(Pn )} is a sequence of mutually orthogonal 

elements of t:. <P.' then p" (.\) ~ Po(~) - P (.\), Il a.e., 
'tn, m, whence [Since the family {¢(P,,)} is countable] 
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Pn(.\) ~ PO(A) - Pm (~), 'tn, m, Il a.e. ('t A EI: E, E E CB, 
IJ.(E) = 0). We can choose other representatives for 
¢(Pn) (for instance turning Pn(A) into 0>. for A E E), 
which we denote still by Pn , such that {Pn } is a sequence 
of mutually orthogonal elements of :D ",' Thus we get 

~ Definition 3.1: Let ~ '" be the set of the mappings 
ljJ: t:.", --7 [0, 1] such that 

(a) ~(¢t" ) = 0, $(It" ) = 1, 

'" '" (b) ~(Vn¢(Pn» = ~n $(¢(Pn» for any sequence {¢(Pn )} 
of mutually orthogonal elements of t:.1i" 

(c) (a)~ -+:.. (~)~ = §) ~ whenever Aa, j3,:; E n~ are such 
that (O!hA + (f3 hA = ("Y)-;-,-, 't P E t:. o, where 

Tp TP TP 'f 

(a>~ := JR td($oa)(t). 

The elements of ~ (j) are t¥ equivalents in t:. '" to the 
elements of S '" in :D1i" since <Pp is nothing else than <p p 
"transferred" on t:. ",' We point out in particular that 
e(t:. ",) could be shown to be isomorphic with CB/:JL, where 
:JL stands for the class of Il-negligible elements of CB. 
(see at the end of this section) as well as the restriction 
of <pp to CB/:JL could be shown to be the measure defined 
on CB!:JL by II p ' 

Proposition 3. 3: Let R *. 1 be the set of normal 
functionals onR(X",) of unit norm. 

(a) If ljJ E S"" then 

f",:R(X",) --7C, f~(A) = (O!l>~ + i(0!2)~ if O!l' 0!2 E O~ 

are such that 

w(O!l)=A l := HA+At),w(0!2) =A2 := 1i(-A +At) 

is an element of R *.1' The mapping 

f: S", --7 R*.l> f(ljJ) = f~ 

is a bijection, 

(b) If ljJ E S Ii" then 

a~ : t:.", --7 [0, 1J, a~(¢(p» = ljJ(P), 

is an element of ~ "" The mapping 

a:S",--7~"" a(ljJ)=a~, 

is a bij~ction andf':= fo~-l [1'($) = fl/l' 't$ E ~Ii" if 
ljJ E S'" IS such that a 1/1 = ljJ] is a bijection of ~ '" with 
R*.l· 

!'rooj: First we show that the definition of f ~ is 
conSIstent, Elements O! I and 0!2 like those involved in 
the definition of fl/l always exist in O~ since w maps 
O~ onto R h. Moreover, for O!l' 0!2 E 0 0 such that 
w(O!I) = Al and w(0!2) = A 2 , we get w(d1 ) = w(O!I) and 
W(O!r) = w(0!2),;"hence [see the pr,oof of part (a) of Prop. 
3, 2 (O!l)~ = (O!l)~ and (0!2)~ = (0!2)~' 'tljJ E S"" 

Next we prove that f 1/1 is indeed an element of R l' If 
A, B, C E R(X~) ~re such that A + B = C, then CI ~ 
Al + BI and (;2 - A2 + B 2 · Let O!t> i3 1 , Yl' 0!2' f3 2 , Y2 E 

O~ be such that w(O!I) = At>.", w(Y2) = C2 , In view of 
(*i in the proof of Prop, 3, 2 we have 

(Yk)li'p = ~ (y~P)ICkYn(P» 
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for k = 1,2, '<Ip E :D~. Therefore, by the definition of S<p' 

(Yk)", = (Qlk)", + (f3 k)", (k = 1,2) 

whence 

f",(C) == (1'1)", + i(Y2)'" 

== «Ql1)", + i(Ql2)",) + «/31)'" + i(f32)",)=f,p(A) + f",(B). 

Having proved in this way the additivity of f", , we will now 
show thatf", (kA) = kf", (A),'<I'k E C, '<IA E R(X<P)' First 
notice that, for k E Rand QI E O~, w(kQl) = kW(QI) holds, 
since 

w(kQl) = fR Id(iokQl)(t) == JR td(ioQl)(k- 1t) 

= k J 1\ t' d(io QI)(t') == kw (QI), 

if k 7'0, and w(OQl) == 0R(JC ) == OW(QI) by the definition of 
'I' 

OQl. For k E C let k 1 and k 2 be its real and imaginary 
parts. For any A E R(X<P),from kA == klAI + ik2AI + 
ikIA2 - k02' and from the additivity of f", we getf",(kA) == 
f",(kIA I ) + f",(ik 2A I ) + f",(ik IA 2) + f",(- k02)' If QlI' 
Ql 2 E 0 0 are such that w(Ql n ) == A,,(n == 1,2), then, by the 
remark'!' above, by the definition of f "" and by Remark 2. 1, 
we obtain 

f",(kA) = kl(QlI)'" + ik2(Ql1)", + ik l (Ql2)"'- k 2(Ql2)'" 

== kt!",(A 1) + ik2f",(AI) + kt!",(iA 2) + ik2f",(iA2) 
== (k l + ik 2 )(f",(.c1 1 ) + f",(iA 2 )), 

whence, by the additivity of f"" 

f",(kA) = kf",(A 1 + iA 2) == kf",(A). 

Thus f", is a linear functional o~ R(X'I')' If A is a positive 
element of R h, then Ql o E 0 0 eXIsts such that w(Ql o) == A 
and Qlo(Eo) == Ix> with Eo E'fffiR and Eo C [0, <Xl). Let in 
fact QI E 0 0 be Such that w(QI) == A. Since i o QI is the pro
jection val~ed measure of A and A is positive, Eo E ffiR 

exists such that Eo C [0, <Xl), Eo 7' (/), and iOQl(Eo) == IJC • 

Take to E Eo and define the mapping 'I' 

The mapping Ql o is easily seen to be a <p-observable and 
w(Ql o) == A since io Qlo(E) == i(QI(E» /\ i(QI(Eo)) =_i(QI(E», 
'<IE E ffiR . Moreover, Qlo\Eo) == QI(Eo) v (QI(Eo)) == Ix><P' 
Then 

f",(A) == (Qlo>", = JR td(1/IoQlo)(t) > ° 
since the measure 1/10 Ql o has the support contained in 
Eo c [0, <Xl). In this way we have shown thatfjll is a posi
tive linear functional on R (X ). Let now {p nJ be a se
quence of mutually orthog9.na1 projections of R(X'I')' ~ 
the same way as in (b) of <Pi> before DeL 3. 1, we can fmd 
a sequence {p } of mutually orthogonal elements of :D'I' 
such that i(PJ == P", '<I n' From the definitions of w(QI) 
and (QI) '" for QI E O~, we get w(QI P ) == i(P,,) ~ P" and 
(QI p) == 1/I(P n ) and (since i is a 60momorphlsm and 
fror'h nef. 41) 

w(Ql v p) == i(V Pn ) == Vi(P,,) == ~ P n n n It n n 

along with (since 1/1 is a-additive) 

IQlv p ) '" == I/I(VPn ) == ~ I/I(Pn ). 
'\ n n n n 

Hence, we get, from the definition of f"" 
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Because of the separability of X'I" and family of mutually 
orthogonal and different from zero projections of R(X'I') 
is at most countable. Therefore f", E R* (1. 4, exercise 9, 
in Ref. 15). Finally we notice that 

W (QI I x> ) == I JC<p' 
'I' 

whence 

f",( lJC ) == (Ql I )1/1 == I/IUx> ) == 1. 
'I' x> 'I' 'I' 

Hence f", has unit norm42 and this completes the proof 
thatf", ER*,I' 

Next we shall establish that f is a mapping from 5 'I' 
onto R*,I' LetJo be an element of R*,I' Then the map
ping 

l/Io::D'I' -7 [0, 1], l/Io(P) == fo(i(P», 

is an element of S, since properties (b) and (c) of Sec. 1 
hold as i is a homomorphism and fo{lJC ) == 1. Take now 
QI, f3, I' E O~ such that (QI) 'I' + (f3) 'I' == (y'f ,'<I P E :D~. 
Then with the procedure u~ed in tife proofPof part (a) of 
Prop. 3. 2 it can be shown that w(QI) + w(f3) == w(y). We 
observe finally that, '<I QI E O~, 

s~ s! 
(QI) == lim E I (s)l/Io(QI(Ek(s) == lim E 'k(s)Jo(i(er.(Ek(s)))) 

"'0 s-oo k;-s~ k 5-'00 k;-s~ 
s! 

==fo(:i~ k'fs!tk<S'!i(QI(Ek(S)) ==fo(w(QI)), 

where the symbols have the same meaning and the 
equalities hold for the same reasons as in establishing 
(*) in the proof of Prop. 3. 2 (since fo is a normal state). 
Hence we get 

(QI)>/Io + (13)"'0 ==fo(w(QI) + w(f3)) ==fo(w(y» == (1')"'0 

and this shows that 1/1 0 E 5 '1" Construct now J "'0' For any 
A ER(X'I') we havef"'o(A) == (Ql1)",0 + i(Ql2) "'0' if Ql v 
Ql 2 E O~ are such that w(er. k) == A k(k == 1,2). Since. 
(Qlk)",o ==fo(w(Ql k » (k == 1, 2), from the linearity of fo we 

have f"'o(A) == fo(AI) + ifo(A2) == fo(A). Therefore f~o == 
fo and f is onto. 

Finally f is one-to-one since, for 1/11' 1/1 2 E 5 '1" j{lh) == 
f(1/I2) implies f"'I(A) == f",,(A), '<IA E R(X'I')' whence 
(QI) == (QI).,. '<IQI E 0 0 , which in turn implies 1/11(P) == "'I ~2' <f 

(QI)"'I == (Qlp)",z == 1/12(P), '<IP E :D'I',namely 1/1 1 == 1/12' 

This completes the proof that f is a bijection. 

(b) The definition of a", is consistent since, if PI' P2 E 

:D are such that PI ~ P2' then I/I(P 1) == I/I(P2) holds just 
by the definition of the relation ~. We have now to show 

~~~~"'f~r ~'I' i::~~~~et~~a~a~~ ~lyO~~~~~;'~a~:nb~:n 
~'" ~ shown for <Pi> before Def .}. 1. Besides, for QI ~ E n~ and, 

QI E 0 0 such that cpo QI == QI (QI exists for any QI since w2 
is onto), we get (a)?r == f1' td(Cppo alit) == f" td(<ppo QI)(t) == 
(QI) '<Ip E 6. 0 and/ E :DO such that CP(P) == p, as well as 
(a) :~' == (QI) "" ~hence property (c) of DeL 3.1 for a", 

since 1/1 E 5'1' 

The mapping a will now be spown to be a Qijectio~. It 
is one-to-one, since from a~l(p) == a ",/P) , '<IP E 6.'1" It 
follows that 1/11(P) == 1/12(P), vp E~:D'I" namely 1/1 1 == 1/12' 
Moreover it is onto. In fact, let 1/1 be an element of ~<P' 
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The mapping 

tJ;:~If-'! [0,1], tJ;(P) == i/(¢(P». 

is an element of S If since: 

(i) 

(ii) If {p,,} is a sequence of mutually orthogonal ele
ments of :D1f t?e same holds for {¢(P,,)} in t:..1f since ¢ is 
a homomorphism, whence 

tJ;(~P,,) == $(¢(~P,,» == $(~¢(P,,» 

== L $(¢(P,.) = L tJ;(P,,); 
,. " 

(iii) we have shown above that (a) ~A = (a) If ' 'V P E ~~ 
A A P P 

a~d P = ¢(P), 'fa E O~ with a = w2(a); the equality 
(a) ~ = (a) ~ can be proved in the same way; thus 1J; E S If' 

We have now trivially a~(¢(p» = tJ;(P) = $(¢(p», 
'f ¢( P) E t:. If' This completes the proof that a is a 
bijection. 

The mapping l' is a bijection since it results from the 
composition of two bijections. QED 

With this theorem we have accomplished the task of 
finding an algebraic representation of the logic concepts 
which are ruled by the "prestate" of the assumption of 
Sec. 2. For cp-propositions (the elements of the logic 
~If) we have in fact found the homomorphism i onto ,clf' 
for cp-observables (the elements of O~) the mapping W 

onto R h, and for cp-states (the elements of S '1') the map
ping f onto R*,l in such a way that, 'VtJ; E SIf' 

'fp E ~If' 

[since i(P) = w(a) and 1J;(P) == (ap)~] and 

f~(w(a)) = (a)~, 'Va E O~ 

(by the definition of f~). 

Hence the algebraic representation conserves the 
experimentally meaningful quantities of the theory, which 
are probability functions on the logic of propOSitions 
and expectation values for observables. 

At the logic level, indeed, it seems sensible to con
sider as proper cp-propositions and cp-observables the 
elements of t:. and OO/R rather than the elements of 
~If and 0 0 sin~e this ~mounts to considering physically 
equivalent the propositions and the observables which 
are undistinguishable whatever the state is in which the 
system is prepared (this attitude is, for instance, the 
starting point in Ludwig's approach43). There is no need 
to construct equivalence classes in S If since the elements 
of S If have been shown to be already separated by the 
observables (see after Remark 2.2). Also with respect'to 
the algebraic representation things work well for t:. (f' 
0 0 /R, and S since for them we have constructed faithful 
argebraic representations (through j, Wv and f). We meet 
anyway a very serious difficulty: While t:. If is suitable to 
be interpreted as a set of logic propOSitions since it is 
indeed a logic, neither the elements of O~/R are homo
morphisms from ffi)< into the "correct" logic t:.1f (hence 
they are not logic observables related to t:. If) nor the 
elements of SIf are a-additive "measures" normalized 
to one on t:.1f (hence they are not logic states related to 
t:. If)' Anyway we get rid of this difficulty since we have 
shown that a bijection exists of O~/R with n~ as well as 
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of S with ~ and no and ~If are observables and states 
(in the prop:r logic "'sense) related to the propositions 
t:. • These "correct" sets of propositions (t:. If), observ
abies (nO), and states (~If) admit an "isomorphic" 
algebrai~ representation in JC

If
, since there are an iso

morphism j of t:. If with ,c if' a bijection wI of n~ with R h 

and a bijection l' of Llf with R*,l such that 

and 

In this way we have deduced, in dependence of a suit
able prestate cp, from the logic picture the usual alge
braic picture based on W*-algebras. 10•11 Indeed, we 
have shown that for the logic picture an algebraic iso
morphic representation exists in which the experimental 
values are conserved. In the representation of ne we 
can show that also the superobservables are conserved. 
First we need a remark about the cente r ~(t:. If) of t:. If' 

Remark 3.1: The equality 

holds. From Lemma 6.7 in Ref. 21 we get that the com
patibility of two elements ¢(P), ¢(q) of t:.'f is equivalent 
to (¢(P) 1\ ¢(q»' 1\ ¢(q) == (¢(p»' 1\ ¢(q), Which amounts to 
(Po(~) - P(~) A q(~» 1\ q(~) = (Po(~) - P(~» 1\ q(~), M a.e. 
namely to the compatibility of P(~) and q(~), M a.e. 
Therefore, an element ¢(P) of t:. If lies in the center of 
t:. iff [P(~), q(~)] = 0A' M a.e., 'Vq E :DIf and this con
dition in turn can be shown to be equivalent to P(~) E 

{OA' Po(>")}, M a.e. (one side of the equivalence is trivial, 
for the other side proceed by absurd). 

Proposition 3.4: The superobservables ~re con
served bX wI' the bijection of n~ with R h. If a E n~, 
then wl(a) is an algebraic superobservable [namely 
wI (3) E D(JC",), the W*-algebra of diagonal operators on 
X If , and "-, ~ (tl') '" k J JC , 'f k E R] iff tl' is a superobservable 
in ns [namely aCE) ¥:. ~(t:.If)' 'fE E ffi ,and a is not con
stant, that is a ({k}) '" 1/:1 ,Vk E R]. 

If 

Proof: For Ii E no let a E O?, be such that Ii == ¢oa 
'" ~ A (such an a exists because w1 is onto). Then w1(a) ED 

(JCIf) iff i(a(E» E D(JC), 'VE E ffiR [ioa is the projection 
valued measure of w;,Ca) by the definition of wI' then use 
Ref. 38 since D(JCIf) is a W*-algebra], namely iff (1(E)(~) 
E {Po(~),oJ, M a.e., 'VE E ffi" [use the definitions of i 
and of D(JC If)], namely iff ~(a(E» E ~(t:.If)' 'fE E ffiH 
(Remark 3.1), namely iff a@) E ~(t:.If)' 'fE E ffili' More
over, we get, for k E R, wI(a) = klJC iff i(a{k})) = IJC iff 
a({k})(~) = Po(~)' M a.e., iff ¢(a({k}) ~ 1/:1 iff a({k}) ,: 
1/:1 . '" QED 

If 

We want now to point out in what sense our description 
can include also continuous superselection rules. Con
sider the quotient algebra ffi/ :Jr., namely the quotient set 
of ffi with respect to the equivalence relation 

where E 1 t:. E 2 stands for the symmetric difference of 
E1 and E2 and:n := {E E ffi; M(E) == o}; on ffi/'JI. it is 
defined the structure of a-algebra such that the natural 
map from ffi onto ffi/'JI. results in a homomorphism (Sec. 
40 in Ref. 36). Since we have assumed that ffi defines on 
A a structure of standard Borel space, ffi has a countable 
set of generators and the same holds obviously for <B/'JI.. 
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Hence, from Sec. 40, Theorem B in Ref. 36 and Chap. 14, 
Sec. 2, Problem 12 in Ref. 39, we get that (p"/J1 is iso
morphic either to (P.,[a.b]/m (where (P.,[a.b] is the Borel 
a-algebra of an interval [a, bland m the Lebesgue 
measure on it), to a discrete a-algebra containing at 
most a countable number of elements, or to a a-algebra 
which is the direct union of the preceding two. 

Since the mapping 

a: (p"/J1 -) (S(b.), a([I~]) = dJ(~~A XE(A)j)O(A)) 

([ E] is the equivalence class containing the element E of 
(P.,) can be easily seen to be an isomorphism of (P.,/J1 with 
(s(b. ), then 8(b.",) is isomorphic to one of the three a
algebras listed above in dependence with A and cp (J1 is 
in fact determined, through Il, by cpl. In the first and in 
the third case continuous superselection rules are pre
sent, while in the second case they can be only discrete. 
To this statement a definite meaning will now be given. 
Consider for instance the first case. Then continuous 
superselection rules are present not only in the sense 
that A is a noncountable set in .£ = vlEA .£ (\), 5 but in 
the precise sense that a superobservable a exists in 
Q? with purely continuous spectrum, namely such that 
a({t}) = 0 for any real number t in the spectrum of a. 
We can prove in fact an even stronger result. Since 
(s(b.,,J is a separable sub-a-algebra of b..; «(P.,/J1 has a 
countable set of generators) then, from the theorems on 
p. 100 and 101 in Ref. 20, the existence of a "total" super
observable a 0 in QO follows such that any superobserv
able a in Q~ can be'fexpressed as a = f(al(a o) with a 
suitable real valued Borel function f(ed on IR. We are 
now going to construct an a o with these properties and 
such that its spectrum is purely continuous (hence 
any other "total" superobservable has to share this 
property). Take the function 

T: [a, b]--> IK. T(t) = t; 

then 

(where 7T is the natural mapping of (P.,la.b] onto <Bla.b!m, 
which has been identified with (P.,/J1 for brevity) is a 
superobservable in Q? with the required properties. 

In a similar way, in the second case the spectrum of 
a "total" superobservable would result to be discrete 
(this is the situation examined in Ref. 10), while in the 
third case it would have a continuous as well as a dis
crete part. 

Finally, we notice that the physical interpretation of 
a "total" superobservable depends on the particular 
physical system described by .£ and cpo 

4. THE CLASSICAL CASE 

We will now examine what results to be the construc
tion of the previous sections if the physical system we 
are dealing with is a classical one. In the classical case, 
.£ is assumed to be a Boolean algebra,20.21 whence 
''!C(A) has to be a one-dimensional Hilbert space for 
every A in A (we have supposed in fact JC(A) nontrivial 
for any A in A; if A() :: A could exist such that dim 
:R()(A) > 1. then CP(JC()(A» would not be a Boolean algebra, 
and this would entail nondistributivity also for .£). Then 

X: 1'(11.)'>.£. xiS) = v~ Xs(X)l JC (\) 
\u\ 

is an isomorphism of the logic PIA) (the power set of A 
equipped with set-theoretical JOin, meet and complemen
tation) with £. The sequence {X,,(A)} of the assumption 
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reduces in this case to {xiX)} with (IX(A) II = 1, "I A c A. 
Through X the sublogic :D '" of .£ is isomorphic with the 
Il-completion (P.,~ of the a-algebra (P., and any state on 
:D" defines a probability measure on <B~; in particular 
cp defines in this way the completion of Il, which is an 
extension of /l to (P., ~ which we will denote still by /l. No 
di stinction will be made he reafte r between :D.; and (P., I' 

and between a state on :D <p and the measure it defines on 
(P., 1" If 5'0 is the set of bounded /l- measurable real func
tions on A, then 

(where 1{-1 stands for the "inverse image" of K restricted 
to (P.,.) is a bijection of 5'0 with O~ (as it can be easily 
deduced from Theorem 1. 4 of Ref. 21) such that 

for any K c: 5'0 and for any state v on (P.,~ (the second 
equality holds by Ref. 44). 

If Eo is an element of (P.,I' such that Il(Eo) 7' 0, then 
the "conditional state with respect to Eo and /l" turns 
out to be the probability measure IlEo on (P.,IJ defined as 

"IE (- (P.,I" 

We will now prove that the set 5 I' of /l-states (Def. 2. 1) 
coincides with the set of probability measures on (P.,,, 

which are absolutely continuous with respect to /l. Let 
v be an element of 5 ~ and E an element of (P.,I' such that 
Il(E) = 0; for the elements XA and XE of 5'0 we have 
())(XJ;~E =.r.\ lr1/l E(,(A) = IlEo(A) = 1 and \))(XE))i'E = 

o "'0 

.I XE(A) r1IlE (A) = /-L(E n Eo)//l(Eo) = O. whence(I)(X A)11' + 
A n - /<'0 

\I)( Xp;l> i' = \1)( XA)i I' ' "I Ell' (P., 1" Therefore, we get 
Eo Eo 

(7)( X,\); v + (1/( XE)) v = (7)( XA) v' which easily reduces to 
viA) + viE) = viA). namely to viE) = O. Conversely, let 
!J be a probability measure on (P.,I' absolutely continuous 
with respect to Il. If Ka,Kb,gc are elements of go such 
that ())(ga))~ + (n(Kb)/p = \r)(Kc!/IJE ,namely 

Eo Eo 0 

{since d/-l E /eI/-l = [l//-l(E o)]xE J. then we get IE (:{ a(X) + 
o 0 ' 0 

Kb(X) _. :{ e(X»d/-l(X) = 0, "I Eo (c- (lop' whence K a(X) + Kb(X)--

ge(X) = 0, J.l a.e., 3 6 and this implies K alA) + K6(A)- ge(A) = 
O. v a.e. From this equality we get 

namely (-I)(ga)v + (rJ(gb)i v = (1)(Ke))v' which completes 
the proof. 

We notice that we can easily find elements of S p which 
do not reduce to any /lE . Take in fact a probability 
measure v on (P.,il differe~t from /-l but equivalent to J.l. Then 
no Eo cc. (P.,p exists such that /-l E 0 = v, because of the only 
Il Eo equivalent to IJ. is Il ,\' namely Il itself, since dIJ. E/ 
dll = XEo 

Let us now examine Il-propositions, J.1.-observables, 
and J.1.-states after the reduction into equivalence classes 
of undistinguishable elements. 
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First we notice that the equivalence relation of 
Remark 2.2 can be identified, through )(, with the follow
ing relation in CB~: 

E1 ~ E2 iff J1.(E 1 A E 2} == 0, where E 1,E2 E CB~. 

We have in fact V~EA XEJ\.}IJC(A) ~ VEfEA XE
2
(,\)IJC(A) iff 

(see the proof of Prop. 3. 1) XE (,\) == XE (A) Wa.e. iff 
XE AE (A) == I XE (A) - XE (A) I ~ 0, J1. a.~., iff J1.(E 1 II E 2) 

1 2: 1 2 
== 0. Hence 6~ can be identified with CB/:n~, where :n~ == 
{E E CB~; J1.(E) == O}, and the elements of ~~ with the 
measures which are defined on CB~/:n~ in a straight
forward way by the elements of S ~ [Sec. 40, note (11), in 
Ref. 36J. 

If L -:: is the set of self-adjoint elements of the C*
algebra L OO(A, CBy ' J1.) of equivalence classes of complex 
functions from J.;OO(A, CB~, j.L), then 

is a bijection of Lh"with n~ such that the diagram 

ij 

5'0 , I:, 
IE -
L oo ij 

) n~ h 

commutes, where ~ is the natural mapping from 5'0 onto 
L C;:. First we show that the definition of 1) is consistent. 
If g is a real element of J:OO(A, CB~, /-J.), then g-lf hom 
(CB R • CB~) with g-l(R) = A and (identifying t..p with CBp/'JL p ) 
rpog-l E hom (CB R , t..~) with (cpog-l)(R) = III ; moreover, 
there exists a compact subset K of R such ~hat g(A) E K, 
J1. a.e., whence g-l(R - K) E :np and (rpog-l) (R - K) == 

C/J e,. ; from this equality we get (cpog-l )(K) = Ie,. ,namely 
!l p 

that cpog-l is bounded. Furthermore, for two real ele-
ments g1 and g2 of £OO(A,CB~, J1.),g1(A) = g2(A), j.L a.e., is 
equivalent to J1.(gi1(E) II gzl(E» == 0, namely to 
cp(g;l(E» = rp(gil(E», "IE ~ CBR • This completes the 
proof that the definition of T/ is consistent and also shows 
that Ti is one-to-one. To prove that Ti is onto, take any 
a E n~; then, by the Appendix, an element a E O~ exists 
such that a = <poa, namely (since T/ is onto) an element 
g of [fo exists such that a = <pog- 1; it is now sufficient 
to notice that [fo is a subset of the real part of £00 
(A, CB p ' J1.). The commutativity of the diagram is clear 
from the definitions of the mappings involved. 

Summing up, we have shown that if the system repre
sented by £ is a classical one, the logic picture des
cribed in the previous sections reduces to the special 
example of probability theory that one obtains when in 
a probability space a distinguished measure is fixed. 35 

Here the probability space is (A, CB p ) and the distinguish
ed measure is J1.. Then the states can be identified with 
the probability measures which are absolutely contin
uous with respect to J1. and the observables with the 
bounded real valued random variables in such a way 
that v( g) is the expectation value of an observable which 
corre~ponds to the random variable g with respect to a 
state which corresponds to the measure v. Finally, con
ditional states result in the usual conditional probabili
ties and, when undistinguishable elements of the theory 
are identified, we get CBp/:n p and Lh" as the proper sets 
of propositions and observables. Therefore, the afore
mentioned model of probability theory can be completely 
deduced as a particular case of the logic picture of the 
previous sections. 
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We are now going to investigate what the algebraic 
representation of Sec.3 becomes. The Hilbert space 
JC in which the representation is constructed is nothing 
el~e than L2(A, CB~, J1.). The elements ft of CB/'JL p are 
represented through the map j as j(E) = P E, where P E 
is the projection on L2(A, CB Il , J1.) defined by (PEX)(A) = 
XE(A)X('\), VA E A, "Ix E L2(A, CB p , J1.) [in this notation we 
ignore the difference, in L2(A, CB p , j.L), between equivalence 
classes and representative elements thereofJ and E is a 
representative of it. 

An element [gJ of Lh" {or, equivalently, Ti([gJ) of OJ?} 
is represented by the Hermitian operator on L2(A, CB~, J1.) 

where g has been chosen in [gJ such that g E [fo. Denot
ing by Aq the Hermitian operator on L2(A, CB~, J1.) defined 
by (~fX)tA) = ~'\)X(A), VA E A, "Ix E2L2(A, CBIl , J1.), we get 
w(g ) = A g , smce, for any x, y E L (A,CB~, J1.), 

(x I w( g-l )y) ~) J ~ td(x I Pg-l(t)Y) 

~ ff( tdJ1. x ,y(g-l(t» 

~) fA g(A)dJ1. x.y (A) 

(~ fA (X(A) Ig(A)Y(A»dJ1.(A) == (x IAgY), 

where (1) holds by definition of w, since i(g-l(E» = 
Pg-1(E)' VE E CB ll , (2) holds if J1.x l denotes the complex 
measure on A defined by /-J.x,/E) = (xIPEY), "IE E CB, (3) 
holds by Ref. 44, (4) holds because (dJ1. x,/d/-J.)(A) == 
(x(A)IY(A», since, by definition of J1.x ,y 

j.Lx,y(E) = fE (x(A)ly(A»dJ1.(A), "IE E CB. 

From Prop. 3. 3 we know that any state from Sil can be 
represented as a normal state onR(L2(A, CBp , j.L». In the 
present case, in correspondence with any element vof 
SI' it is possible to construct a definite vector x such that 
v(A} = (X lAx}, VA E R(L2(A, CB

Il
, J1.». This is an easy task 

since now we know the structure of the Hilbert space and 
any element of Sil is absolutely continuous with respect 
to J1.. For v E Sjl consider in fact the vector x of L2 
(A, CB p , J1.) given by 

X(A) == (::(A)Y/2, VA E A. 

Then 

fv(A) == (a1)v + i(a 2)v = fA gl(A)dv(,\) + i JA g2(,\)dv(,\) 

== fA gl('\) dV(A)dJ1.(>,) + i fA g2('\) dv (A)dJ1.('\) 
dJ1. dj.L 

== (x I (Ag I + iAg)x) 

== (xIAx), VA E R(L2(A, CB p, J1.», 

where a k' k = 1,2, is an element of O~ such that w(a k) = 
Ak and gk an element of [fo such that a k = g;;l (such 
a k and g k exist since w and T/ are mappings onto), whence 
Agk = Ak by the result of the preceding paragraph. 

Therefore, when the physical system is a classical one, 
in the algebraic representation of the previous sections 
the observables are represented by the "multiplication 
operators" A (g E [fO) in the Hilbert space L2(A,CB~,/J), 
where A can te interpreted as the phase space of the sys
tem and j.L is a definite "prestate." A representation of 
this kind for a classical system was proposed with dif
ferent motivations by Koopman45 and has proved useful 
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in analyzing properties of a classical system, for instance 
in ergodic theory.46 Hence Koopman's representation can 
be deduced as a particular case of our description. 

APPENDIX 

We shall state a theorem the framework of which is 
the functional calculus of observables. It is a generaliz
ation of Theorem 1. 4 of Ref. 21, to which it reduces in 
the particular case when the logics involved are a 
Boolean a-algebra £ of subset of a fixed set and a 
Boolean a-algebra £. 

Theorem: Let £ and £ be two logics and h a homo
morphism of £ onto £. Suppose further that a is any 
£-observable, namely a E hom (ffiR' £) with a(lR) == he. 
Then there exists an £-observable a, namely a E hom 
(<BI<' £) with a(lR) == 1£, such that & = hoa. 

Proof: Let p, q E £ be such that P ~ q, whence 
h(p) A~ h(q) since a homomorph~m is order-preserving, 
and r E ~ be such that h(p) ~ r ~ h(q); since h is onto, 
r 1 E £ exists such that h(r 1 ) = r. If r:== (r 1 1\ q) v P, 
we have p ~ r ~ q along with h(r) = (h(r 1) 1\ h(q» V h(p) == 
h(r 1) = r. 

Let r l' r 2' ••. , r .. , .. , be an enumeration of t~e ration
al numbers in Rand D i := (- 00, r i)' Evidently a(D i) ~ 
a(D j) whenever r i < r .. Now we shall construct a se
quence {Pn} of elements of £ such that 

(a) h(p,,) = a(D,,), '<In, 

(b) Pi ~ Pj whenever r i < rj" 

tor Dl' an element PI exists in £ such that h(Pl) = 
a(D1), since h is onto £. Suppose {PI> •.. , P k} in £ have 
been found such that 

(i) h(Pn ) = a(Dn ), n = 1, ... , k, 

(ii) Pi ~ Pj whenever r i < r j , 1 ~ i,j ~ k. 

We shall construct Pk+ 1 as follows. Let (nl> n 2 , •.• , ilk) 
be the permutation of (1,2, ... , k) such that rn < r" 
< ... < rn . Then ther exists a unique i such \hat 2 

k 
r <rk + 1 <rn . (wedefinern =-wandrn =CXi) 

n i t+) 0 k + 1 
and by the remark made in the first paragraph an ele-
ment Pk+ 1 exists in £ such that P" . ~ PH 1 ~ P. and 

z n z +1 

h(Pk+ 1) = e'i(D k+ 1)' The collection {p 1> ••• , P k' Pk + I} then 
has the same properties relative to r v ... , r k' r k+ 1 as 
{p l' ... , P k} had relative to r v ... , r k' Thus it follows 
by induction that there exists a sequence {Pn } of ele
ments of .£ with the properties (a) and (b). 

Let now G,({Pn }) be the sublogic of £ generated by {Pn }, 

namely the smallest sublogic of .£ containing the family 
{Pn'P~' C/J.r;' I£}, '<In (' means orthocomplementation). By 
property (b) either Pn 1 '" Pn2 or Pn2 ~ P" l' '<In l' n2 ; hence 
Cl({P .. }) is a Boolean sub-a-algebra of £ by Corollary 
6.15 in Ref. 21. By construction d({Pn }) is separable; 
hence (Lemma 6.16 in Ref. 21) there exists an £
observable fl such that d({Pn }) = {J3(E); E E (\',R}' SinAce 
h is a homomorphism onto, h(I.r;) = 1',£ and ho J3 is an £
observable such that 

{h oi3(E); E E <B;J = d({h(Pn )}) 

== G,({a(Dn)}) == {alE); E E <Bel 

where property (a) has been taken into account. There
fore, a real valued Borel function u on R exists such 
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that a = M(h oJ3) (Theorem on p. 101 in Ref. 20). Finally 
we notice that 

u(h o{3)(E) = hoJ3(u- 1(E)) = h(J3(u- 1(E))) 

== h(u(J3)(E» == hou(J3)(E), '<IE E ffi p , 

whence a = hoa, if a is the £-observable a := u(f3). 
QED 

If the £-observable a of the theorem is bounded, then 
~ bounded .£-observable a o can be constructed such that 
a = hoa o' If a is the £-observable whose existence is 
asserted by the theorem and K is a compact subset of 
R such that a(K) = I:c, take a to in K and define for any 
EE<B 

~
a(EnK) if to EfE, 

a (E);= 
o atE n K) Va (K)' if to E E 

[o.(K)' is the orthocomplement of a(K) in £]. The map
ping 0. 0 can be easily shown to be an .£-observable with 
the required properties. 
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We consider the scattering of a finite beam of radiation in a random medium with a 
nonhomogeneous background that contains linear and quadratic variation. We assume that both the 
fluctuations in the random medium and the background nonhomogeneity are weak. We obtain 
general ~xpressions for the coherence function and intensity distribution. We present explicit 
solutions in the multiple scattering region. Results are compared to the case in which the 
background is homogeneous. 

1. INTRODUCTION 

It was shown in a previous paper1 that the equation 
governing the propagation of a finite beam of radiation 
in a random medium with homogeneous statistics is 

(irf' ( i ) _~_I = k2ra(S)-0'(O)] + 2k ('I7i -'I7i ) {fro 
o Z T 1 T2 

(1) 

Here iff is the ensemble averaged coherence function, 
z is the propagation direction, X T1 and x T2 are the 
transverse (x, y) coordinates in the plane perpendicular 
to z, '17; is the transverse laplacian operator, s 

T 
= IX Tl -x T2 l. and 

a(s)=tC a[(s2+z2)1/2]dz, 

where a is the correlation function associated with the 
index of refraction fluctuations. The fluctuations are 
assumed to be homogeneous and isotropiC. Il=2rrv/c is 
the wavenumber of the radiation which is governed by a 
scalar wave equation. For convenience the mean index 
of refraction has been set equal to unity. 

In the derivation of Eq. (1) the fluctuations were taken 
to be weak so that there existed a distance t.z which 
satisfied the conditions 

(2) 

Here 1M is the maximum correlation distance associated 
with the fluctuations and 8 e is the characteristic spread 
of the radiation. An additional condition, a» 1M, where 
a is the characteristic beam dimension, was shown 
subsequently2 not to be necessary. 

Here we wish to include the effect of a nonhomo
geneous background, k(,,). That is, we consider now the 
case in which the mean wavenumber varies in one of the 
transverse directions. Physically this could result from 
the mean density variation with altitude in the atmo
sphere or a mean vertical temperature gradient in the 
ocean. We assume here that meanir.gful values of Yl and 
.\'2 are restricted by the condition 

and that if 8 ~ is the average angular deviation of the 
beam the condition 

(3) 

8~kt.z«1 (4) 

is satisfied. In addition we require the radiation to be 
quasimonochromatic so that 

t.v Iv « 1. (5) 
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If the above conditions are met, the effect of a non
homogeneous background may be included in Eq, (1). by 
the addition of the term 

(6) 

on the right-hand side. 

The derivation of Eq. (1) is based on the fact that in 
any small interval, t.z, the scattering term (the first 
term on the rhs) and the diffraction term (the second 
term) act independently in changing {:h and the change 
resulting from each effect is small. By imposing the 
conditions given in Eqs. (3), (4), and (5) we require that 
the effect due to refraction in the interval t.z is also 
small. Moreover, since the condition fiJi t.z «1 (8 
= 8e or 8R ) essentially allows the use of a geometric 
optics type approximation in the interval t.z, then the 
refr.action term is given by Eq. (6). That is, in the 
interval t.z, we consider only the effect of a phase shift. 
The effect of refraction on the scattering and diffraction 
terms is neglected in t.z. 

The equation we treat in this paper is 

As a boundary condition we take on the plane z = 0 the 
coherent Gaussian form 

Other initial conditions may be used, but the Gaussian 
form yields particularly simple results and illustrates 
the nature of the results expected for finite beams in 
general. 

We choose the following form for k(v): 

(9) 

This choice allows us to convert Eq. (7), by Fourier 
transformation to a first-order partial differential 
equation. Inclusion of a y3 term in Eq. (9) would lead 
to a second-order term and make the solution intract
able. We thus restrict our attention here to this 
quadratic form. The values of y that may be significant 
in our problem are restricted by the condition given in 
Eq. (3). 
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2. GENERAL SOLUTION OF Ea. (7) 

In this section we solve Eq. (7) using Eq. (9). We 
first transform to the sum and difference coordinates 

PX= (Xl + x2)/2, 

Py=(YI+y2 )/2 

and define 

F(s) '" ra(s) - a(O)]. 

We find 

al~} = [k2F(s) + ia1s y - 2i£l:!SyPJ {i'} 

+ i(as:a
2

px + as,aa~y ) {f.}. 

(10) 

(11) 

Proceeding as we have in a previous paper3 we take the 
Fourier transform of both sides of Eq. (7). This yields 

a1~} =[k2F(s)+i~ISJ {f} _ _ 

_ 2a s ~ + /-Ly ~ + /-L, a{r} , 
2 Y a/-L, k as, k as, 

where 

{r} = [j exp[ +i(/-LxPx + /-LyP)]{i'}dPxdP,. 

The initial condition is 

{r}=I\(s,p), z=O, 

or 

{r}=I\(s,/-L), z=O, /-L=(/-L;+/-L;)l/2. 

( 12) 

(13) 

The characteristic equations associated with Eq. (12) 
are 

dz 
dt = 1, 

ds, __ & 
dt - k' 

where t is an arbitrary parameter. 

The solution of Eqs. (14) is, for a2 >0, 

z=t, sx=s, -(/-Lx/k)t, 
o 0 

Sy = Sy cos wt - (/-L y /kw) sinwt, w2 = 2a2/k, 
o 0 

/-Lx=/-L x ' /-L .. =kws .. sinwt+/-L coswt, o • ~ ~ 

(14) 

(15) 

{r}= {fo} exp{ ia1[(sy/w) sin wt + (/-Ly/kw2) (cos wt - 1)] 

+ G(sxo' s, ,/-Lx' /-L, ,tn, 
o 0 0 

where 

G(s s /-L /-L t)=Ji2jt F[(S2+S2)1/2]dt' 
:to' Yo' xo' :Yo' 0 % Y • 

For a2 < 0, 

z=t, sx=sx -(/-Lx/k)t, o 0 

Sy= s, cosh nt - (/-L /lin) sinh nt, 
o Yo 
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/-Ly=-Sy knsinhnt+/-L cosh nt, 
o '0 

We next introduce the boundary condition given by Eq. 
(8). Straightforward but somewhat lengthy manipulation 
yields finally the following results. 

(A) a2 >0: 

- [~ ~ {r(sx' s" /-Lx' /-Ly' z)} = Io1Tb
2 

exp . - 4ifr - 4b2 

- sx/l Z X(cos2wz + k2w2b4 sin2wz) -~ 
2kb2 

where 

[ (WkW) /-L (WkW)]2}1/2] + SyCOS -/l- + k~ sin -;- dw. 

(B) £l:!< 0: 

where 

G_= :3 [Z/k F[{(SX+ :xwy + [SxCOSh(n;w) 

+ ;~ sinh(n;V)]T/2]dw. 

(17) 

(18) 

The Fourier transform of the intensity distribution, 
{l(/-Lx' /-Ly' z)}, is obtained by setting sx=Sy=O. We find 
then for a2 > 0 
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(WkU')J 1/2J } xsin27 dUJ (19) 

(Wkll')~ 1I2J } x sinh2 -fl- ~ clUJ. (20) 

3. SPECI FIC SOLUTIONS 

Equations (17)-(20) reduce to previous results when 
a, and a2 are set equal to zero. When a2 == 0 but a, is 
finite (i. e., we have only a linear variation in the non
homogeneous background), we find that intensity peak is 
shifted by the known amount 

t.J.p == a, Z2 /2li. 

When a2 ;to, the shift is 

t.J.p == (/,(1- coswz)/kw2
, (21) 

The shift D.f) is independent of the scattering since the 
above terms are not dependent on F and the scattering 
integrals in Eqs. (19) and (20) are symmetric in fly' It 
is expected that if an (/ 3y 3 term was included in Eq. (9) 
this would no longer be true. 

~ ~ 

To proceed further in the solution of {r} and {I} re
quires an explicit knowledge of F(s) == o'(s) - 0'(0). It is, 
however, possible to evaluate these functions in the 
multiple scatter region where the only important con
tribution comes in the limit s - 0. 2 

We note that after obtaining the solution we may ob
tain a solution in the absence of scattering by setting 
u(s) - u(O) equal to zero. 

We know from solutions obtained when (/, and (/2 are 
equal to zero that as z - 00 the intensity distribution is 
determined by the form of F(s) == 0'(5) - 0'(0) as s - O. In 
this region we may expand 0'(5) in a Taylor series and 
we have 

(22) 

since a~ = o. 
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When a, and a2 are not equal to zero, this approxi
mation is still valid in the multiple scatter region. 
When ~ > 0, the average spread of the beam is inhibited 
and we have a phenomenon that is exemplified by sound 
trapping in the ocean. When (/2 < 0, the average spread 
of the beam is enhanced by the variation of k(y). In both 
cases, however, the angular spread of the scattered 
radiation grows with distance, and as z - 00 Eq. (22) is 
valid. We shall demonstrate the consistancy of this 
argument after the results for {f} have been obtained. 

If Eq. (22) is substituted into Eqs. (17)-(20). we find 
after manipulation: 

(A) a2 > 0: 

{r} = -.!L exp{~sb; (1- 20"~Pb2Z) 
4R"R", 

where 

2 b2 (2 sin2wz 0'0 (z - sin2 WZ)) 
R • == -4 cos wz + ---- - 2b2 2 . 

y k2w2b4 W W 

(23) 

(25) 

1 [ + (1 - cosMk) _ ~ (Sinh QZ) 
- 4R2 Py a1 kQ2 2b2kQ 2Q 

y-

x (1 + k2Q2b4) _ ifQ~b2 Sinh2QZ)J2}, 

{i}=~ 
4R"Ry_ 

M.J. Beran and A.M. Whitman 
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(27) 

where 

R2 =!C rcOsh2nz + sinh
2
nz + Oq (Z - Sinh2nZ)] 

,- 4 L k2n2b4 n2 b2 2n . 

(28) 

A comparison of results to those obtained when al = a2 

= ° shows that the x dependeEce of {r} and {i} is un
affected by the variation of k. The effects in the two 
directions are essentially uncoupled. When w ~ ° and 
n ~ 0, the results approach the results obtained when 
a2 = ° except for the shift of the peak of the radiation 
(when al *0). The effects of a2 are important when 
(la

2
1 /k)1/2 z ;, 0(1). 

To demonstrate the consistency of the expansion in 
Eq. (22), we examine Eqs. (23) and (24) when Px= s, 
=0. p,=a l (l- cOSWZ)/RW?. From Eq. (23) we find 

{r} -~ exp {- s~ [cos2WZ + k2w2b4 sin2wz 
- 4Rfi,+ 4b2 

- d{k2b2 (z + Si~~WZ)] 

_ ~ 1 (Sin2WZ (1- Pw2b4) 
4R~. 4b2 PW2 2 

dgk2b2 .2 )2 ia1s,sinwz} - sm wz + - - . 
w w 

(29) 

As z - 00, we find for I {hi (we are not here interested 
in the phase of {rn 

(30) 

where we note that Oq is a negative quantity. T~us we 
see that the characteristic distance in which I {r} I 
decays is proportional to Zl/2 as z - 00. Hence the 
angular spread of the radiation grows as Zl/2 as z - 00, 

and Eq. (22) is a valid expansion as z - "". It is im
portant to emphasize that although the angular spectrum 
grows as Zl/2, as it does when a2 =0, here (a2 >0) the 
characterisitc spread of the intensity distribution in the 
y direction grows only at a rate proportional to Zl/2. 

When a2 = 0, the intensity distribution grows at a rate 
proportional to Z3/2. 

When a2 < ° the angular spectrum grows exponentional
ly as z - 00 (sinhx and coshx are proportional to eX as 
x - 00). This is true for both the intensity distribution 
and the angular spectrum. It is thus consistent here too 
to use the approximation given in Eq. (22). 

The solution given in Eqs. (23)-(26), valid in the 
multiple scatter region must still meet the condition 
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that (a l Y + a2 y
2 )/k« 1. When a2 > 0, this condition 

reduces to 

(~jka2« 1, a~z/2« 1, 

if we require wz » 1. 

(31) 

In Ref. 3 we defined the mUltiple scatter region by 
two conditions. The important condition was 

z Pl!.. dg/6» 1. (32) 

When a2 < 0, nz» 1, the conditions are 

a~ cosh2(nz)/k a2 « 1, 
(33) 

aIR "../k and ¥~jk« 1. 

The utility of Eqs. (23)-(28) in any physical problem 
thus depends on the relative values of the parameters 
aI' a2, ~, Ti, 1m and the propagation distance z. When the 
solution is valid, the intensity distribution [Eqs. (24) 
and (27)] has the particularly simple Gaussian form 
with a shifted peak determined by aI' a2 , and k. The 
characteristic spread of the distribution is determined 
by diffraction and scattering as presented in Eqs. (25) 
and (28). In Eq. (32) is satisfied for a value of z such 
that wz« 1 or nz« 1, then Eqs. (31) and (33) need not 
be satisfied. 

4. SUMMARY 

In this paper we determined expressions for the 
coherence function {i} and the average intensity distri
bution {i) under conditions for which the nonhomo
geneous background varied slowly according to Eq. (9) 
and the radiation was forward scattered. The conditions 
for validity of the general solutions [Eqs. (17)-(20)] 
are given in Eqs. (2), (3), and (4). An explicit solution 
in the multiple scatter region is given in Eqs. (23)-(28). 
The additional conditions for the validity of these latter 
solutions are given in Eqs. (31), (32), and (33). 

When a2 is positive, we find the familiar channeling 
effect. In this case we have determined explicit ex
preSSions for the coherence function (which is directly 
related to angular spectrum of the scattered radiation) 
and for the intensity distribution. When a2 is negative, 
the angular spectrum and intensity distribution grow 
rapidly when nz> 1. Explicit expressions for {r} and 
{i} are also given in this case. 
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Riemann-Green's functions for solving electromagnetic 
problems exhibiting rotational symmetry in media moving with 
superluminal velocities * 

Salvatore Solimeno 

[stituto Elettrotecllico, Ulliversitd di Napoli, Naples, Italy 
(Received 8 August 1974) 

A new method of investigation of the electromagnetic field configuration in media moving with 
superlumina1 velocities is illustrated, The basic assumption is the rotational symmetry of the field. It 
is shown that a Volterra integral equation can be written for the magnetic field on the metallic 
boundary surface. This equation rests on the knowledge of the Riemann-Green's functions of two 
difTerential operators. Some expressions for these functions are obtained. 

1. INTRODUCTION 

In recent years there has been much interest in the 
study of electromagnetic radiation in moving media. 1 In 
thiS context, the innovation of operating in the frame 
moving together with the sources has shed new light on 
these problems In fact, the introduction of Maxwell
Minkowski constitutive relations1 ,2 has allowed transfor
mation of time-dependent problems in time-independent 
ones. 

In the wake of this Simplification, it has been further 
shown3 that, by a suitable extension of the Clemmow4 

scaling procedUre, the radiation problem in moving me
dia can be solved by referring to an equivalent isotropic 
and nondispersive medlUm with simple boundary condi
tions. In particular, it has been proved that this holds 
true for sub- and super-luminal velocities. With super
luminal velocities, the search for a solution can be con
ducted by a suitable analytic continuation of the solution 
obtained for a stationary simple medium. In practice, 
this implies looking for the analytic solution of the EM 
problem, thus excluding numerical techniques. It, 
therefore, is useful when analytic solutions are avail
able, e. g., when mode expansion technique is 
applicable. 

In more complicated problems, where numerical tech
niques are more powerful, the above line of search 
looses its efficacy. 

Fortunately a large class of boundary value problems 
in moving media exhibit a rotational symmetry around 
the velocity direction. Surprisingly, this circumstance 
does not seem to have drawn the attention of scientists. 
Nevertheless, it emerges as an essential factor for ap
plying integral approaches. 

As will be shown in the following, the search for the 
field reduces to solving a Volterra integral equation, 
whose kernel is a well behaved function devoid of the 
typical singularity of the usual Green's functions. 

2. WAVE EQUATION FOR THE ELECTROMAGNETIC 
FIELD IN A SIMPLE MEDIUM MOVING AT 
SUPERLUMINAL VELOCITY 

Let us consider a uniform, isotropic and nondisper
sive medium moving with uniform velocity v = vv with 
respect to the sources and the boundaries. 

By introducing the quantities1 
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A=a(I -V) +V 

where [3 = v/ c, c being the hght velocity in vacuum, n 
= IE is the refractive index, I is the unit dyadic, and 
V=VV, a time-harmonic (exp(iwt)) electromagnetic field 
cI> = E(or H) satisfies the equation3 

-+--+-----J(2 4> =-S ( 
a2 1 a 1 22 a2 

) I 
or2 r or r2 34>2 2z2 (1) 

where r, 4>, z are cylindrical coordinates with the z 
axis parallel to v, !(2=w2n2 /H, cI>'=Al/2. cI> and S is the 
source term. 3 

When ~ and the boundaries exhibit rotational symme
try with respect to the z axis, (1) simplifies as 

(2) 

(3) 

for the z and the transverse component of ~') respec
tively. In addition, as (a/iJr)r= (c/ar);J, = 0, the scalars 
4>; and 4>~ also satisfy (3). 

3. RIEMANN·GREEN'S FUNCTIONS 

A. Introduction 

The first general solution of the problem of Cauchy 
for an extensive class of partial differential equations 
was given by Riemann' almost a century ago in his well
known paper on the propagation of sound waves of finite 
amplitude. Although stated only for certain special equa
tions, it is applicable to any linear equation of hyper
bolic type of the second order in two independent vari
abIes: it depends ultimately on finding a certain subsi
diary function, usually called the Riemann-Green' s 
function, which is the solution of a characteristic bound
ary value problem for the adjoint equation. 6 Riemann 
gave explicit formulas for this subsidiary function in two 
cases of special importance in gas dynamics. Succes
sively, Chaundy, 7 Titchmarsh, g Henrici, 9 and Copson10 

were able to find the Riemann-Green' s functions for 
many other equations. 

B. A brief description of Riemann's method 

Let us consider the hyperbolic equation 
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z 

CHARACTERISTICS 

/THROUGH P 

P 

FIG. J. Doma in of dependence of p. 

where a, b, c, and j are functions of r, z E R, R being 
a region of the (r, z) plane. We prescribe the initial val
ues u==cf>l> and a free curve6 C and, say, the normal de
rivative au/an == cf>2' We consider the solution of the 
boundary value problem at all points P for which the 
corresponding domain of dependence Dp is contained in 
R By resorting to a general technique developed by 
Riemann, we can write 

u(P) = tu(A)R(A, P) + tu(B)R(B, P) 

+ t ( [(2 buR +R au -u oR\ dr+ (2auR+R~_uOR)dJ 
JAB \' oz oZ/ or or J 

+ ( Rjdrdz, (5) 
JDp 

wher~ R is the Riemann-Green' s function of the oper
ator L, A and b are the pOints where the characteris
tics through P cut the curve C (see Fig. 1)0 

The Riemann-Green' s function R(Q, P) is defined im
posing the following conditions: 

(a) LtQ)[Rl = i(pJRl = 0, 

oR oR 
(b) aQ=(a-b)RalongAPand aQ=(a+b)RalongBP, 

(c) R(P, P) = L (6) 

By simple algebra Eq. (5) can be recast as 

u(P) = }u(A) R(A, Pi + tu(B)R(b, P) 

1 ( r. (au .-... au ~\ 
+ 2: JAB LR AS sin2rs - an cos2rs; 

(
oR . .......... oR _) 

-It -sm2sr --cos2sr 
oS on 

+ 211R(b cossy + a COSSZ)] ds 

+ i
p 
Rjdrdz (7) 

where s is the curvilinear coordinate along C and sr in 
the angle formed by r with s. 

C. Application of Riemann's method to the radiation 
problem 

A 

For L = L z or L to Eq. (7) reads 
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u(P) = tu(A)R(A, P) + tu(B)R(B, P) 

1 1 [(au ~ ou ~) + 2: ~B R oS sin2sr - on cos2sr 

(
oR ~ oR ~) R ~J -u -assin2sr-a-ncos2sr +u-ycossz ds 

+ i RSdrdz. (8) 
Dp . 

Now, it is convenient to introduce the following quantity: 

F = cosnr(o~ (ru) cosr'S + o~(ru) cosnr) 

- cosnz(o~ (ru) cosSz + o~ (ru) cosnz) 

o ~ 0 ~ 
= AS (ru) sin2sr - an (ru) cos2sr. (9) 

Since 

au ~ au ~ F u ~ 
-sin2sr --cos2sr=-- -coszs 
as an r r ' 

plugging (10) into (8) we get 

u(P) = tu(A)R(A, p) + tu(B)R(b, P) 

1 FR 1 I (OR ~ oR ~) + - ds - 2: U -;-sin2sr--;-cos2sr ds 
AB r :AB uS un 

(10) 

+ ( RS drdz. (11) 
JDP 

4. INTEGRAL EQUATION FOR THE MAGNETIC 
FIELD 

Let us consider a finite source distribution S con
tained in a region R with some metallic boundaries oR. 
In our two-dimensional representation, we assume C 
coinciding with the boundaries. 

In Ref. 3 we have shown that the EM field satisfies the 
equation 

( - I + 2V) . V' x H' = iwEaE' , (12) 

where H' and E' are fictitious fields simply related to 
E and Ho For a class of problems where H'= u¢, (12) 
reads 

( 
ou A lOA) (-I+2V). --r+- -(ru)z 
oZ r or 

au A lOA . 
=-r+- -(ru)z= zwwE'. 

OZ r or -

Proj ecting on C, we obtain 

iWEaE' . ~= cosrs.!. -Z..(ur) + cossz .!.-Z..(ru) 
-F r OZ r or 

Even though F vanishes identically on metallic bound
aries, it is worth assuming F,* 0 in order to include in 
the following discussion the radiation from slotted met
allic antennas. Then we assume F be an assigned func
tion on C. 

Let us now consider a straight line K parallel to the 
z axis, such that the half -plane containing the point z 
= - 00 and limited by K does not contain the sources. 

Now, at each point PE R lying on K, the field vanishes 
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z 

a SOURCES 

p' P K 

FIG. 2. The free curve C is assumed coincident with the me
tallic boundary of the region R where the electromagnetic field 
is confined. The integral appearing in the integral equa-
tion solving the boundary value problem is calculated between 
p' and A. 

identically (see Ref. 3). Therefore, (11) Simplifies as 

1 1 I (OR. ~ oR ~) 2u(A)R(A,P)=-2 u -sm2sr--;-cos2sr ds 
J\P' as un 

-- -ds - RSdrdz 1[ FR [ 
2 'AP' r D P 

(13) 

where pI is the projection of P on C (see Fig. 2). 

On writing Eq. (13), the search for the H~ field on C 
rests on the solution of a Volterra integral equation of 
the second kind, whose kernel oR/as sin2sr - aR/an 
x cos2sr is a finite continuous function of its argument. 
Once H~ is known on C, H~ can be calculated at any 
point P by using (11). 

z 

FIG. 3. Geometry of the infinite cylindrical antenna problem. 
The excitation is applied through the gap. No other sources are 
supposed present. 
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5. INFINITE CYLINDRICAL ANTENNA 

As an example, let us consider an infinite cylindrical 
antenna of radius b oriented in such a way that its axis 
coincides with the velocity direction of the medium, The 
antenna is driven at its center by a voltage Vo applied 
uniformly around an infinitesimally thin circumferential 
gap. This idealized generator is specified by 

(14) 

and is known as the delta-function generator. Such an 
idealized generator has been used extensively by Kingll 
in the study of linear antenna in free space. SeshadrP2 
has discussed the case of such an antenna immersed in 
a warm plasma. 

In this case, plugging (14) into (13), we obtain 

1 1jZA-b ilR iV wEa 
2U(A)R(A,P)=2" 0 u(z)a:ndz----tz;-R(P',P) (15) 

having chosen zp,=O- (see Fig" 3). 

6. RIEMANN-GREEN'S FUNCTIONS FOR L~ AND Lr 

In Sec" 4 an integral equation for H¢J was obtained. Its 
solution implied knowing the R-G function of Lt. On the 
other hand it can be easily shown that a similar integral 
equation call be written for E z' In such a case the R-G 
function of L z is needed. 

In the present section some expressions of the R-G 
functions of i. and it are derived. In this way, all the 
analytical tools for this integral approach are provided. 

A. Riemann-Green's function of Lz 

1. Extension of the Henriei representation 

The Riemann-Green' s function R(L z ) of i. has been 
obtained by Henrici (Ref. 9, Table 2) and reads 

(16) 

(Za- Zp)'-(ra-3r,)'=-8r,' 

/ ~ 

.p 

FIG. 4. Domain of existence of the Henrici Riemann-Green's 
function ana lytic expression. 
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FIG. 5. Domain of existence of the Riemann-Green's function 
obtained in the present paper. 

where 2:2 is the confluent hypergeometric function of two 
variables (Ref. 13, Vol. I, p.226), 

- ( ) t (O!)m(/3)m m" 
'::'2 O!,/3;y;x,y = (y) m!n!X y, 

m,n=O m+n 
IXI< 1, (17) 

and w2 =(rp_rQ)2_(zp_zQ)2. 

As the series (17) converges for I x 1< 1, (14) can be 
used for Q contained in the dashed region of Fig. 4. 

Before we attempt to find a representation of R(L
z

) 

valid in a different region, it is worth making a few gen
eral remarks. The operator L z is strictly related to 

~ _ a2 a2 20! a 2/3 a 
L""B=ar-at2 +-r ar-Tat' (18) 

which has the important property of being more symme
tric than (. In fact, if we put t= (/3 + iKz)/iK and make 
(3 - + 00, (18) becomes 

A A a2 a2 20! a . 0 
L -L ----+---2zK-
""BB~~ "-or OZ2 r or oz' (19) 

Next, for O! =~, it follows 

i z= exp(ikz)L" exp(- iKz) = i~o (20) 

Lastly, to get R(L'",) we transform R(L "B) in agreement 
with the above variable transformation t- z and (20). 
R(L",S) has been given by Copson as a Stieltjes integral, 

+ £,/2 P_,,(l +1)cos2B) dP_ B(1 + ~Sin2B»), 
where 

1) 

221 

(ip - tQ)2 - (rp - rQ)2 
2tplQ 

.:.( r-,p:...-_-,r...!Q~)_2 _-....,(-=1 Q"---_I;:..p ),-2 > O. 
2rprQ 
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(21) 

(22) 

(23) 

Now, since 

(::);: expiK(z Q - zp), 

~;:: -2~ [(Zp -zQ)2 - (rp - r Q)2J= ~;22, 

(rp - rQ)2 - (zp - ZQ)2 _ , 
1)- =1) , 

B+~ 2rprQ 

and (cf. Ref. 13, Vol. I, p. 148 and Vol. II, p.55) 

P- B(1 + ~ sin2B) = 2F1 (1 - /3, /3,1; - H sinB2) 

- 2F1(1 - /3, /3,1, - (t{32)K"w 2 sin2B) = Io(Kw sinB) 
B~ ~ 

(24) 

(25) 

(26) 

=oF1(l, tK"w 2 sin2B) (27) 

we have 

R(L )-exp[iK(zQ_Zp)](r
Q
)" P_",(l+1)') 

",B B+~ rp 

+ 1r 

12 P_,,(l + 1)' cos2B) dIo(KW SinB»). (28) 

Lastly, upon substitution of L ",B with i~, (28) yields 

R(L",) =(;:r ([r/2 P"'-l(l +1)' cos2B) dIo(KWsinB) 

+ P a - 1(l +1)'»)' (29) 

This last representation is more suited for our needs 
than (16). In fact, it holds for I r p - r Q I '?-I z p - zQ I (see 
Fig. 5) and, consequently, it lends itself to give the 
R-G function values entering the field integral equation 
(13). 

2. Series representation 

The R-G function as expressed in (29) entails the cal
culation of a Stieltjes integral which is quite tedious to 
carry out. To simplify this representation we shall at
tempt to transform it into a series. 

By developing the Stieltjes integral 

j ./2 P "'-1 (1 + 1)' cos2B) dIo(Kw sinB) 
o 

and substituting the series expansion 

. ~ (Kw sinB)2"+l 1 
I1(Kwsme)=~ 2 '( 1)' 

"=0 n. n + . 
into (30), we obtain 

(30) 

(31) 

I r 1 2 ~ (KW)2"+1 1 
P"'_l(l+1)'cos

2
B)dIo(Kw SinB)=2""""2 n!(n+1)! 

1r / 2 

x P "'-1 (1 + 1)' cos2B)(sinB)2"+1 d(Kw sinB) 

~ (KW)2"+2 1 11 =D -2 '( 1)' P"'_l(l+1)'x}(l-x)"dx 
"=0 n. n + . 

(32) 

where x=cos2B. As (Ref. 15, p. 802, No.9) 

i1 (2+1)')"+1/2 P,,_l(l+1)'x}(l-x)"dx= ---;:j"' F","_7(1+1)')n!, 

(33) 

Salvatore Solimeno 221 



                                                                                                                                    

then 

(34) 

Lastly, upon substitution of (34) into (29) we obtain 

where coshI' = 1 + 1)'. 

This last representation lends itself to the calculation 
R(L ) step by step, starting with (cf. Ref. 14, p. 337) 

z 

2 I' (j 1') 
P- l /2(coshy) = :;sech2"K \tanh2" ' (36) 

Pl /2(cosh)') = ~exp(y /2) E[l - exp( - 2')') ]1(2 (37) 
7r 

where K and E are the complete elliptic integrals of the 
first and second kinds, and then making use of the re
lations between contiguous Legendre functions (cL Ref. 
13, Vol. I, p. 160) 

p~+2(coshy) + 2(J-L + 1) cothy p~+l(cosh)') 

= (v - J-L)(v + J-L + 1) P:(coshy) , (38) 

coshI' P-1 /2( coshI') - P1/ 2(coshy) = t sinh)' P:t /2( coshI') , 

(39) 

3. Integral representation 

Naturally, we now try to recast (35) as an integral 
again. The resulting representation will turn out to be 
more suitable for studying the behavior of R(L ). We 
start with the following integral representatio~ (Ref. 13, 
Vol. I, po 156): 

-" (sinhI' )" l' ( . t)2" P "_l(coshy) = yr;2"r(n +1) 0 sm 

x (coshI' + sinhI' cos[fn+"-l dL (40) 

Substitution of (40) into (35) leads to the new integral 
representation 

where 

x = cosh)' + sinh)' cost, 

Since 

£ y" 
"=0 n! r(n + f) 

1 TIT cosh2!y , 

then 

R(L )(Q,P)=!(~)"I' dtx"'-lcosh(cx-1/zsint), 
" 7r rp 0 

c standing for Kwl(2 +1J'/1J,)]l/4(sinhy/2)l/2 o 
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(41) 

(42a) 

(42b) 

(43) 

(44) 

In particular, when Q is on the z axis, 1)' tends to in
finityand 

(;:)" (COShI' + sinhI' cost) "-\;':-0 0, (45a) 

c(coshy + sinh)' cost)l/Z sint - Kw sint/2 (45b) 
'o~o 

Accordingly, 

R(L )(Q, P) - o. 
z '0-0 

(46) 

B. Riemann·Green's function for the operator Lr 

In view of a very important property6 of the Riemann
Green' ~ functions, R(Lt)(Q, P) coillcides with R(Li)(P, Q), 
where Li is the formal adjoint of L t , 

A OZ all a2 _ K" 
L*---------

t - ar i3r r r2 azz 

-~-!~-~-K2 - ar r ar OZ2 
(47) 

The new operator il differs from i. only in the minus 
sign in front of r-1 alar. This implies that many of the 
considerations of Sec. 6. A apply as well to £1. The only 
difference occurs when we put a [cf. (18)J equal to -1/2 
instead of + 1/2. In addition, when we exchange P with 
Q, 1)' and w remain unchanged. Accordingly, (29) and 
(35) transform as 

On the other hand, (Ref, 13, Vol I, po 156) 

(sinhy)" 
p;:/2{coshy) = yr; 2"r(n + !) 

x I' {sint)2" (coshI' + sinhI' costr"+l/Z dt. 

(49) 

(50) 

Then, by retracing the discussion leading to (44), we 
obtain 

In addition, as 

...Q (coshI' + sinhI' cost)l/Z-:- -cost/2, (
r )l/Z w 
rp '0 0 rp 

(52) 

then 

w I' R( (~P) - - dt cost/2 cosh (Kw sint/2) 
L t ) , 'Q- 01Tr p 

=_2-sinhKw. 
1TKrp 

(53) 

Comparison of (53) with (46) shows that the two functions 
differ considerably in their behavior on the z axis: 
Whereas R(L

t
) is a monotone function of z, R(L

z
) van

ishes identically. 
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CONCLUSIONS 

It has been shown that the search for the electromag
netic field distribution in a medium moving with super
luminal velocity rests on the solution of a Volterra in
tegral equation, Even though this paper rests on the as
sumption that the magnetic field has only one magnetic 
component (!i = u¢), and the metallic boundaries are re
presented by a free curve, it is possible to extend the 
present approach, In fact, by dividing the EM field re
gion into subregions bounded by free curves and charac
teristics, the integral approach can be applied separate
ly to each of them. Some difficulties arise when we do 
not know the boundary conditions on some of these bound
aries, In this case, some phYSical intuition has to be 
invoked. 

Before concluding, it is worth noting that a similar 
approach could be proposed for radiation problems in 
uniaxially anisotropic plasmas 0 Unfortunately, in this 
case, we cannot require the field to vanish along a 
straight line [condition leading to Eq. (13)]. But a con
dition can be imposed on the far-field behavior 0 To pro
ceed along this line would require knowing some asymp
totic expressions for the R-G functions o This line of re
search is presently in progress, 
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Closed gravitational-wave universes: Analytic solutions with 
two-parameter symmetry* 
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Einstein's vacuum field equation~ are solved for spacetimes with two-parameter spacelike symmetry, a 
space-reflection symmetry, and space sections homeomorphic to either S I X S 2 or S 3 All integrals 
are evaluated, and the spacetime metrics are presented in analytic form. 

I. INTRODUCTION 

The spacetimes conSidered here may be thought of as 
closed empty universes which are inhomogeneous due to 
the presence of gravitational waves. Locally, these 
waves are indistinguishable from Einstein"":Rosen 
cylindrical waves. The boundary conditions which make 
such waves compatible with closed spacelike hypersur
faces have been discussed in a previous paper. 1 Just as 
in the Einstein-Rosen case, two of Einstein's equations 
can be reduced to quadratures, one equation has a 
canonical solution that fixes the cylindrical radius co
ordinate, and the remaining equation is an easily solved 
linear wave equation. 2 For the closed-universe boundary 
conditions considered here, the solutions to this wave 
equation can be expressed entirely in terms of poly
nomials. The integral which solves the remaining Ein
stein equations can then be evaluated analytically. This 
paper presents the result of evaluating this integral 
and thus obtains this class of spacetime metrics in a 
form which is suitable for exploring such properties as 
the behavior of geodesics and test fields. 

II. METRIC AND FIELD EQUATIONS 

Any spacetime with two spacelike Killing vectors a/aa 
and a/a6, a reflection symmetry a- - a, and at least 
one degenerate isometry group trajectory can be ex
pressed in the form l 

where L is a constant length and the functions a, 1/J, and 
R depend only on the coordinates e and t. The group 
coordinates a and I) are angles which range from 0 to 
21f. The coordinates e and t range from 0 to 1f with no 
identifications. In the notation of the previous paper, 
this metric corresponds to <I> = 0, W + b = 1/,1. 

Denote derivatives with respect to the advanced and 
retarded time coordinates v = t + e and u= t - e by f+ 
= of/ ov and f-:= af/ au and write the independent Einstein 
equations in the form l

•
2 

R.a. = Rifl; + iR •• - tR(R/ R)2, 

R_a_ =R<P: +iK_ - tR(RjR)2, 

R._ =0, 

(a/ a e)(Ra</J/a e) - (a/ at)(Ra1/J/ at):= o. 

III. SOLUTIONS TO THE WAVE EQUATIONS 

Equations 4 and 5 are simply wave equations and 
their solution is straightforward. For spacetimes 

(2) 

(3) 

(4) 

(5) 
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homeomorphic to (0,l)X51X52 or (0, 1)x53 , the coor
dinates e and t may always be chosen so that 

R =sinesint 

which solves Eqo (4).1 Equation 5 has the solution 

\f!=W+b, 

where 

W =6Zj(Cost)pj(cose) , 
j 

(6) 

(7) 

(8) 

(9) 

P j and QJ are Legendre functions of the first and second 
kind, respectively, A

J 
and CJ are adjustable constants, 

and 

b= -i lnR 

for the 51 x 52 topology and 

b = - i In tan(e/2) 

for the 53 topology. 1.2 

IV. MATCHING CONSTRAINTS 

(10) 

(11) 

Now consider Eqs. (2) and (3). From Eq. (6), R_ 
vanishes everywhere on the null surface u = 0 and R. 
vanishes everywhere on the null surface v = 1f. On 
these null surfaces, Eqs. (2) and (3) are constraints on 
the function <p and thus on the constants Aj and 
C

J
• One way to understand the origin of these con

straints is to cast the spacetime metric into the canon
ical Einstein-Rosen form by USing R and T = cos e cost 
as coordinates instead of e and t. One finds that four 
distinct coordinate patches of this sort are needed to 
cover the spacetime. These patches are joined across 
the null surfaces u=O and V=1f and the constraints 
which arise from Eqs. (2) and (3) are the conditions 
for a smooth match of metrics. 

Because the matching constraints are preserved in 
time when Eqs. (4) and (5) are satisfied, it is sufficient 
to satisfy them on the 2-surface where the matching 
null surfaces intersect. 2 The resulting conditions on the 
function Ware 

(ow/ae)19~t~'/2 =q+iCl', (aw/at)19~t='/2 =p, (12) 

where the pair (q ,p) is either (0, ± 1) or (± 1,0) and 

CI' = {o for the 51 x 52 topology 
1 for the 53 topology. 

(13) 

The corresponding constraints on the constants A J and 
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CJ are 

6LJC2J+1 = q + to', 6 L JC2J = p, 
J j 

where 

L J = (2j + l)p2J (0)Q2J+1 (0). 

V. FORMAL INTEGRATION OF THE REMAINING 
EINSTEIN EQUATIONS 

(14) 

Once the matching constraints are satisfied, the 
right-hand side of Eq. (2) vanishes whenever R+ van
ishes and the right-hand side of Eq. (3) vanishes when
ever K vanishes. Multiply Eq. (2) by K and Eq, (3) by 
R., take the difference and find 

where the function 

F= - 4(sine)-1[R(R_1fJ; - RA~) + tR..R++ - M+R __ 

- tW1R.K(aR/ae)] 

(15) 

(16) 

vanishes whenever R+R_ vanishes provided that the 
matching constraints hold. In terms of the coordinates 
T=cost and x=cose, Eq. (15) becomes 

aa/ax= (r - r)-lF 

which can be integrated to 

a(e,t)=a(O,t)- r dxF/(r-x2). 
cos8 

(17) 

To express F in terms of x and T, define the derivatives 
jx = aj/ax, iT = (1 - r)aj/aT, and the quantity 

Z =xW'; + x(l - r)(l-x2)W! - 2T(1 -x2)Wx WT • 

Fo r the Sl x S2 topology, 

(18) 

2J-1 
- '" [r (1 - COS 2k+1 e) + r (1 - COS2k+2 e)] Do 2k 2k+l , 

k= 

where 

(22) 

(23) 

J J 

+ ~ ~[Km"kZmTZnT - 2TDmnkZmTZn (24) 

pk-J-1 pJ 

K k=6 (k m. 1)7·" mn J - J - .J. 
(25) 

n(n + 1) 6 (Ph-1 - PJ+1)P~-j 
2n+l J (k-j)!j! ' 

(26) 

(27) 

VII. NONCONICALITY CONSTRAINTS 

The function a(O, t) in Eq, (21) is determined by re
quiring the spacetime metric to be nonconical at e=o. 
For the Sl x S2 topology, 

a(O, t) = -In sint. (28) 

For the S3 topology, 

(29) 

It is also necessary to require nonconicality at the 
F=Z -x+ (x2 - r)wx' 

For the S3 topology, 

(19) antipodal symmetry axis. This requirement takes the 
form 

F=Z - (3/4)x + x(1 - r)wx - TWT • (20) 

If only a finite set of the constants AJ and CJ that appear 
in Eqs. (8) and (9) for Ware nonzero, then W is a poly
nomial in x and so is F. Since F=O whenever R+R_ 
= t< r - x2) = 0, F must contain T2 - x2 as a factor. Thus, 
the integral in Eq. (17) can be evaluated by performing 
a polynomial long division of F by r - r and integrating 
the resulting polynomial in x. 

VI. EXPLICIT GENERAL SOLUTION 

In order to perform the integral in Eq. (17), let P., 
denote P.,(O) , the associated Legendre polynomial at 
zero and use the expansion 

Pl(x) =6 (l/n! ) Pix" , 
" 

where the conventions Pj = 0 for n > j, l/n! = 0 for n < 0, 
and O! = 1 are used. The result of substituting this ex
pansion into Eqs. (8), (9), (17), (19), and (20), carrying 
out the polynomial long division, and integrating when 
A J = Cj =0 for all j>J is 

aCe, t) = a(O, t) + (1 - a)[W(O, t) - wee, 0] 
(21) 
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a(7T, t) - a(O,t) = W(O,t) - (1- 2a)W(7T, f). (30) 

This condition is preserved in time when Einstein's 
equations are satisfied. 1.2 Thus, one can choose to im
pose it at t=7T/2 (T=O) where it takes the form 

f 1 dxx-l(W'; + (1 -r)W! + aW -1 + to'] =2aW(7T, 7T/2). 
-1 x 

In terms of the constants Aj and C
J

, the condition is 

46 6(VJSA2jC2s+1 - kjSA2s+1C2J) 
S j 

where 

and 

Robert H. Gowdy 

(31) 

(32) 

(33) 

(34) 

(35) 
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VIII. A LONG-WAVELENGTH EXAMPLE 

Because the general expressions for a(e, t) and for 
the constraints are lengthy, it is useful to display them 
for the case in which only the amplitudes Ao' AI> A 2 , 

Co, Cll and Cz are nonzero. This case can be thought 
of as a universe which is dominated by the longest wave
length gravitational waves that can break homogeneity. 
The gravitational wave modes displayed in this example 
are among the ones which compete most directly with 
the homogeneous modes of the mixmaster universe 
(Bianchi type IX) studied by Misner. 3 Thus, they may 
have a bearing on the evolution of chaotic universes 
toward homogeneity and isotropy. 

For this case, the matching constraints are just 

Cl=q+tO', (36) 

Co + C2 = p. (37) 

The functions r k which appear in the expression for a 
(Equation 21) are 

r O =2(Cl - to)(Co + C2h-l -2Al (CO + Cz) - 3(Cl -to)A2 

+ [3AlAz - 3CZ(Cl - to )]T + [3Al Cz + 3Ai (Cl - to )]T Z 

- 3AlA zT 3 + Qo{ - 2Cl (Co + Cz) - 3CZ(Cl - to) 

+ 3(Al Cz + AZCl)T + [3Cl Cz + 3CZ(Cl - to )]1'Z 

- 3 (Al C2 + A2CJT 3} + 3Cl C2Q~T(1 - T2), (38) 

r l = [(Co + C2)2 + (Cl -to)2 -1]7'-2 - (9/4)A~ + 6C2 (CO + Cz) 

+ C~ - A~ - [2Al Cl + 6A2 (CO + C2) + (27/2)A2C2]T 

+ (A~ + (27/2)A~ - (45/ 4)C~hZ + (45/2)A2C2T 3 

- (45/ 4)A~T4 + Qo {- (2Al Cl + (9/2)A2 C2) 

- [6C2(CO + C2) + 2C~ + (27/2)C~]7'+ (2AlCl + 27A2 C2)r 
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+ (45/ 2)C~T 3 - (45/ 4)AzCzh
4} + QH - C~ - (9/ 4)C~ 

+ (q + (27/2)C~hZ - (45/4)qT 4}, (39) 

r 2 = 2(Cl - to )(Co + czh-3 + 6Al C2 + 3AzCl 

+ 9(ClC2 -AIA2h - 9(A1C2 +A2Cl h z + 9AlA2T 3 

+ 9Qo[Cl C2 - (A lC2 + AZClh - 2Cl C2Tz 

+ (Al Cz + A2Clh 3]- 9Cl C2Q~T(1 - T Z), 

r 3 =[(Co + Cz)Z + (Cl - ta)Z -1JT-4 + (9/4)A~ 

- 9C~ + (63/2)AzCz + «81/2)C~ - (45/2)A~hz 

- (81/2)A2CzT3 + (81/ 4)A~T4 + Qo[ (9/2)AzCz 

+ (63/2)C~1' - 45AzCz T 2 - (81/2)C~T 3 

+ (81/2)A2CzT 4 J + 9qQ~(t - (5/2)r 

+ (9/4h 4
), 

r 4 = 2(Cl - io)(Co + C2 )1'-S
, 

rs=[(Co+C2)2+(Cl-iO')Z-ljT-6. 

(40) 

(41 ) 

(42) 

Notice that when the matching constraints are satisfied, 
all of the negative powers of T vanish and the series 
terminates. 

The nonconicality constraints may be found either 
from Eq, (32) or by using Eqs, (38)-(42) in Eq. (21) 
and substituting the result in Eq. (30). In either case, 
one obtains 

A 2(Cl - ta) + Al (Co + C2) -Al C2 =ia(Ao + A2). (43) 

*Research supported by NSF Grant No. GP-34022X. 
IR.H. Gowdy, Ann. Phys. (N.Y.) 83, 203 (1974). 
2R.H. Gowdy, Phys. Rev. Lett. 27, 826 (1971). 
'C. W. Misner, Phys.Rev. Lett. 22, 1071 (1969). 
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Clebsch-Gordan coefficients for crystal space groups* 
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A practical method for calculating Clebsch-Gordan coefficients for crystal space groups is presented. 
It is based on properties of the space group irreducible representations as induced from ray 
representations of subgroups. Using this method, we obtain all Clebsch-Gordan coefficients for a 
family of representations in a single calculation: For space groups, for a given triangle of stars • k , 
*k'. *k". where *k 0 *k' E *k", the coefficients for all allowable little group representations I, 
i'. /" are obtained. [n the following paper this is applied to rocksalt 0 l,-Fm3m and diamond 

07, -Fd3m space groups. 

I. INTRODUCTION 

In this article we shall report on our investigation of 
crystal Clebsch-Gordan coefficients. Our major objec
tive is to develop a useful and practical method by 
which Clebsch-Gordan coefficients can be calculated 
for crystal space groups; in a following paper we shall 
give the results of such calculations for some physical
ly important cases in rocksalt O~ and diamond Ok space 
groups which are typical symmorphic and nonsym
morphic space groups, respectively. In the course of 
developing a practical method of calculation we have had 
to reexamine the structure of the crystal Clebsch
Gordan coefficients with particular attention to the use 
of induced ray representation theory. 

The organization of this paper is as follows: in Sec. 2 
we give a brief precis of the definition and some prop
erties of the crystal space group Clebsch-Gordan co
efficients including especially the important matter of 
the transformation of the coefficients when each of the 
participating representations undergoes similarity 
transformation. The key equation is (2.18). In Sec. 3 
we discuss the structure of induced ray representa
tions: this is relevant since the irreducible representa
tions of space groups are induced from ray representa
tions of various underlying point groups. In the present 
context it should be recalled that the process of induc
tion produces block matrices. The problem of finding 
the Clebsch-Gordan coefficients then partitions into 
sub-problems each one of which relates to a partial 
Clebsch-Gordan matrix. From a canonical matrix 
block [called the (1, 1, 1) block 1 by appropriate trans
formations we can find the other matrices [(a, a', a") 
blocks 1 ultimately using equation (2. 18). In Sec. 4 we 
develop the theory in case all the induced representa
tions are irreducible. This applies, as is shown in Sec. 
5 to the conventional formulation of the space group 
problem, in which all irreducible representations of the 
space group G are written as D(*k)(l) and each is in
duced from a D(k){l) of G(k). In Sec. 6 we develop the 
theory in case the induced representations are reduci
ble. Evidently a reducible representation can be re
duced by Similarity transformation. Thus the relation
ship between the work of Secs. 4 and 6 is by means of a 
Similarity transformation and this again reminds us of 
Eq. (2. 18). In Sec. 7 we develop space group theory by 
inducing reducible representations. In the most extreme 
case, we induce from the tranSlation group T [equiva
lently from the trivial point group prE) = d. This pro
duces a "ray regular" representation which contains a 
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family of representations (e. g., all representations at 
one star). It is then shown that the calculation of all the 
Clebsch-Gordan coefficients for that family can be 
carried out efficiently in one single formulation. Thus 
we can find the (1,1,1) block of the Clebsch-Gordan co
efficients for D(H)(I)@D(U')(/')_ D(*kH)(I") for all 

(l, l', l") for a fixed triplet of stars (*k, *k', *k"). The 
ease of doing this calculation is illustrated in an accom
panying paper. A final Sec. 8 briefly compares our 
formulation with others recently given. 

2. GLEBSCH-GORDAN COEFFICIENTS 

In this section all representations and elements refer 
to a given finite group G. The definition of Clebsch
Gordan coefficients for the irreducible representations 
of a finite group G is well known. 1 Let the set of l func
tions {</J~I)}, J.l = 1. 0 'l span the irreducible linear vector 
space 2:(1) which is a basis for the irreducible represen
tation D(I) of G. Likewise for {</J~/:)} and {</J~~')}, 2: <1') and 
2: <1">, D <1') and DO"). 

If, in the reduction of the direct product 

D(I)@ D(/') =D o@I')=6 (ll' Il")D Off ) 

I" 

the integer reduction coefficient is 

(u'll");, 1 

then there exist linear combinations 

</J0;')y = 6 (l [' I'" y) </J(I)",(~') 
/L .. ,,' J.l J.l' J.l" "'I',, 

(2.1) 

(2.3) 

which are bases for D(/"). The coefficients (~~.I~:Y) are 
the Clebsch-Gordan coefficients or vector coupling 
coefficients. If (ll' Il") = 1 these coefficients are unique 
modulo a phase. In general if (ll' 1") > 1 there will be 
(ll' Il") distinct linear combinations of the binary prod
ucts (</J~I). </J~/:») for each row J.l" of DOU). To account for 
this multiplicity we introduce the index y and take 

y = 1, ... , (ll' Il"). (2.4) 

For (U' Il") > 1 the Clebsch-Gordan coefficients are not 
unique, but each set (fixed y) can be chosen to have cor
rect orthonormality properties (vide infra and Appendix 
A). 

Alternately, the Clebsch-Gordan coefficients are the 
elements of the U' dimensional unitary matrix that 
reduces the direct product D(I)@ DO'). If we write 

I@ I' = (l l' jl" y) 
Uj.Lj.L',Z It

'YfJ,"- f.l 11' Ill! (2.5) 
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then for an arbitrary symmetry element 1> in G 

D(l)(1»0 D(/')(1» ~ U ~(1))U-t, (2.6) 

where ~ is the fully reduced, or decomposed matrix 
having elements 

(2.7) 

Using Eq. (2.7) in (2.6) we have 

"" "" UI0/' ( I") () 101' 
U & LlV' z"ru"D ¢ jj;Uu"UiiiJI l"')Iu" l"jJ."y j.LU , t 

(2.8) 

Multiplying both sides of (2.8) by DU'')(1))j,,v''' sum
ming on 1> and using the orthogonality theorem for ir
reducible representations, we obtain 

" !:.:. L; D(l) (1) )vpD(l') (1) )v'ii,DO") (1) ):"V". 
f( q, 

(2.9) 

This equation has been used by Koster, Dimmock, 
Wheeler, and Statz, 2 to obtain Clebsch-Gordan coeffi
cients for the thirty two point groups and by Litvin and 
Zak3 and Itzkan4 for space groups. The usual procedure 
for calculating the Clebsch-Gordan coefficients from 
Eq. (2.9) is as follows. 

First consider the case (ll' Il ") ~ 1. Then 

UIR.I' U10/'* vV': 1"11" PI", 1''tJ'' 

l" "" (/) 0') (I") * ~ - t~ D (1))vvD (1))v'v,D (1)),,,",,. 
g <I> 

(2.10) 

If in Eq. (2.10) we set 1I~ v, V'~V/, V" = v", we can de
termine which coefficients are nonzero. Having found a 
nonzero coeffiCient, say for v~ vo, v' ~ vO, and v" ~ vo, 
we can choose its phase as real, fix v, v', and v" and 
then let v, v', and v" range over all allowable values. 
This procedure yields the entire Clebsch-Gordan 
matrix for (ll' Il ") ~ 1. 

For (ll' II") > 1 a systematic procedure to obtain all 
(ll' Il") sets of coefficients has also been given by 
Koster. 5 Notice that what appears on the right-hand side 
of (2. 10) is 1, UW',I",V"U;D'I",P which for fixed vii'V" is a 
linear combination of Clebsch-Gordan coefficients. But 
since any linear combination of coefficients is equally 
good, we can separately calculate [Uw " I"w", ... , 
Uw',I"'( I'II")V"] as long as we assure that the matrices 
obtaine~ for y and y' are orthogonal. Hence, we pro
ceed as in the case for (lZ' Il") ,,1 by finding a non- zero 
coefficient, fixing iJ~ vo, iJl = vo, iJ"" vo', and letting 
v, v f

, and v" range over all values. This yields the 
Clebsch- Gordan matrix for y = 1. Now select vo, vo, VOl 
which are different from the first set, yielding a differ
ent nonzero coefficient. Set v = vo' v' = v~., and v" = v'~ 
and let v, v', v" range over all allowed values, yielding 
a second set of coefficients, which are orthogonal to the 
first set, See Appendex A. We continue in this manner 
until all (lllll") sets of coefficients are obtained. 

A. Transformation of Clebsch-Gordan coefficients 

It will be of later interest to demonstrate how the 
matrix of Clebsch-Gordan coefficients transforms when 
the representations D(l), D W ), and DO") undergo simi-
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larity transformations. Let A, A', A" be unitary matri
ces of appropriate dimensions, and let 

jjO) ooAD(J)A-1. D(/') "A'D(I')A'-1. , , 

(2.11) 

when each D(I") in the fully reduced matrix ~ is sub-
j ected to transformation by the appropriate matrix A"; 

~- ~= O'~O'-l, 

where 

t;: - -- - (A"D{j")A,,-I) - "- "-l"yv", l"yv" - v''lI"UI''l''Vyr 

(2.12) 

(2.13) 

and 0' is the (ll' xll') block diagonal matrix whose blocks 
are the matrices A", each in its appropriate location; 
likewise 0'-1 is composed from blocks A,,-t. 

The transformed baSis functions corresponding to 
transformation by the A matrices are 

~p) "6 A-I ,I,m 
I' A AI' 'fA , 

-;I,a') - '}' A '-1 ,I,U') 
'+'Il' - Ly;! ~#tL '''fA' , 

~(J") _ 6 A 11-1 ,,,<1") 
/.1." - x" )."j.J.",+,,),H • (2.14) 

For simplicity we neglect multiplicity, and also write 
the Clebsch-Gordan matrix for the original baSis func-

. { } (101') hons IjJ and U , and for the transformed basiS func-
tions {~} as v(f01'). Then we have for the products be
longing to one resultant representation jjO"): 

(2. 15) 

But 

(2.16) 

(2.17) 

Evidently Eq. (2.17) applies to one of the particular 
.fj(j"). Expressing this as a matrix we have 

V= (A0A')Uu-1 

so that 

jj(j) ® jj(j') '" Vt;: V-l 

(2.18) 

(2.19) 

and (2.19) should be compared with (2.6), which reads 

(2.20) 

The relation (2. 18) between V and U matrices is quite 
important and we use it often. Note also when a particu
lar resultant block DO") (or jjO"») is kept fixed, then the 
relevant portion of the transformed V is given by Eq. 
(2.17), with elements of A"-1 appearing. 

B. Reducible representations and Clebsch-Gordan 
coefficients 

In our work on crystal space-group Clebsch-Gordan 
coefficients we will make use of reducible representa
tions. Thus we now consider the reduction of the direct 
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product of two reduc!:.ble representations D(a) and D(b). 

Assume the matrix Z brings their product to decom
posed form 

(2.21) 

where, as before, the elements of ~ are given in (2.7). 
We require the relationship between Z and the Clebsch
Gordan matrix U which reduces the product of irreduci
ble constituents. 

Let M(a) be the matrix which brings D(a) into fully 
reduced form 

(2.22) 

where 

~.!!!.L - DiJ ) 0- 0-
loqJ.,lap.- ~#J. II aa: (2.23) 

and similarly for M(b). Let Z be the matrix which re
duces the direct product of ~(a) and ~(b): 

(2.24) 

Now note: since ~ (a) and ~ (b) are already in fully re
duced form, they are block diagonal matrices, with 
irreducible blocks down the diagonal. Therefore the 
matrix on the left hand side of (2.24) is a direct sum of 
matrices, each one of which is a direct product of ir
reducible constituents like (2. 6) and each of these prod
ucts is reduced by its Clebsch-Gordan matrix as in 
(2.20). It then follows by inspection that modulo a 
phase, the elements of the matrix Z are identical to 
elements of U. Actually Z is a direct sum of Clebsch
Gordan matrices U, i. e., a sort of super-Clebsch
Gordan matrix. 

Furthermore by an argument entirely analogous to 
that which esta~ished (2. 9) we can find the relationship 
between Z and Z. Noting that the matrix ~ in both (2.21) 
and (2.24) is already in fully reduced form we have 

Z= (M(a)ca M(b))Z. (2.25) 

When comparing with (2. 18) note that Q is the identity 
matrix in this case. Finally note that the elements of 
Z are Clebsch-Gordan coefficients 

(2.26) 

where f3 is a multiplicity index for l" occurring in ~a 
ca .lb; and y is the usual multiplicity index for l" in 
D(l)ca DO'). 

3. INDUCED RAY REPRESENTATIONS 

In this section we recall some facts about induced ray 
representations and establish some results needed 
later. 

Consider a group G with a subgroup H such that 

G = ¢IH + .•. + ¢aH + .. , + ¢sH. (3. 1) 

Let Hm and gm be ray representations of Hand G with 
ray factors wH and wG

, respectively. Then 

(3.2) 

and 

(3.3) 
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The operators P'P , when applied to functions, multiply 
in the same mann~r as in equation (3.2) 

(3.4) 

Suppose the lm vectors {¢it, ... ,<piz } form a basis for 
Hm so that for all ¢ E H we have: m 

1m 

Pq,¢lv=:0 Hm(¢)/Lv¢I/L' 
/L·I 

(3.5) 

Let lm new vectors {¢;'I, ... ,¢;I } be defined for each 
coset representative in (3.1) where 

Pq,a ¢I:, = ¢;'v. 

If ¢g is any element in G we have 

Pq,g¢~ =Pq,gP'P T¢lv 

= Pq,qP'P ql P P ¢m 
w G -I 'Pg 'PT Iv' 

a, a 

If ¢o -l¢g¢T c. H, then 

P 1m 
P ,I,m _ ~ l' Hm(A,-IA, A,) ,I,m 

¢J a 'f''f'V - W
a
, a-1 ~1 '-Po 'Yg'PT j.l.v'f'1/..L 

(3.6) 

(3.7) 

1m 

= wI_I ~ Hm(¢~I¢g¢T)/LV¢;'/L' (3.8) 
a, a 

Hence the vectors {¢it ... ¢;'I) form a basis for a 
representation of G induced from Hm. 

The induced representation is usually written as 
(Hm t G) and has elements 

(Hm t G)(¢g)a/LTV 

= -w 1 I i;m(¢~I¢g¢T)/LV' (3.9) 
a, a .. 

where 

Hm(¢)/Lv=Hm(¢)/LV for ¢ E H 

= 0 otherwise. (3. 10) 

Note that for given ¢g, for each T there is only one 
value of (J such that ¢~I¢g¢TE H. Hence, the representa
tion matrices of (Hm t G) are subdivided into 52 blocks 
and in each row and column there is only one non
vanishing block. In general the induced representation 
is reducible. 

In the work which follows we shall treat all the rep
resentations as induced from one or another subgroup. 
The block structure of each of these representations 
should then be kept in mind. Particularly important will 
be the corresponding factorization of the Clebsch
Gordan matrix. 

4. IRREDUCIBLE INDUCED REPRESENTATIONS 

In this section we shall consider determination of 
Clebsch-Gordan coefficients for a group G when each of 
the "factors" D(m) and D(m') is irreducible and induced 
from subgroups H and H' of G, respectively. Also we 
take the product D(m") to be irreducible and induced 
from subgroup H". This applies for a space group G for 
induction from subgroups G(k) to G. We write: 

Dm =Hm t G; Dm' =H,m' t G; D mH =H"m" t G. (4.1) 

Consider the direct product Dm 
QS. Dm•• Since Dm and Dm' 
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are irreducible, the matrix U which reduces this direct 
product is the matrix of Clebsch-Gordan coefficients 
and can be found from the usual equation (2.9) which we 
now write out using double index notation to take account 
of the induced structure. 

(4.2) 

Il",,,1 is the dimension of D"''' and g is the order of G. y 

indicates the multiplicity of D m
" in the direct product; 

the L:r will be handled in the usual way. Dm
, Dm

', and 
Dm

" are all induced representations. Indices (au) refer 
to block matrices, Ilii to matrix elements, etc. Equa
tion (4.2) can be rewritten as 

(4.3) 

Hence we see that the Clebsch-Gordan matrix for the 
irreducible representations of G can be found from the 
irreducible representations of the subgroups H, H', and 
H". 

This calculation can be further simplified by using a 
method due to Itzkan. 4 First consider a=a'=a"=u=u' 
=u"=1. Then, for this (1,1,1) block 

where the sum is over all cP belonging to N, the inter
section of H, H', and H". We assume that we have 
solved Eq. (4.4) by the usual procedure to find the 
(1, 1, 1) block matrix. Next we need to determine the 
remaining blocks in the Clebsch-Gordan matrix. 

We first adopt a procedure by which we generate an
other block, to be denoted U(a, a', a"). Consider those 
elements which belong to N, the intersection of H, H', 
and H". G can be decomposed into cosets with respect 
to N such that 

G =N + ... + cpr:.N+· .. + CPNN. (4. 5) 

If I/!iv, I/!i:, and 1/!1': are bases for H"', H,m', and H"m' 
then 

and 

P~r;I/!1'v" = I/!::V. (4.6) 

In effect this equation (4. 6) defines cosets labelled by 
a, a', a" since the given element CPr; transforms the 1 
(identity) element of H into coset cpcJl, likewise 1 - cp".H', 
1 - CPa..H". Thus all members of the coset CPr;N take the 
(1,1,1) block into the (a, a', a") block. The equations for 
coefficients in the (a, a', a") block are 
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_ ~" "'() _ "") _ m"( ) * _ 
- LJ D cP al'a"D (cp "'I""'I'.D cP a"".""",,", g ~ 

(4.7) 

From equation (3.10) for induced representations we see 
that this sum is nonzero only if 

cp~lCPCPaE H; and cP'jCPcP".E H'; 

and 

(4.8) 

If cP is an element that belongs to N, we can write 

CPi}CPCPr; = CPm (4. 9) 

where CPn EN, or cP = CPr;CPncp;l. Then 

(4.10) 

But since cpr;l/!iv = I/!~v, CPr; must be in the ath coset of G 
with respect to H so that CPr; = CP(JCPh and 

Dm( cP )a"aii" = Dm( CPaCP hCPnCP"hlcp~l)a"ali 

= fim( cP hCPnCP"h1)" Ii 

= 2d i1"'(cph)I'~fi"'(CPnh>.fim(cphlhli' 
u 

For ray representations we have 

Hm(cp;l) = (Wh,h-1)-lH"'(CPht1 

and recalling CPh = cp~lcpr;, we can write 

(4.11) 

(4.12) 

D"'( cP )o"ali = (w". h-1r1[H"'( cp~l cpr;)H"'( CPn) Hm( cp~lcpr;)-llol'ali 

(4.13) 

which defines the barred (conjugated) matrix. Dm'(cp) and 
D",N(cp) can be rewritten similarly so that 

= l!.ncl _1 ___ 1 __ 1_ 
g W h, h-l W h', h,-l W h", h-1 

X 6 H"'(cp)"Iiii'm'(cp)",,,,,ii,,,,,N(cp)~"Ii'" 
~EN 

(4.14) 

Now compare Eqs. (4.4) and (4.14), with (2.9) and 
(2.19). The barred matrices ii are similarity trans
forms of the corresponding unbarred matrices, just 
as in equation (2.19) compared to (2.9). Therefore we 
can determine the Clebsch-Gordan matrix U(a, a', a") of 
Eq. (4.14) from the matrix U(1, 1, 1) by using the result 
(2, 18) which immediately yields 

with 

XH"'(cph)®H,m'(cph,)U(1, 1, 1)H"m
N
(cph")"1, 

(4.15) 

CPh = cp~lCPr;; CPh'= cp~1CPr;; and CPh"= CP~CPr;. (4.16) 

Hence the entire Clebsch-Gordan matrix for an irreduci
ble representation can be obtained from the representa
tionsH"', H,m', andH"",H of the subgroups H, H', and 
H". 

5. CLEBSCH-GORDAN COEFFICIENTS FOR A SPACE 
GROUP G FROM G(k) 

The results of Sec. 4 can now be immediately taken 
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over to determine Clebsch-Gordan coefficients for a 
space group G from representations of its subgroups 
G(k). First we recall some well known facts. 

A space group G consists of all symmetry operators 
{¢ I t} which leave a lattice invariant where 

r'={¢lt}r=¢r+t, (5.1) 

{¢a Ita}{¢altJ={¢a¢al ¢ata+ta}, (5.2) 

and t= RL + T. 

RL is a lattice vector and T is a fractional translation. 
The group T consisting of all operations {e I RL } is a sub
group of G, so we can write 

(5.3) 

Irreducible representations of G are written as 
n(*t)(I)({¢ I t}), and the representations of T have the 
form 

n(*t)(I)({e I RL }) = exp(ik· R L ). (5.4) 

In addition we can write 

G = G(k) + ... +{¢A I TJG(k) + ... +{¢s I TJG(k), (5.5) 

where G(k), the group of k consists of all those elements 
that leave wave vector k invariant modulo a reciprocal 
lattice vector. 

The irreducible representations n(t)O) of G(k), are 
ray representations. This can be seen as follows: If we 
decompose G(k) with respect to T then 

(5.6) 

Consider the product of 2 coset representatives in Eq. 
(5.6). 

{¢al Ta}{¢a ITJ={¢a¢a/ ¢aTa+ Ta} 

={¢a¢a/ ¢aTa+ Ta- Taa+ TaJ 

={e / RLa){¢aa / TaJ, (5.7) 

where 

(5.8) 

Since the representations of G(k) must multiply in the 
same way as the elements of G(k) we have 

n(t)(I)({¢a/ Ta})n(t)(I)({¢a/ TJ) 

= exp(- ik· RLaa)n(t)(I)({¢aa/ TaJ). (5.9) 

Now consider the point group P(k) which is isomorphic 
to G(k)/T and which has elements {e, ¢1> ... , ¢k} where 

¢a¢a=¢aa 

and for the representations of P(k) 

n(j)(¢a)n(j)(¢B) =n(j)(¢aa). 

(5.10) 

(5.11) 

If we define a ray representation r(j) of P(k) with factor 
set w~. a, then r (j) will multiply as 

r(j)(¢a)r(j)(¢a) = w~. ar(j)(¢ aa), (5.12) 

where I w!.a I = 1 and 

(5. 13) 

Comparing Eqs. (5.9), (5.11), and (5.12) we see that 
the irreducible representations n(t)(1) of G(k) are ray 
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representations of P(k) with factor set 

w~. a = exp(- ik· RLaa) 

and in particular 

(5.14) 

w~.a-t=1. (5.15) 

All the irreducible representations n(*t)(I) of a space 
group G can be induced from the irreducible representa
tions n<t)! /) of G(k). In this case the induced representa-
tions are irreducible and 

n(*k)(I) ({ ¢ .. I t .. })o". ~v = .v<t)( Il( {¢o / To}_l{ cp .. / t .. }{ CP./ T. })"v' 

(5.16) 

The Clebsch-Gordan coefficients for the reduction of 
the direct product of 2 space group representations, 
n<*t)(!) SI n<*t'xl') into a direct sum of representations 
n<*kM)(l") is given by 

<*k")(I")({ / J)* xn ¢x t a .. " ..... a"jj; .. , (5.17) 

where 11" I is the dimension of n<*t")(I") and gt is the 
order of the space group. The sum is on all elements in 
G. Any element {¢a I ta} can be written as a product of a 
coset representative {¢al Ta} and a pure translation 
{e I R L } and then 

n<*t) (I) ({ ¢x / tx})al'ijjj; 

=6n<*t)(I)({cP / T.}) n<*t)(l){e/R})--ab x x a"ab L abal' , 

=exp(-ik(j' RL)n<*tH/)({¢x/ Tx})al'ijjj;' (5.18) 

Equation (5. 17) can, therefore, be rewritten as 

(5.19) 

The sum on x is now only over coset representatives. 

But L:RL exp(- ik .RL) = 0 if k* 21TBH where BH is a 
reciprocal lattice vector and L:RL exp(- ik· R L) =gt/g if 
k=21TBH, whereg is the order of G/T. Therefore, the 
Clebsch- Gordan coefficients are zero unless kij + k~, 
- k.y.= 21TBH. For these nonzero coefficients 

= li.J. 6n<*t)O)({A-. / T.}) __ n<*t'HI')({A-. / T.}) _ 
g x '+'x x auau '+'x x a'lL'8"U' 

(5.20) 

However, the irreducible representations n<*t)O), 
n<*t ) <1') and n(*k") <1") are induced from n<t)(1) D<t') 0') 
and n<do"). Therefore we may immediately taie over' 
the discussion in Sec. 4. The (1,1,1) block of coeffi
cients is given by solution of the equation 
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" I ~ I ~D(k)(/)({1;x ITJ),.i'D(t )O')({1;x Tx}),.,;, 

XD(t") 0") ({1;x ITJ)~";;,,. (5.21) 

Assuming we have solved (5.21) for the (1,1,1) block, 
we immediately obtain the (a,a',a") block as 

where 

{1;k Itk}"{1;o I To}-l{1;e I Te}, 

{1;k,1 tk,} "{1;o' I 70'}-1{1;e I 7e}, 

{1;kHI tkH}" {1;o',1 70',}-1{1;e I 7e}, (5.23) 

and 1;ek" ko; 1;ek'" k~,; 1;ek"" k;,. Hence the Clebsch
Gordan matrix for space group G can be found from the 
representations for the subgroups G(k), G(k'), and G(k"). 

We can obtain some useful simplifications by explicit
ly using the ray representation nature of irreducible 
representations. We recall that the representations of 
G(k), G(k'), and G(k") are ray representations of P(k), 
P(k'), and P(k"), respectively. In particular, it is con
venient to use the factor system used by Kovalevl' so 
that we write 

D(t)(I)({1;xIT,}),.i''' exp(- ik· 7x)r(t)(/)(1;x),.i" (5.24) 

where 

(5.25) 

and 

w~,y"exp[-ik' (1;x-E)7J (5.26) 

Hence, if we use equation (5.24) in (5.21) we can write 
the (1, 1, 1) block of coefficients in terms of ray rep
resentations. Then we have 

"li.J. :0 exp(- 27TiB . T )r(k)<O(A.. ) _r(t')(I')(A.. ) g x 1 X "f'XJJ.J.L 'VXj.L~' 

(5.27) 

where 27TBl "k + k' - k". If we have a symmorphic group, 
or if Bl ,,0, then 

(5.28) 

In this case, for particular k, k', and k", if two space 
groups have the same point groups P(k), P(k'), and 
P(k") and consequently the same r(t), r(t'), and r(t">, 
their Clebsch-Gordan coefficients for the (1,1,1) block 
are identical. For example, this block of coefficients 
for D(H.)O)0 D(*t.l<I') "D(*t.)O") in diamond (OZ-a non-
symmorphic group) are the same as those for rocksalt 
(O~-a symmorphic group) when k+ k' - k"" O. We must 
consider the phase factor exp(- i27TBl . Tx) in Eq. (5.27) 
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explicitly only for Umklapp processes in nonsymmorphic 
crystals. 

If we now express the (a, a', a") block using the ray 
representations r, we have 

U(a,a',a") 

"exp[ - i(k. tk + k' . tk, - k" • tk,,) ]r(k)o) (1;k) 

o r(t')(I') (1;k')U(1 , 1, 1)r(t")(l")(1;k"t1. 

Since 

then 

t." 1;~1(7e - 70 ) 

and similarly 

t.,,, 1;~1(Te - 70'); t.c"" 1;;1(7e - 70")' 

(5.29) 

(5.30) 

(5.31) 

(5.32) 

It is convenient, therefore, when calculating Clebsch
Gordan coefficients to choose 1;0' 1;0" 1;0'" and 1;r:, 
which have zero fractionals whenever possible. 

6. REDUCIBLE INDUCED REPRESENTATIONS 

Now we consider the situation in whichH(m) t G, and 
H,m't G are both reducible. The analysis parallels that 
given in Eqs. (2.20)- (2.25). Assume a unitary matrix 
lW" exists which reduces Hm t G 

(6. 1) 

where 

(6.2) 

and D(I) is irreducible in G; 0'",,1, ... , (<lmll) is the mul
tiplicity of D' in <lm. Similarly we define <lm'. 

From (6.1) we have 

(H tG)(1;)aaaa" 6_ Mt",.,aaD(/)(1;),.i'M'"i',aa. (6.3) 
10ljJ.jJ. 

If we multiply both sides of (6.3) by Dk(1;)* sum on 1; 
and use the orthogonality theorem, then 

>; * M - - J..U. '" (H t )() (1)( )*-LJ MI ",. oa ,,," mr- L.J G 1; aaaaD 1; ,.,.' " • ~. g q, 
(6.4) 

Hence, t.ne elements of M can be found in the same way 
as one finds the elements of Clebsch-Gordan matrices; 
that is, setting /l "ii, and aa" ail, we find a nonzero ele
ment, set its phase as real, fix /l, a, a and let ji, cr, a 
vary. In this manner we obtain M for a" 1. If D' occurs 
more than once in <l, we repeat this procedure for a 
different initial nonzero element to obtain another 1'v[ 
matrix orthogonal to the first. 

Consider the direct product of 2 induced representa
~ons, [Hm t G0 H,m' t G]. There exists a unitary matrix 
Z which reduces this direct product into a direct sum of 
irreducible representations DZ". 

Z-l[Hmt G0H,m't G]Z" 6EBD<lji) • (6.5) 
IH 8 

There is also a matrix Z which reduces the direct prod
uct of reduced representations <lm0 <lm' 

Z-1[<lm0 <lm'1Z" 6 EB D(I'/i> (6.6) 
1"8 

or 
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11" I '" (Il() (")() C/")()*""" " = -- w D ¢ ~~D ¢ IJ.''ii,D ¢ jJ.,,~uva(ivJTua'Ci,vl'i', g 4> 

(6.7) 

Hence the elements of the matrix U which reduces DI 
o D" can be read off from the elements of Z. But Am 
and Am' are related to Hm t G and H,m' t G by unitary 
transformations by Wand W', respectively. Hence.es 
in Sec. 2, the matrix Z is a transform of the matrix Z 
and 

U- Z = (W0W')Z. (6.8) 

Now consider Z in more detail. Z brings the direct 
product (Hm t G) 0 (H,m't G) into a fully reduced matrix. 
Let the first 1m" rows and columns of this fully reduced 
matrix contain those irreducible representations which 
occur in the reduction of some induced representation 
H"m" t G. Then this induced representation has a re
duced form Am" given by 

and 

Hence for those rows and columns Z must satisfy 

6 ZjJ '''Bkzh '''aT; a • , 

=6 M'['.:a"k aMf.'~-Ja''i l£1 6 (Hm .. G)(cf>}a ail •• g 4> 

(6.9) 

(6. 10) 

(6.11) 

Or, rewriting the induced representations in block form 

'" - -* 
!....J Z aao'b, 1"13<1"cZ m'b, '-Ba"e a 

- 6 71 Atn" i1A1l1.."-1 
- AdM 1V1l"a"ac,M.LI'.LM,l"a"aC 

x 1£:1 0 ilm(¢;l¢¢a)o!iI'm' (¢;:¢¢~')~bil"m"(¢;,l¢¢r.):a. 
g q, 

(6. 12) 

Thus Z is calculated from the matrix W" and the irre
ducible representations for the subgroups H, H', and 
H". The sum on {3 is handled in the usual way. For any 
(3, if we define 

= I~' I ~ Ifm(¢;1¢¢a)olIiI'm'(¢;:¢¢a')bbfrm"(¢;1¢¢r.):il, 

(6.13) 
then 

Z = WW"·1 (6. 14) 

and 

The elements of Ware most easily calculated in 
blocks as in (Sec. 4) so that 
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and 

0H,m'(¢h,)W(1, 1, 1)H"m"(¢h',,-1, 

where ¢h, ¢h" and ¢h" are given in Eq. (4. 16). 

(6. 16) 

(6.17) 

7. INDUCING FROM A GENERAL STAR TO A SPECIAL 
STAR 

In this section we develop the theory by demonstrating 
how to obtain the Clebsch-Gordan coefficients by in
dUCing from the subgroup of lowest symmetry T, or 
what is equivalent, by working with induced ray repre
sentations of the trivial point group peE) = E, consisting 
of the identity. At first sight this may appear excessive
ly cumbersome. However the advantages of this proce
dure are that the induced representations are ray 
"regular" representations and contain only a single non
zero element in each row and column and also that we 
can obtain in one calculational step an entire set of 
Clebsch-Gordan coefficients. In case of space groups 
this means that for a given triangle of stars *k, *k/, 
and *k", we obtain the coefficients for all allowable ir
reducible representations at each of those stars. 

The irreducible representations DCk)O) of G(k) are ir
reducible ray representations of the point group P(k) 
which is isomorphic to G(k)/T, and so the representa
tions satisfy, 

DCk)(I)({¢a I Ta})D Ck )Cl)({¢aI TJ) 

= w~.aDCk)(l)({¢aB I TaB})' 

where 

W~,B= exp[- ik· (¢aTB+ Ta - TaB)] 

and 

W~, ,,-1 = 1. 

(7.1) 

(7.2) 

If k is a wave vector of a special star then P(k) has a 
subgroup peE), the point group of a general wave vector 
k,. peE) contains only one element, the identity, and 
.G(k,) has only one representation, DC,) ({E lo}) = 1. Since 
peE) is a subgroup of P(k) 

P(k) = peE) + •.. + ¢aP(E) + ••• + ¢IP(e) (7.3) 

and the induced ray representation DC,) t G(k) has ele
ments given by 

[D CE ) t G(k»)({ ¢p I Tp}]aT 

= (w~. a_1r 1DC
e) ({¢a I Ta}-l{¢p I T.}{¢T ITT}) 

={W~-l'PTW~T for ¢a-1¢p¢T=e (7.4) 
o otherwise. 

Equation (7.4) defines a "ray-regular" representation 
of G(k). (This differs from the usual definition of a 
regular representation by the factor w. ) This represen
tation contains all the irreducible representations of 
G(k) and each representation DCt)(1) occurs III times. 
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There exists a unitary matrix M" which brings the in
duced representation [D(') t G(k)J into a fully reduced 
form 6/ so that 

(7.5) 

and 

(7.6) 

Now consider the Clebsch-Gordan matrix for D(t)(1) 
® D(k') 0') _ D(t-)(I"). D(t) 0>, D(t')(Z'), and D(t")O") can all 

be induced from D(E). We have seen in the previous sec
tion that this Clebsch-Gordan matrix can be found from 
the representation D(e) and the matrices Mk, Mk', and 
Mk" which reduce (DE t G(k», (D't G(k'», and (DE t G(klf», 
respectively. Specifically, from Eq. (6.15) we see that 
we need to calculate 

where 

and 

= I ~ I !? D(E)(¢)aiID(e)(CP)b'biJ(E)(¢):ti 

Il" I 
= -- °aiJobiiodd g 

W(a, a', u") = D(E)({ ¢k I tk}) ® D(E)({¢k'! t k ,}) W(1, 1, 1) 

XD(e) ({ CPk,,1 tk,,})-I. 

(7.7) 

(7.8) 

(7.9) 

Since G(k), G(k'), and G(k") are all induced from prE), 
the (u, u', a If) block is nonzero only for u = u' = u" and 
then {cpRI tk}= {CPk,1 tk,} = {¢k,,\tk"} = {E I O}, and 

W(u,u"a")=C~;1 y!2 for a=a'=a" 

= 0 otherwise. (7.10) 

Then 

_ >: '\i.TR k' W(' If) k"* 
- t...J l1Z a jJ. alv1z'a'I-L' a' U,O,O JlvfZ"a"J1." 0" 
~~ ,. . 

(7.11) 

where we recall from Eq. (6.4) that the matrix M is 
most easily obtained from 

);11k* uk _ 
'-' ~ lcxIJ.,o' lcq.l.,a 

'" 
= I: I ~ D(t)(Il({cPp 1 Tp}):dD(E) t G(k)J({¢p 1 Tp})aa 

IllL (k)(I)({ 1 })* k k 
= g p' D CPP Tp "iLWa-1,p1tWp,1i for CPa-1iO = E. 

For a = at choose u =0' = 1, Il = iI = III so that 

1 ",-1;"11'1,11 2 
= (lzl/g)D(k)(Z)({E 1 0})71 

= ILlig 
and 
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(7.12) 

(7. 13) 

(7.14) 

For 0' = 0'2 we choose u = 0'= 1, Il = iI = 112 and repeat the 
above procedure to obtain M"':"2'" a' etc. 

Once the matrix Z is known we have the Clebsch
Gordan matrices u~~i, Z"y,," for all (l, l', llf) associated 
with (*k, *k', *klf). In particular choosing 0' = 0'0, 0" = 0'0, 
and O'if = 0'0' so that Z is nonzero we have 

But 

. .,," 
ivr'UCXo/..LH,a ::'.:. 

Therefore, 

(7.15) 

g 
(7.16) 

= (~)1!2 Jl..J. >: D(t){O(",) D(k')(/')(",) 
g2 g '; '+'a ""0 '+'a "'''0 

XD(t")(z")(", )* 
\fIa IL"tJ.O 

(7.17) 

In this fashion all coefficients have been obtained for 
the space groups we studied. Some details of the cal
culation and results will be given in the following 
paper. 

8. CONCLUSION 

In the preceding sections we have demonstrated a 
method for obtaining Clebsch-Gordan coefficients for a 
group G by inducing from subgroup representations and 
we have shown how this method can be used to obtain 
space group Clebsch-Gordan coefficients. In particular, 
since the full space group G is induced from the ray 
representations for the point groups of k, the Clebsch
Gordan coefficients for G can be calculated from the 
representations of these smaller groups. Since the in
duced representations have a block form the Clebsch
Gordan matrix can also be calculated in blocks. 

This block form has already been used by Litvin and 
Zak.3 The procedure given by Litvin and Zak, however, 
requires a separate calculation for each of the 
(1,1,1),··· (u,a',l)··· blocks followed by an ap
propriate transformation to obtain the remaining nonzero 
blocks. In the method presented here, only the (1,1,1) 
block need be calculated explicitly and the remaining co
efficients may all be obtained by a transformation. 

In a recent paper Sakata7 has also presented a method 
for calculating space group coefficients. His procedure, 
however, requires first the calculation of the (1, 1, 1) 
block of coefficients and then the construction of the 
correct linear combination of product functions before 
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transforming to obtain the remaining blocks. 

Neither Litvin and Zak3 nor Sakata 7 make explicit use 
of ray representations. 

In addition we have shown that the method of induced 
representations can be used to obtain the Clebsch
Gordan coefficients for the (1,1,1) block by inducing 
from the group of a general wave vector. This has the 
advantage of producing in one formulation the (1,1,1) 
block of coefficients for all representations associated 
with a fixed triplet of stars (*k, *k', *k"). 

APPENDIX: THE UNITARITY OF THE ClEBSCH
GORDAN MATRIX 

In Sec. 2 we have indicated a systematic procedure 
for obtaining the Clebsch-Gordan matrix in the case of 
multiplicity, i. e., (ll' Il") > 1. We will now demonstrate 
that this procedure produces a unitary matrix. Specifi
cally we will show that 

" -* L..1, U /J.IJ.', '''Y1IJ.''UIJ.IJ.',iNY2''',.,. 
(A1) 

where u""'"Hy1 ,.H and U,.,..,'Hy~,.N are speCified as follows: 

From Eq. (2. 9) we have 

= l.C...!. 6n<l)(1))''iino·)(1>)'''ii.nW)(1>)~Nii''. 
g q, 

(A2) 

Using the procedure following Eq. (2.9) we set I' = 1'1 and 
choose iI = ilo, ;I' = ilo, ;I" = ilo· 

Then 

and 

IUo1

2
=u . '" "U* • '" " "0"0' Yl"o "0"0' Yl"O 

= l.C...!.6 n(I)(",) n O ·)(",) •• n O")(",)*" H 

g q, 'f' "0"0 'f' "0"0 'f' "0"0 

= li.:..!. 6 n(l)(1»,.,. n(l')(1»,..", .D(IH)(1»~""". 
g q, 0 0 0 

(A3) 

(A4) 

Similarly for I' = 1'2 we choose ;I = 110, ii' = vij, and ;I" = 110' 
so that 

= li.:..!. 6 n(I)(",,) n O')(",,) n O")(",,)* (A5) g q,' 'f' VVo 'f' ~'V6 'f' ~"vQ. 

From (A4) and (A5) we have 

6 UJ1,IJ.I"l#.y1f.lHUj.J.*jJ.lt '-"2"'" 
__ 1_ Il"lll"l 6 6 [n O )(",) n(I)(",,)* 
- UtUo g2 q,q,' ,.,.' 'f' ""'0 'f' ,.~o 

x n (") (1)),.',,, lP (/') (1)') }~6nO") (1) )t"",!f<i") (1) ')~o]. 

But 
(A6) 

6 n(I)(1»"'''on(I)(1>')~~o ,. 
=6 n(I)(",) n(I)(",,-l) 

/.L 'f' IJ./.Lo 'f' 1I0~O 
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(A7) 

and similarly 

(A8) 

Hence 

xnO")( 1> ):""'..])<i")( 1>')~N~N]. 
o 0 

(A9) 

Let 1>" = 1>'-11> so that 

6 n(I)(1>,-I",) nO')(1),-I,,,). n(/N)(1»*" ..])W)(1)') , .. 
q,q,' 'f' ~o,.o 'f' ~o"o " "0 ~'Vo 

= 6 n(I)(",,,) n O')(",,,) •• n W )(",,)* n(/")(",,,)* 
q,'~" 'f' ~o,.o 'f' ~o,.o 'f' ,,"). 'f' A"O 

x n (j") (1) ')~""N. (A10) 
o 

(All) 

Therefore 

6 u" .. , I"" IJ."U'~'" i"", ,," IJ.IJ.' ... , 1 ... ,.. , '2 

x 6,....,,,(j'''i''. (A12) 

Hence for Eq. (A1) to hold, for given P.o, P.o, ilo', we must 
choose 110, vij, and 110' so that 

6n<l>(1))~ "on(/')(1»~.,..nO")(1»:"",,=O for 1'2*1'1. (A13) 
~ 0 00 00 

This procedure will then produce a unitary Clebsch
Gordan matrix. 

Note added in proof; It has recently come to our atten
tion that a different method for calculating Clebsch
Gordan coeffiCients, also utilizing ray representations, 
has recently been given by Patricia Gard, in J 0 Phys. 
A 6, 1837 (1973)0 
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Clebsch-Gordan coefficients for *X ® *X in diamond 01-Fd3m 
and rocksalt 0 ~ -Fm3m* 
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, Irving ItzkanbT, and Joseph l. Birmanas 

a Physics Department, New York University, New York, New York 10003 

b Avco Everett Research Laboratory, Inc., Evere:t, M '"0. 11lis~tts 02149 
(Received 5 August 1974) 
By using the method described in the previous paper, based on properties of space group irreducible 
representations as induced from ray representations of subgroups, Clebsch-Gordan coefficients are 
calculated for * X 181 * X in diamond 0 h,Fd3m and rocksalt 0 h,Fm3m structures. Tables of coefficients 
for these stars are presented. An example of explicit calculation of the coefficients is given for these 
symmorphic and nonsymmorphic groups with multiplicity included in the former. 

1. INTRODUCTION 

In a previous paper1 we have given a method for 
calculating crystal space group Clebsch-Gordan coeffi
cients based on the theory of induced ray representa
tions. In particular we have shown how the coefficients 
for the full space group G can be induced from repre
sentations of G(k) which in turn can be induced from a 
group of lower symmetry such as the translation group 
T. 

In this paper we will give the results of calculations 
of Clebsch-Gordan coefficients for products *XQ9 *X 
in rocksalt O~ and diamond Ok. The calculation is in
tended to illustrate the practicality and ease of calcula
tion of the method given. These cases typify the com
plexities encountered in calculating these coefficients 
for symmorphic and nonsymmorphic groups, 
respectively. 

2. STRUCTURE OF INDUCED REPRESENTATIONS 
AND fl\iOUCE[) CLEBSCH-GORDAN MATRICES 

We will now briefly recapitulate those results of the 
previous paper1 which will be used in the calculations 
that follow. 

Consider a group G with subgroup H where we can 
write 

(2.1) 

If Hm is an irreducible representation of H, then the 
induced ray representationHmt G has elements given by 

IHmtG](¢,,)alL,Tv= (wa,a_1)"1 ilm(¢~l¢g¢T)lLv' (2.2) 

where 

f{m(¢)ILV =Hm(¢)ILV' for ¢ E H 

= 0 otherwise. (2.3) 
(Hm t G) is in general a reducible ray representation of 
G and w is the ray factor associated with this repre
sentation. In Eq. (2.2) for a given ¢,,' for each T there 
is only one value of a such that ¢~l¢g¢T E H. Hence, the 
induced representations are subdivided into S2 blocks 
and in each row and column there is only one nonvanish
ing block. 

A space group G has a subgroup G(k) consisting of all 
those elements that leave k invariant modulo a recip
rocal lattice vector so that we can write 
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When inducing from G(k) to G, the induced representa
tion D(*t)(/) ;:D(t)(/) t G is irreducible and 

D(u)( I) ({¢g I tg})aILTv 

=D(t)(/)({¢al Ta}-l{¢gl tg}{¢TI TT})ILV' (2.5) 

D(*k)(I) therefore has a block structure and the 
Clebsch-Gordan matrix U which reduces the products 
D(*k)(I) 181 D(*t')(I') - D(*t")(/") also has a block structure 
and is found from 

'" U'Q9I ' U'Q9 1'* 
L.J aGa'a' ,1""aHa" craG'a', l"ruHa" 

r J gl" I 6 D(*t) (/) ({¢ I t})aaiiilD(*t' )(1') ({¢ I t})a'a';;'ii' 
{q, It} 

X D(*..-)(/") ({¢ I t}):"a Hu"il ", (2.6) 

where Il" I is the dimension of D(*t")(/"), g is the order 
of the space group G, and Y indicates the multipliCity of 
D(*t")( I") in this product matrix. 

The calculation of this Clebsch-Gordan matrix can be 
simplified by first finding the (1, 1, 1) block of coeffi
cients defined by 

'" ,181/ ,181/,* 
L.J U1a1a , lUrla.Ulalii-- l"r1a" r' , 

= Il:1 ~D(t)(I)({¢xlTx}a;;D(t')(I')({¢xl'Tx})a'a' 
X D(t"l(IH) ({¢xI 'TX}):"iiH, (2.7) 

for k+ It' -k" = 21TBH • x is summed over all members of 
N, the intersection group of G(k), G(k'), and G(k"). 
Then the (a, a: a") block, U:~!~.,'HyaHb" is obtained from 

where 

and 

{¢h I t,.} ={¢a I 'Ta}-l{¢!: lTd, 
{¢h.1 th·}={¢a·1 'Ta.}{¢!: I 'Td, 

{¢h" I t,."}={¢a H I 'TaHH¢!: lTd, 

¢!:k=k a; ¢!:k/=k~,; ¢!:k" =k'~". 

(2.8) 

The (1, 1, 1) block of coefficients is readily calculated 
by inducing from the trivial point group P(f.) = f. having 
irreducible representation D(·). This method has the 
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TABLE I. Ray representations for D(t.)(X(I» in 01. 
XCI) X(2) X(3) X(4) 

Type {rpJ o} 

hj ~E 1 0 1 0 1 0 1 0 
0 1 0 1 0 1 0 1 

1hz ~ 62% 0 1 0 1 -1 0 1 0 
1 0 1 0 0 1 0 1 

h3~~y 0 1 0 1 1 0 -1 0 
1 0 1 0 0 1 0 1 

h4 = 62z 1 0 1 0 -1 0 -1 0 
0 1 0 1 0-1 0-1 

h3B ~ (J4.< 0 1 0-1 O-i O-i 
1 0 1 0 -i 0 -i 0 

~9 ~(T4""i 0 1 0-1 0 i 0 
1 0 1 0 i 0 0 

h40 ~ Pxy 1 0 -1 0 O-i 0 
0 1 0-1 0 -i 0 

~7 ~ P';; 1 0 -1 0 0 i O-i 
0 1 0 1 0 i 0 

Type {rp J:d 

:v <!.t.t.)a 
ht4 ~o4z - i 0 -i 0 -1 0 -1 0 

0 0 i 0 1 0 1 

ht5 ~ o4! -i 0 -i 0 1 0 1 0 
0 i 0 i 0-1 0-1 

hts ~ 02xy O-i O-i 1 0 -1 0 
i 0 i 0 0 1 0-1 

ht3 = ~x;; O-i O-i -1 0 1 0 
i 0 0 0-1 0 1 

1hz5 ~ i 0- i 0 i O-i O-i 
0 -i 0 i 0 i 0 

1hzs ~ Px -i 0 i 0 O-i 0 i 
0 O-i -i 0 i 0 

~7~ Py -i 0 i 0 0 O-i 
0 i O-i 0 -i 0 

1hzB ~ Pz O-i 0 i 0 0 
i 0 -i 0 -i 0 -i 0 

advantage of obtaining in one calculational step, an 
entire set of coefficients for all representations asso
ciated with a given triplet of stars (*k, *k', *k"). The 
Clebsch-Gordan matrix U:~~'.l"rl"" is then propor
tional to a II super Clebsch- Gordan matrixll 

(2.10) 

where the unitary matrices M, Mk
', and M" reduce 

D(e) t G(k), D(e) t G(k'), and D(e) t G(kll) into direct sums 
of irreducible representations D(tH/)~ a indicates the 
multipliticity of D(t)(/) in D<e) t G<t) and similarly for 
a' and a II. M~ is then most easily calculated from 

~MIa".a~a"O.l= I~I D<t)(I)({1>alT'a}):"o. (2.11 

As demonstrated in the previous paper, the Clebsch
Gordan U~~,I:I"'Y"" is then related to the matrix Z by 

(lll/z'l )l/ZUI®I' Ul®l'* 
\~ v.u.',J""'OU N LLQuO',I""olJ.ou 

(2.12) 

In the case of multiplicity when D(n")(I") appears say 
twice in D(*t> (l) ® D(U' )(1') there is another choice of 
aD' a~, a~ corresponding to a different choice of lJ.olJ.~ 

and IJ.~ producing a second Clebsch-Gordan matrix 
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which is orthogonal to the first. This will be demon
strated explicitly in Sec. 4 in a calculation for rocksalt, 
O~. 

3. *X ® *X IN DIAMOND, O~ 

The diamond structure is a face-centered cubic lat
tice2 having a nonsymmorphic space group O~. The 
point X is on the zone boundary in the (100) direction. 
The three arms of *X are kx = (27T/a)(100), ky= (27T/a) 
x (010), k.= (27T/a)(001). The point r is at the zone 
center and kr = (000). 

Table I lists the elements of G(k.)/T along with their 
representations. These representations are of the form 
D(t.)(l) ({ 1> IT}) = exp(- t"k.· T)i<l) (¢) where i(l) is a 
representation tabulated by Kovalev. 3 Representations 
X(Z) in Herring's notation2 correspond to those of 
Kovalev if X(1)=f(3), X(2)=i(4), X(3)=T(2), and 
X(4)= f(l). 

Since X is at the zone boundary of a nonsymmorphic 
group the D(t)(l) are ray representations with a non
trivial factor system. 

The diamond space group G can be decomposed into 
cosets with respect to G (X) as 

G={¢ll T1}G(X) + {¢21 T2}G(X) + {¢31 T 3}G(X), (3.1) 

where 

{¢1IT1}={€10}, 

{¢21 T2}= {B 3m 10}, 

{¢31 T 3}= {B;!y. I O}. (3.2) 

Equation (3.1) holds for G(X) with X=kx ' or ky, or k •• 

The selection rules for products at X have been given 
by Birman. 4 In particular, the wave vector selection 
rule at X is 

*X® *X=2*X+ 3r. (3.3) 

When calculating the Clebsch-Gordan matrix for 
*X® *X= *X we see that ka' k'a" and k;;' belong to the 
same star but the only nonzero coefficients are those for 
which ka' k'.,..., and k~ .. are different arms of the star. 
On the other hand, for *X® *X= r the only zero con
tributions will be for ka=k~,. The general procedure 
for calculating the Clebsch-Gordan matrix is as fol
lows: First calculate those coefficients for the principle 
(1, 1, 1) block. These can be obtained by inducing from a 
general k vector to G(X). Once the coefficients for this 
block are known the remaining nonzero blocks can be 
found by inducing to the full space group. 

A. The Clebsch-Gordan matrix for * X ® * X-+-* X 

For D(t,.) (I) ® D(ty)(i') - D(t.) (I.) the Clebsch-Gordan 
coefficients can be obtained by inducing from D(e), the 
representation for a general k vector. The induced co
efficients are then given by 

(3.4) 

where Mkx is the matrix that reduces D(e) t G<kx) so that 

Berenson, Itzkan, and Birman 237 



                                                                                                                                    

Mk,,[DIE) t G~)]MkX-I 

D(k,o)lxO» 

Dlk,o)lxI2» 

D(kx) (XI3» 

D lkx)lx(4) 

= Dlt,.llxII» 

D(tx ) 1,,(2)) 

Dlk,o)(,,13» 

Dltx) 1,,(4» 

Similarly Mky and Mil/l reduce DCEI t G(ky) and DIE) t G(k/l)' 

Note that in Eq. (3.4) the sum on a is over all elements 
belonging to N the intersection group of G~)/T, 
G(ky)/T, and G(k/l)/T. Since all DIX)(/) are two dimen
sional, each appears two times in the induced regular 
representation. In what follows we take k=kx' ky, or 
kll' Then 

M1 = (lil) 1/2 Dlt)(/) l{n. I 'T })* 
a1J.LeO' g '\ ~a a t£l 

and (3.5) 

The intersection group, N, for G(k,,)/T, G(ky)/T, and 
G(k/l)/T can be written as 

(3.6) 

where 

(3.7) 

Then we can write 

Mk - fJ!:l)1/2 Dlt)(/)({n. I })* f -1 2 3 4 (3.8) 1"'1"'''- \g 'f'" T" "u or a- , , , 

and 

M''''I'''u= (1!ly/2 DIJ[) (I) ({¢iil Tii}):u <7= 5,6,7,8 

= (I! Ir /2 
Dltl (I) ({i I 'T}):ADlt) II) ({¢" I 'TXu (3.9) 

=6Dlt)(l)({il'Tl )* Mk • 
A r "A I "'IA,a 

M 1"'2" ,,, can be written similarly. Hence we can write 

Z'O!/.Ll'a,'IJ.:lnaHjJ." 

Z' I;rD(tx)(/)({'1 l)* == Icxp,1,oCX'J.L',I"Cl.HjJ."+llill1l6 \1 Tr 

where 

o D(tyl(/') ({i \ 'T})*]..,,,, , ilil'Z, "'ill' ""ll' ,I" ",nil" 

X Dltzl (II ({i I 'T})rn ,,'" 

The M matrices for a=1,2,3,4 are given below. 
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(3.10) 

(3.11) 

1 0 0 1 0 1 
0 0 1 1 0 1 0 1 
1 1 0 0 1 0 1 0 
0 0 1 1 0 1 0 1 

rsM'( = 1 -1 -1 1 rs Mky = 1 1 ~1 -1 
et:l/-L,a 

0 0 
I allJ. ,a 

0 0 0 0 0 0 
1 -1 1 -1 1 -1 -1 1 
0 0 0 0 0 0 0 0 

1 0 0 1 0 0 1 
0 1 1 1 1 0 0 
1 0 0 1 0 0 1 1 
0 1 1 0 1 1 0 0 

rs Mkz = 1 -1 -1 1 rs M111.2" ,a = 0 0 0 0 1 CXIlJ.l' 0' 

0 0 0 0 1 -1 1 -1 
1 1 -1 -1 0 0 0 
0 0 0 0 -1 -1 1 

0 1 0 1 0 1 1 0 
1 0 1 0 1 0 0 1 
0 1 0 1 0 1 1 0 
1 0 1 0 1 0 0 1 

rs MIll!.: = 0 0 0 0 f8 MIIfx2" ,a 0 0 0 0 2jJ.,O' 

1 -1 -1 1 1 1 -1 -1 
0 0 0 0 0 0 0 0 
1 1 -1 -1 1 -1 -1 1 

(3.12) 

For example consider D(t,,) (Xl) 0 D(tyl (X2) - D(tll )(X2'. 

From Eqs. (3.10), (3.11), and (3.12) we fix 1 = 1, l' = 2, 
1" = 2 so that 

Z' -.1-
XI"'I"XZ"'I'" ,X2"'I"" - 64 ~ ~ (3.13) 

where we have written Z' as a 4 x 2 matrix having 
elements 

r 11~ , " 121 122 
(3.14) [f..Lf..L,f..L] 211 212 

221 222 
Then 

64Z Xl'" 1"X2"'1"',X 2"I"" 

~ ~ leoi II °1 l '1 ~) (~ -i) 0 1 (0 i~ = i 1 o 0 1 -i 0 i 1 • 
1 0 1 i 

(3.15) 
Normalizing we find 

(3.16 ) 

The Clebsch-Gordan coefficients for the principle 
(1,1,1) block for all X(l)0 X(l')=X(l") for canonical 
wave vectors k=k", It' =ky, k" =k/l are given in Table 
II. All entries are written as a 4 x 2 matrix with 
(f..Lf..L' ,f..L") give as in Eq. (3.14). 

The other (a, a' • a") blocks are found from U«(J, (J' ,a") 

Berenson, Itzkan, and Birman 238 



                                                                                                                                    

TABLE II. Principle block of coefficients for *X® *X- *X 
in Ob. 

X(I) X(2) X(3) X(4) 

X(l)® XU) 

X(!)® X(2) 

X(l)l8> X(3) 

X(1)® X(4) 

X(2)® X(3) 

X(2)®X(4) 

X(3)® X(3) b (I ~ ~) 
x-x 
o 0 

X(3)®X(4) 

X(4)® X(4) b (~ _ iO\ ~ ~ iO) (~ ~) 
11)b 11

C 
?OC 

o 0/ 0 0 - x 0 

a=1/v's bd/2 c=l/.f2 
X(2)® X(2) =X(l)® X(l) 

TABLE III. Calculating the (a, a' ,air) block for *X® *X= *X in 
01. 

a a' a" {CPcITJ {CPk I tJ {cp.,.. It",} {cp,...ltk,,} 

111 {E I O} {E I O} {E I O} {E I O} 
222 {o:iill" I O} {E I O} {E I O} {E I O} 
333 {03XYZ I O} {E I O} {E I O} {E I O} 
2 3 1 {Pxii I O} {PyZ I O} }Pxz I O} {pxii I O} 
3 1 2 {Pxi I O} {Pyi I o} {Psil O} }Pxii I O} 
123 {pyiIO} {Pyi I O} {Psi I o} {pxii I O} 

D(k,,)(I)({PYi I o}) D(ky) (j')({P ... I o}) D(k.){/)({P~IO}) 

l=X(l) 1 0 1 0 1 0 
0 L 0 I 0 1 

1 = X(2) -] 0 -1 0 -] 0 
0-1 0-1 0-1 

1=X(3) 0 i 0 i 0 i 
-i 0 -i 0 -i 0 

1=X(4) O-i O-i O-i 
i 0 i 0 i 0 
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= D(t,,)(I) ({ ct>k It
k
})® D(~) (I') ({ ct>,.. It,.. })U(l, 1,1) 

X D(t .. ) (I") ({ ct>t'" I t k" })"\ (3. 17) 

where from Eq. (2.9) we obtain the elements {ct>k I tk}, 
{ct>,.. It,..}, {ct>k"ltt'"}, and ct>I:k,,~kcr; 

ct>I:ky~kcr'; ct>I:k .. ~kcr-. 

Table ill lists all the necessary information for calcu
lating the nonzero «11 (11, (1") blocks. As the table indi
cates, the (1,1,1), (2,2,2), and (3,3,3) blocks have 
identical coefficients as do the (1,2,3), (2,3,1), and 
(3, 1,2) blocks where 

U(l,2,3, ) 

= [D(t,.) (I) ({Pye I O})® D(ty)(/') ({p,,;; I O})]U(l, 1,1) 

X D(t .. )(1")({p~ I O}P. (3.18) 

The coefficients for the (1,2,3) block are given in Table 
IV. 

TABLE IV. (1, 2, 3) Block of coefficients for *XI8i*X= *X in 

°h· 
X(I) X(2) X(3) X(4) 

X(I)® X(I) a 

X(I)®X(2) a 

X(1)®X(3) a 

U
· iJ [~iJ x I x-I 
i 1 a i-I 

i -1 i 

X(l)® X(4) a [!.=-il] r-! -il] 
1 1 alI 
i-i -i i 

X(2)® X(3) a [~~ ~:] a r~ ~ ~J b 

X-l lx-x 
[O-iJ ~ i OJ lOb 0 1 

o i - i 0 
1 0 0 1 

[ ~ -u [ ~ -~J ~ i OJ [0 iJ -x X x-x 0 1 1 0 
X(2)® X(4) alI all b _ i 0 b 0 i 

i i i-i 0-1 -1 0 

X(3)®X(3) b [~_iOJ b ~ ~_xO [~~ [~~J 1 1 -1-1 cOO cOO 
o 0 0 0 O-i -i 0 

X,,)®X~) b D iu b [Li~ c [l-U c ~1 1J 
X(4)®X(4) b [LlJ b r-r'=-in 

c [r~l c [~ ~J 
o 0 L 0 J i o)J 0 i 

a = I/v's b=I/2 c=I/J2 
X(2)® X(2) =X(l)® XCI) 

Berenson, Itzkan, and Birman 239 



                                                                                                                                    

TABLE V. Principle block of coefficients for *X0 *X~ r in Ok. 
r l+ r l - r2+ p! r 12+ 

X(I)0X(I) -m am {f u 
-[Dam [~-~J X(I)0 X(2) a 0 0 

1-1 

X(I)0 X(3) 

X(I)0X(4) 

-[!Hn {l :J X(3)0X(3) 

1-1 

X(3)0X(4) arna m {=!] 
a~I/16 b=l/12 

U(X(2)0 X(2) ~ r (j» ~ U(X(l)Q:;i X(I) ~ r (j» 
U(X(2)0 X(3) ~ r{j'» ~ U(X(1)0 X(3) ~ r(j'» 
U(X(2)0 X(4) ~ r{j'» ~ U(X(1)0 X(4) ~ r(j'» 
U(X(4)Q:;i X(4) ~ r{j)) ~ U(X(3) 0 X(3) = r(j» 

r 12-

-D~n 
aU 0 

{11J 

~:-~ a 
-1 1 

o 0 

B. The Clebsch-Gordan coefficients for * X ® * X -+ r 
The coefficients for D(*X)(1)0 D(*X)(I') =0 D(r)(I") can 

be obtained in a similar manner. In this case we choose 
k=k., It' =k., k" = 0 so that the (1,1,1) block is non
zero. 

Table V lists the coefficients for the principle (1,1,1) 
block and Table VI lists the information necessary to 
obtain the remaining nonzero blocks. The Clebsch
Gordan coefficients for *X0 *X in O~ have already been 
obtained by Saulevich, Sviridov, and Smirnov. 5 Our 
results disagree with theirs in many cases, and although 
we have not located the source of disagreement, we 
believe our coefficients are correcto 

4. *X® *X IN ROCKSALT O~ 

The rocksalt structure is also a face centered cubic 
lattice having symmorphic space group O~o The point X 
and the wave vector rules are the same as in diamond o 
The irreducible representations at X are the ten rep
resentations of point group D4h • These representations 
are found in Table VII. The selection rules for these 
representations have been given by Chen, Berenson, 
and Birmano 6 

Using the methods of the previous sections the non
zero blocks of coefficients for *X0 *X - * X were calcu
lated and are given in Table vrn. 

We will work out a calculation for the (1,1,1) block 
for D(*tx)(X5) 0 D(*ty )(X5) - D(*t.) (Xs) 0 This case is in-
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r 15+ rt 5- p!5+ r 25-

,0 ° J ,0 O1J o 1 o 0 
0-1 o 0 
o 0 0-1 

[' OOJ [" 0 '1 
b 

o 0 1 
bOO OJ o 0-1 000 

000 o 0-1 

i 1 -i-l -i 1 i-I r' c i 1 ~J [i1 
c i 1 U Ei1 c -i 1 1J 

~ i I 
c -i 1 ~J i-I -i 1 -i-l i 1 

ti 

1 OJ ["] [i I 

U 
[i 1 OJ c -~-1 0 i 1 0 i-I - i 1 0 

- z-1 0 c -i-l 0 C i-I C . 1 0 

i-I 0 - i 1 0 -i-l ;-1 0 

' [' 
0 

'] [" OOJ 0 1 bOO 1 
·0 0 1 0 0-1 
0 0 o fJ 0 0 

,~ O1J {! 
0 

n o 0 0 
o O. 0 
0-1 0 

c~l/18 

teresting since it includes multiplicity 0 As in the calcu
lation for diamond we can write the intersection group 
N as 

N = S(k) + {i IO}S(k), 

where 

(4 0 2) 

TABLE VI. Calculating the (cr, er', er") block for *X0 *x~r in 

01· 
a a' u" {CPr; I tJ {CPk I tk} {CPk·1t",} {CPk H Itk·} 

1 1 1 {, I O} {, I O} {F I o} {e I o} 
221 {o3~yz I O} {e I O} {f I O} {oaLz I O} 
331 {~xyz I O} {t I O} {e I O} {03". I O} 

{03ryz I o} {oa~yz I o} 
rut) 
r<2±) 1 1 
r(12±) (~2 EO) (~ :'1 r U5±) 

~ov (010 
1 [; 0 001 
01 0 1 0 

r<2~") 

CO:) ~O 1 OJ " 00 o 0 1 
,0 1 0 100 

E = eZ• i / 3 
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TABLE VII. Representations for D<t:)(XU)) in O~. and Ml is then given as in (3.8) and (3.9) with T= O. 

X' X2' X 3' xl X' For alt~~~resentations n(t) (I) ({i I O}) = : 1 so that from 
1 5 Eq. (3.10) Z= 2Z' for (l,l' ,l") containing an even 

E 1 1 1 (~ ~} number of odd representations and Z = 0 otherwise. 

04z -1 -1 1 (~-~) Writing those portions of M" that correspond specifi-

L~ ~) 
cally to X5 we have 

0-1 1 -1 -1 1 4z 

02. 1 1 t1 0) {8J\1f..x =[~ -1 -1 1J. 1 1 0-1 X5~1~.a 
0 o 0 ' 

02" 1 1 -1 -1 (~- ~) 
=[~ (-~ ~) 

.f8~Y -1 1 -1} 
~y 1 1 -1 -1 

SClCl",.a 
0 0 o ' 

~"y 1 -1 1 -1 (~ ~) {8Afx~"'I',a = [~ 1 -1 -~l 0 0 o ' 
( 0-1) ~"ii 1 -1 1 -1 -1 0 = [~ -~l rs.M~l5"21' ,a 0 0 

±1 ±1 :1 ±1 \~~n 1 -1 

~1 ~1 ±1 ( on) {8~ls"'2I',a = [~ 0 0 ~l (T46 ±1 
::1;1 0 

-1 -1 
(T-I ±1 ~1 ~1 ±1 ( 0 ± 1) 

4. ~ 1 0 
{8M~{S"'2I" a = [~ 0 o 0] 

P. ±1 :1 ±1 ±1 r~~~) -1 1 -1 ' 

(± 1 0) 
(4.3) 

P" ±1 ±1 ~1 ~1 
0~1 

Py ±1 :1 ~1 ~1 r~ ±~) Hence ~ 

~] ~~±~) 
1 0 

(4.4) P:ry ±1 ~1 ±1 ~1 Z ,.=-
XS"'lI'Xs"'ll' ,Xs"ll' 8 ~ 

±1 ~1 ±1 ~1 ~ on~ P,.; ~1 0 
and 

TABLE VIII. Clebsch-Gordan coefficients for *X0 *X- *X in rocksalt, O~. 

X(1)®X(I) 
X(1)0X(2) 
X(2)®X(2) 
X(3)®X(3) 
X(3)®X(4) 
X(4)®X(4) 
X(I)® X(3) 
X(I)®X(4) 
X(2)® X(3) 
X(2)®X(4) 
X(1)®X(5) 

X(2)®X(5) 

X(3)®X(5) 

X(4)®X(5) 

xh) X(2.) X(3) 

(111) (123) (111) (123) (111) (123) 

a 
a 
a 

a 
-a 

a 

a = 1/v'2 

a 
a 
a 

a 
a 

-a 
a 
a 
a 

a 
-a 

a 

L~J 
[ ~J 
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(111) 

a 
a 
a 

UJ 
[~J 

X(4) 

(123) 

-a 
a 

-a 

[~J 
[-~] 

(111) 

[01] 
[01] 
[01] 
[01] 

[~ ~J 
[~ ;] 

X(5) 

(123) 

[-1 
[ 1 
[ 1 

[-1 

0] 
0] 
0] 
0] 

[~ ~J 
~~ ~J 
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Normalizing we find 

and 

6. USE OF TABLES 

~J 
~ ~l 

(4.5) 

(4.6) 

(4.7) 

We will now demonstrate how the tables of Clebsch
Gordan coefficients can be used to obtain the correct 
linear combinations of product functions. That is, if the 
1 functions {1/J:J- are bases for D(I) and the l' functions 
{1/J~} are bases for D(") then the l" functions 1/J~:i given 
by 

(5.1) 

are bases for D(/") which occurs y times in the reduc
tion of the product D(/) ® D(/'). In particular, for space 
group representations (5.1) can be rewritten using 
block notation as follows: 

1/J~}~IH)r 

- 6 U(t)(I) ® (t' )(I') ,I,(t) (/),I,(t' )(1') 
- gJ'", a"o' ,,'. (k") (IN Ira" ,," 'l'a.. '1'0' u' , (5.2) 

where ,I,Ck") (1") is a basis functions for D(*k") (''') which 
'l'a" .. " 

appears ytimes in the reductions of the product D(*t)(I) 

® D(*t') (l'). As particular examples we will consider the 
correct linear combinations which arise in X(3)® X(4) 
-X(1) and X(3)® X(4) - r(12 +) in diamond. 

For X(3)®X(4)-X(1) we see from Tables II and IV 
that 

~kxl(X )® (ty) (X >-.!. [~~~ f 1 2 3 (5.3) 
a .. a .... ~t~)(Xl)a .. a - 2 ~?' or (J= , , 

- t t 

and 

u(tX)(X3 )® (ty)(X4) =.!. [. ~ ~J 
a .... ,,'. (tz) (X 1)a" ,," 2 

00' 
1 1 

for (aa'a") = (1 2 3), (231), (312), (5.4) 

where the elements (1111',11") are given as in Eq. (3.14). 
All other coefficients are zero. 

We can use the coefficients in (5.3) and (5.4) to find 
the correct linear combinations of products {1/J;~)(Xl) 
x ,r,(ty) (X4)l that transform as a basis for D(*t.)(X l ) say 

'1'0',,' r , 

1/Ja.){Xl). Then 
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- i1/J~~X){X3)1/J~~)(X4) + 1/J~~)(X3)1/J~IY)(X4)]. (5.5) 

Similarly for X(3)® X(4) - r(12 + ) we have from Table 
V. 

u!k.) (X3) ® (t.)(X4) - _1_ [~ - ~l (5.6) 
lJ,<lJ,<' • re12+) 1,," -..f6 1 -1 

o 0 

and using Table VI 

U,",""c",.,,""~}. ~ =iJ (5.7) 

and 

U,",""",,,,,"" ~ ;. [i -il 
where £ = exp(27Ti!3). Therefore 

,1,1'02+) __ 1_ [,I,(k.){X3),I,(t,)(X4) + ,I,(k.)(X3),I,(k.) (X4) 
'1'1 -..f6 'I'll '1'12 '1'12 'I'll 

+ £2 (1/J~~.)(X 3) 1/J~~'){X~) + 1/J~~.)(X 3)1/J~~.)(X4» 

+ d1/J~~') (X3) w~~,)(X4) + 1/J~~') (X3) 1./J~~.) (X 4»1. (5.8) 

X(3)® X(4) - r(12 + ) is a particular example of re
sults which differ from those of Saulevich, Sviridovand 
Smirnov. 5 Our coefficients have been checked by ap
plying projection operators to the wave function in (5.8) 
and for a similar wave function <p~(12+) and we thereby 
demonstrated that we do indeed have the correct linear 
combinations. 
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A new spinning axis representation is introduced. It allows us to calculate the evolution operator of a 
system with slowly varying time-dependent Hamiltonian with the desired degree of approximation in 
the parameter used for describing its dynamical evolution. The procedure is compared with a 
previously existing one and applied to a simple example. 

1. INTRODUCTION 

The application of perturbative methods to systems 
described by slowly varying time-dependent Hamilton
ians allows one to obtain asymptotic rather than con
vergent expansions for the solution of the Schrodinger 
equation. This is usually done making use of the "spin
ning axis representation" (SAR) which is defined by the 
fact that, in it, the Hamiltonian eigenvectors are inde
pendent of time. The application of the SAR to the 
Schrooinger equation satisfied by the evolution operator 
leads to an equation which makes easy the use of time
dependent perturbation theory. In this way the ordinary 
adiabatic theorem is obtained, which can be established 
in the following form: "If the state of a system is repre
sented at t = to by the ket I Ej(tO) which is a solution of 
the eigenvalue equation H(t) I Ej(t) = E/t) I Ej(t) for t = to, 

at t = t1 the state of the system is represented by the 
ket I E/t1) which is solution of the same equation for 
t = t1• " This result is more accurate the stronger is the 
inequality 

Imax(aMmin(w)12«1, (1.1) 

where max(a) is the maximum value of the "angular 
velocitY" of the eigenaxes of the Hamiltonian, and 
min(w) is the minimum value of the Bohr frequency for 
transitions between eigenstates. 1 

In the usual treatment of the adiabatic theorem it is 
supposed that the eigenvalues of the Hamiltonian re
main separated during the transition period T = t1 - to. 

However, the adiabatic theorem remains valid if this 
assumption is violated2; in the same way, the hypothesis 
of discrete spectrum is not necessary. 3 These restric
tions are introduced for the sake of simplicity, and we 
shall maintain them here. 

The ordinary adiabatic theorem, valid in the first ap
proximation of order liT, may be generalized to any 
order without requiring special properties for the 
Hamiltonian. To this aim, instead of applying perturba
tion theory to the Schrodinger equation in the SAR as is 
done in the usual adiabatic theorem, a new change of 
representation is made4 which fixes the eigenstates of 
the operator which plays the role of the Hamiltonian in 
the SAR of the Schrodinger equation. This transforma
tion defines a new SAR, and the procedure can be re
peated to get the desired order of approximation. In 
this way, to obtain the evolution operator U of a system 
up to terms of order (liT)", n succesive transforma
tions (n SAR) are required. This makes the method 

rather cumbersome in practice, since to obtain the form 
of the nth transformation it is necessary to know the ex
plicit form of the previous (n - 1) SAR. 

In this paper we propose a method which allows one to 
obtain the evolution operator U to the desired degree of 
approximation by means of only one change of represen
tation which defines a generalized SAR (GSAR). The 
action of the operator defining the GSAR is obviously 
equivalent to the combined action of the n operators RI 

defining the succesive SAR of Ref. 4. 

In order to show this, we describe briefly in Sec. 2 
the ordinary SAR and introduce in Sec. 3 the GSAR. 
Finally, in Sec. 4 we consider a simple example which 
illustrates the method. 

2. THE ORDINARY SPINNING AXIS 
REPRESENTATION 

Let us consider a quantum system whose dynamical 
evolution is determined by its Hamiltonian H(t). We 
shall assume a good behavior for it and its derivatives 
in the interval to "" t "" t1 in which we consider the varia
tion of H(t). We shall measure the time by means of the 
variable r=t- tolT, where T=t1 - to. We shall suppose 
T large (adiabatic evolution) in the sense that the 
inequality (1. 1) holds. 

Let U( r) be the evolution operator of the system de
scribed by H(r). U(r) is then the solution of 

in ddr U( r) = TH( r)U( r) (2.1) 

with the initial condition 

U(O) =1. (2.2) 

After applying the unitary transformation A (r), (2. 1) 
takes the form 

in~ U<A>( r) = T[H(A)( r) - (l/T)K(A)( r) ]U(A)( r) (2.3) 
dr 

where U(A)(r)=At(r)U(r) is the new evolution operator, 
H(A)( r) =At (r)H( r)A( r) is the transformed Hamiltonian, 
and K(A)(r)=At(r)K(r)A(r), with K(r) being the genera
tor of the transformation A( r), i. e., the solution of the 
differential equation 

iff ddr A(r) =K(r)A(r) (2.4) 

subjected to the initial condition K(O) = O. Note that in 
(2.3) the operator which plays the role of the Hamilton-
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ian of the new representation differs from the trans
formed Hamiltonian in the small term - (l/T)K(A) ( ,). 

It is clear that the equation satisfied by the evolution 
operator is easily integrated if the projectors of the 
eigenvectors of the Hamiltonian do not depend on time. 
Thus, to calculate U in the adiabatic approximation, A 
(SAR) is defined in such a way that A I EJ(O» = I EJ( ,», 
j = 1,2,"', and then the transformed Hamiltonian 
H(A) = L:J EJ(,) I EJ(O»(EJ(O) I is treated by perturbation the
ory. The procedure can be improved by finding a new 
SAR for the operator [H(A)(,) - (l/T)K(A)(,)] of (2.3). 
In this way one is naturally led to the method of Ref. 4 
in which, to get an approximation of nth order, n suc
cesive SAR are needed. Instead of doing this, however, 
we look in the next section for a unique transformation 
which will allow us to calculate U with the same degree 
of approximation. 

3. THE NEW TRANSFORMATION 

Let us write (2.3) in the form 

in dd, U(S)(,) = TSt( ,)(H(,) - ~K( ,») S( ,)U(S)(,) 

'" TSt (,)H' ( ,)S( ,)U( S)(,) 

= TH'(S)(,)U(S)(,). (3.1) 

If it were possible to find a transformation S such that 
H'(S)(,) [not H(S)(,)] had time-independent eigenvectors, 
i. e., such that 

where 

H' (,) IEJ(,» =EJ(,) leJ(,», 

(3.1) could be exactly solved giving for U, 

U(,) = S(,) '0 exp[ - iTcpJ( ,)/n] I eJ(O»(EJ(O) I 
J 

with 

cP J(') = 10 T E J(' ') d, I. 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

It is obvious that S, which defines the GSAR, cannot be 
found exactly: A simple inspection of (3.1)- (3.3) shows 
that, to find S(,), one needs to solve the eigenvalue 
problem for H' (,) and that, with this aim, it is neces
sary to know the generator K of the transformation S 
which enters in the definition of H'(,). We show next, 
however, that it is possible to determine S (and thus U) 
with the desired degree of approximation taking into ac
count that T is large in the already specified sense. 

A. First approximation 

Let IE?)(,», S(1)(,), K(1)(,), and E~1)(,) be the re
sults of this approximation (the order corresponds to 
that in which the practical calculation is to be made). 
Since 

H' (,) =H(,) - (l/T)K(,) (3.6) 

in the first approximation, we find that I E}1> (,» are de
fined through 

H(,) I E~1l( ,» =E~1>(,) IE}1>( ,», j = 1,2, ... , (3.7) 

and 
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(3.8) 

S(1)(,) clearly corresponds to the transformation A(,) 
mentioned in Sec. 2 and to R(ll(,) of Ref. 4. The gen
erator K(1)(,) can also be calculated, and is given by 

(3.9) 

The choice in (3.9) implies that the arbitrariness of the 
phase of IE}1l(,» has been eliminated in such a way that 

(E}1l(,)I(:, IE?)(,») =0. (3. 10) 

Finally, 

cp}1l(,) = 10 T d,' E}il(,/), (3.11) 

where e?)(,) is the perturbation value for eJ('), which, 
since 

(E}1l(,) I (l/T)K(1l(,) I e}1)( ,» = 0 (3.12) 

is precisely the eigenvalue of H(,) [(3.7)]. 

In this approximation, the evolution operator is 

U(il(,) = S(1)(,)6 exp[- iT cp}1l(,)/n] le}1l(o»(e}1l(o) I 
J (3.13) 

and, as one would expect, coincides with the result 
which is obtained in the ordinary adiabatic theorem, 1 

which corresponds to an approximation of order l/T. 

B. Second approximation 

We proceed now to calculate le}2)(,», S(2)(,), K(2)(,), 
and e}2)(,). Straightforward application of ordinary 
perturbation theory to (3.6) gives 

I 
(2)( » _I (1)()) '" (elo(,) 1- (l/T)K(o(,) lej1>(,» 

ej , - eJ ' +L.J (1)() (1)() 
i~J eJ ,-el ' 

x I e! 1> ( ,» , 
which, with (3.9), is 

le?)(,» = le~1>(,» - (i/T) 6 cli(') lel1l (,», 
J UJ 

where 

c!}>(,) = aW( ,)/wW( ,), 

(1)() ep)(,)-eJi)(,) 
wlJ ' If 

In this order, S(2)(,) is given by 

S(2)t(,) I e}2)(,» = le}2)(O» 

and K(2)(,) is 

K(2)(,) = my (dd1' I e?)( ,») (e}2)(,) I 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

'''K(1)(,) +!!. 6 6 {(~c(1>(,)\ le(1)(1'))(e(1l(1') I 
T J I~J d1' IJ ') I J 

- cW*(1')Cd, I e}i)(1'»)(el1l(,) I 

+ cli)( ')(dd, I e!1l( 1'») (e}i) (1') I} 

"'K(1l(1')+!!.~6 F U )(,). TT I~J IJ 
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Putting in (3.6) (1/T)K(2) instead of (l/T)K and applying 
perturbation theory, one finds that to order 1/ T2 the 
contributions to Ej2)(r) will come from the diagonal and 
nondiagonal terms of K(O( r) and from the diagonal ele
ments of Fir(r). Of all these, only the nondiagonal ele
ments of K ) contribute, giving the final result 

(2)( ) _ (1)() .!£" 1 QiJ(r) 12 (3.19) EJ r-Ej r+rrl)t,...J () 
1" .#J WJj r 

The expression for the evolution operator in this ap
proximation is thus 

U(2)(r) =S(2)(r) 

x 6 exp [- iT r T (EjD( r') + .!!... ~ I aiJ(r') 1
2
)dr'] 

j Jo T2 '~J wji 

x IE?)(O»(Ej2)(O) I, (3020) 

where everything has been previously calculatedo 

C. nth approximation 

For nth order, 1 Ejn» is obtained from I Ejn-D) by 
taking (1/ T)K(n-D (r) as the perturbation and calculating 
to order l/Tn. Sen) is then determined by the relation 

sen) I Ejn) (0» = IEjn)(r» (3.21) 

and K(n)(r) given by 

K(n)( r) = iii L) (dd
r 

I fjn)( r») (fj")( r) I 0 

This allows one to calculate Ejn) through the perturbing 
term - (l/T)K(n)( r), and finally one would obtain 

U(n)( r) = s(n)(r) 6 exp[- iT r \(n)(r') dr'] 
J J o J 

X IEj")(O»(Ejn)(O) I, (3.22) 

which is the explicit expression for the evolution opera
tor to order (l/T)"o 

4. AN EXAMPLE 

As an application of the described method we cal
culate now, in second order, the evolution operator of a 
system conSisting of an atom in a magnetic field whose 
direction is reversed adiabatically. t 

The Hamiltonian is given by 

'" (212 0 1- 2P ) 
u b" b ' 

(4.4) 

and the C1 are the Pauli matrices. 

The starting point of our procedure is the eigenvalue 
problem for H( r) given by (4.3). The two solutions, 
labelled ±, are 

(4.5) 

I (1)(»_ 1 (l+U z )_ 1 (1-2P +b) 
f+ r - h(l+uz ) ux+iu~ - V2b(1-2p+b) 2,'2 

(4.6a) 

I (1) ) _ 1 (- U x + iU~) _ 1 ( - 212 ) 
E_ (r)-h(l+u z ) l+u z -v'2b(I-2p+b) 1-2p+b' 

(4.6b) 

NOW, S(D(r) is determined by (3.8), which in this case 
is 

and gives 

<1) 1 
S (r) = r.v'3;C::;b7.(I;"'_=;;=2p=+=b"') 

( 
3 + b - 2p 

X (l/v'2)(3-b+2p) 
- (1/12)(3 - b + 2p)\ 

3 +b- 2p J' 

(4.7) 

(4.8) 
The evolution operator is now determined by (3.13), a 
result which corresponds to the ordinary adiabatic the
orem, valid in order liT. 

To obtain U in second order, we need an> and wW. 
From (3.16), (4.5), and (4.6) we get 

Q!:)=_2v'2[(d/:zr)p]=_a~~), a!!)=Q~:)=O, (4.9) 

(4.10) 

from which 

C(1)- -4v'2[(d/dr)p] =C_<1+)",C. 
+- - b3AIi (4.11) 

With (4.11), Eq. (3.15) gives 

(4.1) jE!2)( r» = V2b(1 ~ 2p + b) (~~ ::(;/~)~1(i~~~2~~) 
where the magnetic field H is always parallel to the z 
axis and changes adiabatically from H 0 to - H 0 according 
to the law 

H(t) =Ho(2r-l), (4.2) 

r being t - tol T, T large. 

Let us suppose that the system is initially in a state 
2p with Jz=~' There are two eigenvectors of H(t) cor
responding to this value that will be linear combinations 
of the eigenstates (I L", Sz» I O,~) and 11, -~) of H(O). 

Taking the corresponding H(O) eigenvalue as the zero of 
energy, we get, in this basis, 

H( r) = iAli2{[ - 1 - 2p( r) ] + b(CTU)}, 

where 
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(4.3) 

'" (at (r») (4. 12a) 
a2( r) , 

I E(2)( » _ 1 (- 212 - (iIT)(1 - 2p + b)C) 
- r - v'2b(1 _ 2p + b) (1- 2p + b) - (iIT)2v'2c 

'" (b t (r»)o (4. 12b) 
b2( r) 

Finally, (3.17) defines S(2)(r), which in terms of the 
variables introduced in (4.12) is given by 

S(2)(r) = 1 
at (0)b2(0) - a2(0)b t (0) 

x (at (r)b2(0) - a2(0)b! (r) at (O)b! (r) - at (r)b t (0») 
a2(r)b2(0) - a2(0)b2(r) at (0)b2(r) - a2(r)b t (0) , 

(4. 13) 
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and the eigenvalues E!2)(T) are obtained from (3.19), 
(4.9), and (4.10) with the result 

(2)( ) = Ali 
2 
(-1- 2 b) !!.... 16[(d/dT)p] 

E± T 4 P ± ± T2 Alib3 • (4.14) 

Equations (4.13) and (4.14) determine completely the 
evolution operator U(2) by (3.20), 

U(2) (T) = S(2) (T) {exp[ - iTcp~2) (T)/Ii] I E~2) (0)<E~2 )(0) I 
+ exp[ - i T cp~2)( T)/Ii] I E~2)(0)<E~2) (0) I}' 

(4. 15) 

The procedure can be continued to higher orders with 
increasing computational difficulties. 

5. CONCLUSIONS 

As stated previously, the advantage of the spinning 
axis representation proposed here lies in the fact that it 
allows one to calculate the evolution operator in the ap
proximation 1/ Tn performing only one transformation 
sIn) on the original system. In the second approximation 
only S(2) is necessary; it is simple to see that the com
bined action of the R(2), R(O of Ref. 4 is equivalent to 
the action of S(2), etc. 
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It should be remarked that although in the previous 
example we have calculated the explicit form of S(1) for 
the sake of completeness, it is not necessary to know 
it to obtain S(2) and that, in general, sIn) can be obtained 
directly without going through the succesive changes 
of representation of Ref. 4. This is the advantage of 
the method, since to calculate SIn) it is only necessary 
to apply straightforward perturbation theory, the 
perturbation being "finer" at each succesive step. 

We finally mention that, taking into account that the 
role of the SAR is played in classical mechanics by a 
canonical transformation, the method of this paper could 
be extended to classical systems in a form similar to 
the one used in a previous work. 5 

IA. Messiah, Mecanique quantique (Dunod, Paris, 1964), Vol. 
II, Chap. XVII. 

2K. O. Friedrichs, Reports IMM-NYU 281, New York Univer-
sity (1955). IMM-NYU 230, New York University (1956). 

3T. Kato, J. Phys. Soc. Jap. 5, 435 (1950). 
4L. Garrido, J. Math. Phys. 5, 355 (1964). 
5L. Navarro and L. Garrido, J. Phys. A (Proc. Phys. Soc.) 
I, 326 (1968). 
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An exact solution of the spin-spin autocorrelation function for a 
one-dimensional system of hard rods 

G. Subramanian*, D. Levitt*, and H. T. Davist 

Departments of Physiology· and Chemical Engineering, t University of Minnesota, Minneapolis, Minnesota 55455 
(Received 31 May 1974) 

It is shown exactly that, in a one-dimensional system of hard rods with spins, the autocorrelation 
function of any function of spin F(w) decays as t -1 at long times provided that <F>eq exists and 
that g (0) cF 0, where g (v) is the linear velocity distribution function. As a consequence of this, 
when F(w) = w, the spin diffusion coefficient defined by the Kubo relation D, = SO' <w (O)w (t» 
X d t does not exist. The results are true for arbitrary initial equilibrium velocity and spin 
distributions, the only restriction being that they be symmetric. 

The framework for the exact dynamic analysis of a 
one-dimensional system of hard rods was laid by 
Jepsen,1 who examined Poincare cycles, pseudostochas
tic behavior and nonequilibrium properties of the sys
tem. Levitt2 and Percus3 have generalized the system to 
include independent stochastic forces acting on each 
particle and have shown that under certain circum
stances non-Fickian diffusion behavior is possible. 

Theoretical attempts4
- 6 to explain the long time be

havior as rl of velocity autocorrelation functions in two 
dimensions observed in the computer experiments of 
Alder7 have so far used either hydrodynamical models 
or kinetic equations with approximations on the time 
scales involved in the loss of correlations. In this paper, 
by examining a one-dimensional hard rod system with 
spins using Jepsen's technique, we show exactly that 
the spin-spin correlation (w(O) w(t) goes as t-1 at long 
times and consequently the spin-spin diffusion coeffi
cient defined by the Kubo relation, 

D. = Jo~ (w(O) w(t) dl, (1) 

does not exist. Previous exact derivations2 • 3 on one-di
mensional hard rod systems with random background 
show a different type of anomalous behavior of the dif
fusion coefficient. Here the ensemble average (x2(t), 
where x is the displacement, was shown to be propor
tional to It rather than I as in canonical diffusive be
havior and the diffusion coefficient would be zero in 
such a system. In the following, references to Jepsen's 
paper will be denoted by (J. J. 

We consider N point particles numbered 0,1,2, ... N 
- 1, all of the same mass, impenetrable so that they are 
constrained to move along a line, length L, but with 
periodic boundary conditions. Though the analysis is 
done for point particles, the finite size of the particles 
is taken into account easily by substituting for the point 
density the expression p/(1-pa), where p is the rod 
density and a is the rod length. 

When a pair of particles collide, their kinetic energy, 
rotational kinetic energy, and linear and angular mo
menta are conserved so that they merely exchange lin
ear and angular velocities (spins). There is no inter
change of energy from one mode to the other. 

The dynamics of the system is clear from Fig. 1, 
where the position of the particles is plotted against 
time. If no collision occurs, the motion of one of the 
particles is represented by a trajectory starting on the 
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X-axis at the initial position of the particle with a slope 
equal to the reciprocal of the velocity. When a collision 
occurs, two of these lines cross, and since the colli
sions are perfectly elastic, the two particles merely 
exchange trajectories (i. e., velocities) and spins. The 
trajectories are labeled by the number of the particle 
occupying it at the initial time. With each trajectory 
one can also associate the initial value of the spin of 
the particle occupying it at the initial time. Therefore, 
at any time t, if we know which particle is on a given 
trajectory, both the velocity and spin of that particle 
are determined. 

Define a characteristic function AJk(t) such that 

AJk(t) = 1 if particle j is on trajectory k at time t 

= 0 otherwise. 

The knowledge of AJk at all times determines the com
plete dynamics. The average over the initial conditions, 
(A'k(t)) , gives the probability of finding particle j on 
trajectory k, at time t, when an ensemble of systems is 
considered. We assume that the initial distributions of 
velocity and spin, g(v) and G(w) that each particle can 
have in an ensemble are independent and satisfy the 
symmetry requirements 

1.> g(v) dv = 0, 

1.: w G(w) dw = O. 

Since there is no interconversion of translational and 
rotational kinetic energy, the spins can be considered 

FIG. 1. Diagram showing the nature of the dynamics of the 
system. 

(2) 

(3) 
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to ride piggyback fashion on the particle and they do not 
influence the course of the trajectories. The function 
Ajk(t) is therefore exactly the same as that given by 
Jepsen, i. e. , 

1 ~l ~l 

Ajk(t) = -N 6 exp(- 27fijl/N) IT S[u, Wkh], 
1_0 hoO 

(4) 

S[u, Wkh ] = exp(inu) when (n - I)L < Wkh ~nL for each 

n, 

where 

Wkh=Xk-Xh+(Vk-Vh)t. 

X k, x h are initial positions of particles k and h, and 

u = 27fl/N. 

ENSEMBLE CALCULATIONS 

We consider properties which can be written in the 
form 

(5) 

The particle zero starts at the origin at zero time. The 
ensemble average (5) can be written as 

E =6 (f(vo' Wo; Xk + vkf, Vk' wk)A Jk). (6) 
k 

The form of! in Eq. (6) is useful in evaluating proper
ties that are dependent on the time correlations of sin
gle particles like the diffusion coefficient. As par-
ticle j keeps changing trajectories, it "carries" with it 
the two properties of the different trajectories, the velo
city vk and spin w k ' and the summation in Eq. (6) over 
k takes this into account. The ensemble average in Eq. 
(6) is taken over positions, velocities, and spins of aU 
the particles. 

Since the spins and velocities are independent, we 
can make use of the same approximations for terms in
dependent of W as made by Jepsen (J. 50, J. 51) when N 
and L are large and also the transformations and iden
tities (J. 47-J. 49). Introducing Eq. (4) for AJk in (6), ex
expanding the ensemble average in Eq. (6), and pro
ceeding to the limit N - 00, L - 00 with N /L = p, we get 
after converting summations to integrals, 

E= :rr12r 

duexP(-ijU)(l'" dxk+exp(-iUi"'dXk) 

x f: K(vk)dvk /.,'" G(wk)dwkQ(u,Xk+ vkt, Vk'W k) 

xexp{p(1- eiU)T[u, x k + vkt]}+ 2~[' du exp(- iju) 

1", '" ~Vo) dV{- G(wo)dwo!(vo, WO' vot, wo) 

Xexp{p(I- e-fU)T(u, vo!)}. 

where 

T(u, z)= i: (z - vht)S[u, z - Vi~Vh)dvh' 

Q(u, x k + vkt, Vk, w k) 

= i: K<vo)dvo r: G(wo)dwoF(vo' wo' Xk + Vkt, Vk' Wk ) 

XS[u, Xk + vkf - vot]dvo' 

For the detailed algebra, the reader is referred to 
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( 7) 

(8) 

Ref. 8. Equation (7) reduces to Jepsen's result (J.52) 
in the absence of spins and provides the general expres
sion for the ensemble average Eq. (5) of! for the sys
tem of one-dimensional rods in which translation and 
spin do not interact. 

Consider a function F(w), only of spin w, such that 
the equilibrium thermal average (F(w) vanishes. Any 
arbitrary function of spin can be cast in this form by 
subtracting from it its eqUilibrium thermal average. 
Then we let 

j[vo' wo' xP), v P), w j(t)] = F[w J(O)]F[w J(t)]. 

Equation (6) becomes 

(9) 

E =6 (F(wk)F(wk)A Jk) (10) 
k 

and 

Q(u, x k + Vkt, Vk' w k) 

= 1.: dvo~vo) 1.: dw o F(wo)F(wk)G(wO)S[u, Xk 

+vkt-vof]=O (11) 

by virtue of (F(wo) = r: dwo F(wo) G(wo) = O. The first 
term of E in (7) then vanishes. Since f(vo' wo' vot, wo) 
=F(WO)2, 

Using the Simplified expression for T of Jepsen (J. 56), 
we have 

T(u, z) = -A(z) + (z + A) e fu • 

By defining A(z) by 

A(z) = f,~ t (- z + vht)~Vh)dvh 

(13) 

(14) 

and using the identity (J. 57) with m = j and setting j = 0, 
the autocorrelation function of F becomes 

E = (F[wo(O)]F[wo(t)]) 

= c i: dvo~vo)Io[2p{A(vot)[vot + A( vot)]} 1/2] 

xexp[ - pVot - 2A(vot)pJ, 

where 

(15) 

(16) 

10 is the zeroth order Bessel function of imaginary ar
gument. To examine the asymptotic behavior of (15) in 
the limit of large time, we use the fact that for large 
arguments 

lo(x)- eX />l27fx 

i. e. , 

10[2p{ABy/2] exp[ -A + B)p] 

'" exp[ -( vA - v'B)2 pJ/[47fP{AB}I/2]1/2, 

where B=vot+A(vot). A is of the form Nt, B of the 
form B't, where A', B' are independent of t: 

exp[ - (..fA - v'B)2p] '" exp[ - (m _ ,[jji)2pt]. 

(17) 

( 18) 

For large times Eq. (17) is zero except for vifi '" fiF, 
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i. e., for vo"'O when 

A - t f o" v,g(vh)dvh. 

Defining 

11" D", - v,g(vh)dv", 
p 0 

A'-pD, B'-vo+A', 

and 

exp[- (W - v']F)2t]-exp(- V~tl4D). 

With relation (22), Eq. (15) becomes at long times 

E - ~f" dv (v) exp(- v~tl4D) . 
P _00 og 0 ...j4rrDt 

(19) 

(20) 

(21) 

(22) 

(23) 

At long times, the integrand in Eq. (23) is negligible ex
cept for Vo '" 0, and Eq. (23) reduces to 

E- [Cg(O)lp]r I (24) 

as long as g(O)*O. Letting F(w)==w, the spin-spin auto
correlation (wo(O)wo(t) decays at long times as ["1 and 
the spin diffusion coefficient defined by 

D. = fo" (w(O)wo(t) dt 

will not exist, as long as g(0) *0. 

Equation (24) will now be verified by the following 
argument which uses directly the long time behavior of 
the function Aoo(t), the probability that a particle returns 
to the traj ectory it started out on. The function Aoo(l) 
is given by Levitt, 9 and at long times it reduces to 

A (t) = exp( - v~t/ 4D) . 
00 p...j4rrDt 

(25) 

Let us focus attention on a particular particle, say 
particle 0. The probability that particle ° has spin w at 
time t given that it started out with spin w' at time ° is 
given by 

P(w, t;w', 0) = 6 (a(w l(t) - ~a(wo(O) - w') (26) 
/ 

where the summation is over all trajectories i, 

P(w, t;w', 0) =6(a(w j - w)a(wo -w')Ao/(t) (27) 
/ 

with w j and Wo being the initial values of the spins asso
ciated with the particles occupying the trajectories i 
and ° at initial time and Ao/(t) the probability that par
ticle ° is on trajectory i at time t given that it started 
out on trajectory 0. In Eq. (27) after averaging over w j 
and Wo the summation is split as 

P(w, t;w', 0) 

= 0 (w - w') G(w) (Aoo(t))v + G(w) G(w') L) (A/o(t))v 
j¢O 

= a (w - w,) G(w) (Aoo(t))v + G(w) G(w') (1 - Aoo(t))v, 

where (Aoo(t)v=f Aoo(v,t)g(v)dv. 

The autocorrelation function of any function of spin, 
F(w) can be written as 

(F(w(t»F(w(O») = (F(w' )P(w, t;w', O)F(w') w.w" (29) 

and by using Eq. (28) this reduces to 
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(F(w(t»F(w(O») = [(F(W)2) - (F(W»2J(Aoo (t)v + (F(W)2. 
(30) 
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As explained earlier, F(w) can always be reduced to a 
form such that (F(w) =0, and Eq. (30) becomes 

(F(w(t))F(w(O))) = (F(W)2(Aoo(t)}v == (F{w)2AOO(t)). (31) 

The result (31) can be explained as follows. Since the 
spin distributions of the individual particles are indepen
dent of each other as well as the velocity distributions, 
the spin of the particle at the initial time or any func
tion of spin F(w) is totally uncorrelated at all subse
quent times, other than times at which the particle re
turns to the trajectory it started out on, when there is 
total correlation. By using result (25), Eq. (31) 
becomes 

We note that the long time behavior of (F(O)F(t) as lit 
is the same as that of (Aoo(t))v' The ensemble average in 
(32) is taken over all possible initial velocities and 
spins. This is seen to be identical with Eq. (23). Inte
gration over Wo yields the constant C and the relation 
(24) is valid as before. By letting F(wo)=wo the spin 
diffusion coefficient defined in (1) will not exist as long 
asg(O)*O. 

However, if g(O) ==0, (Aoo(l)) will not decay as lit at 
long times, and consequently a spin diffusion coeffi
cient can exist. In that case, 

D. = fa" (F(w(t)F(w(O») dl= (F(w)2) ,io'" (Aoo(t)v dt, 

by using Eq. (31). By using the expression for Aoo(!) 
from LevUt9 

(33) 

it is seen that if g(0) * 0, then (lip 1 v I) and D. will not 
exist. 

The probability given by (25) is the same as (J. 62), 

pry) = (47TDt)-I/2 exp( - y2/ 4Dt), (35) 

with y = vat, which is the probability of finding a particle 
at pOSition y at time t. 

The phYSical argument given above cannot be used to 
derive the long time behavior of the linear velOCity cor
relation function or correlation of any function of the 
linear velocity because the velOCity of a particle is cor
related at all times after it leaves its initial trajectory, 
whether it returns to the initial trajectory or not. This 
is because, unlike in the spin case, the subsequent velo
cities depend on the orientation of the initial trajectory. 

Thus it has been demonstrated exactly for this one
dimensional system that the rotational diffusion con
stant D. does not exist. We have also shown more gen
erally that at long times the autocorrelation of any 
function of spin alone will decay as t- 1 • This means that 
for example the autocorrelation function of the rotational 
kinetic energy Iw 2 will decay as t- I at long times. 
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Many nonlinear phenomena occurring in physical systems are describable by a set of ordinary. partial 
or functional differential equations which can be regarded as an evolutional equation in a suitable 
abstract vector space. In this paper, we consider nonlinear evolutional equations defined on Hilbert 
spaces. Attention is focused on developing conditions for the existence of solutions which lie along 
half-rays emanating from the origin of the space. The results are used to establish sufficient 
conditions for the existence or nonexistence of explosive solutions or solutions having finite escape 
time. The paper concludes with a discussion of the application of some of the results to specific 
classes of evolutional equations arising from physical situations. 

I. INTRODUCTION 

Many nonlinear phenomena in continuum systems are 
describable by a set of nonlinear differential equations 
of the form 

(1) 

where aj and fj are linear and nonlinear operators, re
spectively. For example, the macroscopic plasma 
models1 consisting of the Maxwell's equations and the 
hydromagnetic equations can be cast into the form of 
(1). Also, the hydrodynamic equations describing the 
nonlinear interaction of gravity waves in an ideal fluid 
of finite depth have a similar form. 2 In these cases, (1) 
corresponds to a set of partial differential equations 
which can be regarded as an evolutional equation in a 
suitable function space. In the case of a dynamical sys
tem having finite degrees of freedom, (1) corresponds 
to a set of ordinary differential equations or an evolu
tional equation in a finite-dimensional vector space. It 
is known that even the solutions to the linearized equa
tions are well behaved, the presence of the nonlinear 
terms could induce explosive instabilities or the finite
escape-time phenomenon in which some of the solutions 
become unbounded over a finite time interval. 3,4 Recent
ly, this phenomenon occurring in the nonlinear inter
action of waves in plasmas and dielectric media has 
been investigated both theoretically and experimental
ly. 5-10 In this paper, we formulate (1) as an evolutional 
equation in a Hilbert space. Attention is focused on de
veloping conditions for the existence of ray solutions for 
a certain class of equations. The results are used to 
establish sufficient conditions for the existence or non
existence of explosive solutions. This paper concludes 
with a discussion of specific classes of evolutional equa
tions ariSing from physical situations. 

II. PRELIMINARIES 

Let H" denote the n-fold Cartesian product of a 
Hilbert space H with inner product C" ')H' For any 
U= (Ub ••• , un) and u'= (u{, ••• , u:;> in H", their inner 
product is defined by 

In particular, H may be taken to be the Hilbert space 
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L2(n) [resp. L 2(n)] of complex-valued [resp. real-val
ued] functions defined on an open subset n of the 
Euclidean m-space Rm. For H=L 2(n), the inner product 
on H" is defined by 

" (u, u') = 6 10 Uj(X) uf(x) dX, 
J.1 

where X= (Xb ••• , xm) denotes a point in n; u; is the 
complex conjugate of u; and dx is the element of 
Lebesgue m-measure on n. Also, we shall consider 
the case where H" is an n-dimensional real or complex 
Euclidean space R" or en, respectively, with the usual 
inner product. The open [resp. closed] ball with radius 
r centered about the origin 9 in H" will be denoted by 
:Er [resp. L r ], and the sphere {u E H": II u II = r} by oLr • 

Let 1=[0, T[, T~oo and e1(I;H") denote the space of 
all continuously differentiable H "-valued functions on 10 
We formulate (1) as a nonlinear evolutional equation in 
H": 

du - =Au+f(u) = h(u) 
dt 

with initial data u(O) = Uo E: Dh- the domain of h. A is a 
linear operator with domain D A = {u E: H": Au E: H"} and 
f is a nonlinear operator with domain Dr ={u E: H": feu) 

(2) 

E: H"}. In cases where (2) corresponds to a set of partial 
differential equations, we shall incorporate any boundary 
conditions in the definition of D A and Dr. By a solution of 
the initial-value problem (2), we mean a function 
u E: e1 (I; H") such that u(t) satisfies (2) for each fixed 
t E: ]0, T[ and initial data Uo at t = 0, We shall call a non
equilibrium solution u(t), defined for t E: I, a ray solution, 
if u(t) lies on a half-ray {u E: H" : u = AV, v '" e, A? O} for 
each t E: I. Evidently, such a solution can be written in 
the form u(t) = 1) (t) v, where v is a nonzero vector in H" 
and 1) is a real-valued e1 function of t such that 

° ~ inf{1)(t)j t E: I} < sUp{1)(t) j t E: I} ~ 00. (3) 

For the subsequent development, we introduce the fol
lowing assumptions: 

(A-1) Db = Dr n DAis a linear subspace of H n. 

(A- 2) The operator f has the homogeneity property: 
f(eu) = ekf(u) for some real number k > 0, all real num
bers e and all u E: Dr. 

These assumptions imply that f( 8) = 9 and f is an even 
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[resp. odd] operator {i. e, f(- u) = feu) [resp. f(- u) 
= - f(u)] for all u E Dr} if k is an even [resp. odd] posi
tive integer. 

A few simple examples of f satisfying (A-2) are given 
below. 

Example 1: f is a mapping from Dfe Lz(O) into Lz(n) 
defined by 

feu) = ~(g(u», 

where ~ is the Laplacian operator and g is a homo
geneous polynomial of u with degree k> O. 

(4) 

Example 2: n is a bounded open subset of R m and f is 
a Hammerstein integral operator on Df <;:; Lz(n) into 
L zen) given by 

(f(u»(x) = In K(x, x') g(u(x'» dX', (5) 

where g is as in Example 1 and the kernel K E Lz(n x n). 

III. RAY SOLUTIONS 

Now, we shall establish conditions for the existence 
of ray solutions of (2) defined in a complex Hilbert 
space H n. Let ret) = II u(t) II = (u(t), U(t»l IZ. We introduce 
the transformation v = ulr which projects the solutions 
of (2) onto the unit sphere aLl' 

Proposition: Let u(t) be a nontrivial solution of (2). 
Then, r(t) and vet) satisfy 

~~ = r{Re(Av, v) + r k -
1 Re(f(v), v)}, (6) 

~T = {Av - v Re(Av, v)} + yk-l{f(v) - v Re(f(v), v)}. (7) 

Proof: By direct computation 

dr 1 d 
r dt ="2 dt (u, u) = Re(Au, u) + Re(f(u), u) 

= rRe(Av, v) + Re(f(rv), rv). (8) 

Equation (6) follows from (8) and assumption (A-2). Us
ing (2) and (6), we have 

dv -1 du -z dr 
dt = r dt - ur dt 

= r-1(Au + f(u» - ur-Z{Re(Au, u) + Re(f(u), u)} 

=Av + r-1f(rv) - r-1v{rRe(Av, v) + Re(f(rv), rv)}. (9) 

Equation (7) follows directly from (9) and assumption 
(A-2). II 

Theorem 1: Let a(v) = (Av, v), !3(v) = (f(v), v) and 
reO) = II U o II > 0. If A and f have a common invariant 
direction v* E Dhn aLl> then (2) has a ray solution 
u(t) = ret) v* defined on some interval I <;:; [0, 00] with 
positive measure, where, for k #- 1, r(t) is given by 

r(t) = reO) 

x exp(a(v*) t){l + a(v*)-l !3(v*) r(O)k-l 

x (1- exp[a(v*)(k -1) t])}-l I(k-l ) (10) 

if a(v*) #-0, or 

r(t) = reO) {1- (k _ 1) j3(v*) r(W-1 t}-l 1 (k-l ) (11) 
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if a(v*) = 0, where we take { ••• }-l 1 (k-l) to be the non
negative real root when k > 1. When k = 1, r(t) is given 
by 

(12) 

Proof: Let A be a nonzero linear operator having in 
common with f an invariant direction v* E Dh n aLl' By 
definition, there exist nonzero real numbers A and J.l 
such that Av~ = AV * and f(v *) = J.lv *. It follows that 
(Av*,v*)=Allv*"zand (f(v*),v*)=J.llv*"z. Sincev* lies 
on the unit sphere aLb a(v*) = (Av*, v*) and !3(v*) 
= (f(v*), v*) are real and equal to A and J.l, respectively. 
From (7), if V(tl) =v* for any t 1 ;o, 0, then vet) =v* for 
all t;o, t1 • The corresponding solution u(t) = ret) v*, t? t1, 

lies on the half-ray from the origin passing through the 
point v *' where ret) satisfies (6) or 

(13) 

Integrating (13) with initial condition reO) at t = ° leads 
directly to (10) or (12). For the case where A is the 
zero operator on H n, every invariant direction of f on 
Dr n aLl is an invariant direction of A. Integrating (13) 
with a(v*) = ° and initial condition reO) gives (11). The 
interval of definition I for (10) or (11) is [o,oo[ if the 
{ ... } term does not vanish for all t > 0, and Ie [0, oo[ 
if the { ••• } term vanishes for some finite t = T> 0. II 

Corollary 1: If ~ E Db is a nonzero fixed point of 
both A and f, then v * = u* III u* II is a common invariant 
dIrection of A and f on aLb and u(t) = ret) v* is a ray so
lution of (2), where ret) is given by (10) or (12) with 
a(v*) = 1 and /3(v*) = II u* 1I 1

-
k

• 

Proof: Since II u* II #- ° and Au* = u* = f(u*), therefore 
v* is defined and satisfies Av* =v*, f(v*) = II u* II-k f(u*) 
=lIu*"1-ky* and a(v*)=(Av*,v*)=1, /3(v*)=(f(v*),v*) 
= II u* 1I 1

-
k

• Thus v * is an invariant direction of both A 
and f on the unit sphere aLl' The desired result follows 
from Theorem 1. II 

It is evident from Theorem 1 that the existence of ray 
solutions of (2) can be established by showing the exis
tence of common invariant directions of A and f on 
Dhn aLl' In general, a ray solution may not be asso
ciated with any common invariant direction of A and f. 
This can be demonstrated by the following simple exam
ple of (2) defined on RZ with Au= (uz, 0) and feu) = (0, U1) 

for all u = (Ul> uz) E RZ. Its ray solutions are given by 
u(t) = cv exp(t) and u(t) = e'v' exp(- f), t? 0, where e, c' 
are positive numbers; v = ± (1,1) and v' = ±(1, - 1) are 
eigenvectors of (A + f). But the invariant directions of A 
and f correspond to their eigenvectors which are non
zero scalar multiples of (0, 1) and (1, 0) respectively. 
Hence A and f have no common invariant directions. 

When A is the zero or the identity map on H n, then 
every ray solution of (2) is associated with an invariant 
direction of f provided that feu) #- e for all u #- e. This can 
be verified by conSidering a ray solution of (2) (with A 
being the identity map) of the form u(l) = T/(t)v, f 
E Ie;, [0,00[, v #- e and T/ is a real Cl function satisfying (3). 
Substituting u(t) into (2), we arrive at the identity 

{(d~t(t) _ T/(t») TI(t) -k } v = f(v) for all tEl. 
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Since f(v) "* e for all v"* e, hence the { ••. } term must 
equal to a nonzero real number for all tEl or v is an 
invariant direction of f. 

Finally, we note that if u(t) = ret) v* is a ray solution 
of (2) such that v* E Dbn a2::1 is an invariant direction of 
both A and f with a(v *) = 1, then V = v *{3(V *)-1 /(k-l) is a 
fixed point of both A and f, since 

Av = {1(V*)-1 I (1l-1) Av* = (1(V*)-l l(k-1) (Av *' v*) v * = v, 

f(v} = f({3(v *} -1 I (k~1) v *) = (3(v *,-k I (/l-1) f(v *} 

= (3(V*}-1/(k-1)V* =v, 

where {3(v*} = (f(v*), v*). 

Now, we shall establish sufficient conditions for the 
existence of ray solutions of (2) in which f belongs to 
certain special classes of operators. 

1. Compact Operators: We shall make use of the fol
lowing result: 

Lemma 1: Let f be a compact mapping of a Banach 
space V into itself such that II fey) II v;" c > 0 for all 
v E a2::1 ={v E V: II v II v = 1}. Then, f has an invariant 
direction on a2::1 or the equation fey) = Xv has a solution 
v * E 02:: 1 for some nonzero real number X. 

The above result is a generalization of that due to 
Birkhoff and Kellogg. 11 A detailed proof can be found 
in ReL 12. We note that if II f(v) II v;" c> 0 for all 
VE ~1 ={v E V: II v IIv ~ 1}, then the result follows trivial
ly from Schauder's fixed point theorem. Let fey) = f(v)/ 
II f(v) II v' Since f is compact and II fey) II v ;" c > 0 for all 
v E ~l> then f is a compact mapping of ~1 into itself. 
By Schauder's fixed point theorem, there exists a 
V*E~\ suchthatf(v*)=v*. Since IIf(v*)lI v =l, hence 
v* E 02::1 and f(v*) = II f(v*) II vV* with II f(v*) II v;" c> 0 
implying that v * is an invariant direction of f. The fore
going proof is invalid for a homgeneous f, since f(8) = e. 
In Ref. 12, using the so-called Sweeping Theorem for 
Banach spaces, Lemma 1 is proved for a more general 
case where a2::1 is replaced by the boundary of any 
bounded subset of V containing the origin. 

Theorem 2: Let A be the zero transformation on H" 
and f is a compact mapping on H" into itself satisfying 
assumption (A2) for all uEH". Moreover, IIf(u) lI;"c>o 
for all UE a61' Then (2) has at least one ray solution 
u(t) = ret) v*, tEl, where v * E a61 and ret) is given by (11) 
if k "* 1, and by (12) if k = 1. Furthermore, if f is an odd 
operator, then (2) has at least one pair of ray solutions 
u(t) = ± r(t) v*, tEl. 

Proof: From Lemma 1, f has an invariant direction 
V*E061 suchthatf(v*)=Xv* with IXI=lIf(v*)II;"c>O. 
Hence, I i3(v*) I = I (f(v*), v*) 1= IIf(v*)II > O. The existence 
of a ray solution follows directly from Theorem 1. When 
f is an odd operator, - v* is also an invariant direction 
of f. Consequently, a pair of ray solutions u(t) = ± ret) v* 
exist. 1/ 

2. Gradient Operators: Here, we consider the case in 
which the rhs (right-hand side) of (2) consists of the 
term feu) only, where f is the strong gradient of a func
tional F defined on a real Hilbert space H", i. e., the 
Frechet differential (f(u), u /) = (grad F(U) , u/) exists for 
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all u, u' E H". Such an evolutional equation describes 
the smooth trajectories of the steepest ascent method 
for maximizing F over H". 13 We note that for F( e) = 0, 
F(u) is expressible in the form14: 

F(u) = 101 
(u, f{su»ds, (14) 

and if f satisfies assumption (A-2), (14) reduces to 

F(u) = (u, f(u»/(k + 1), k> O. (15) 

In what follows, we shall establish a sufficient condition 
for the existence of ray solutions. 

First, consider the problem of extremizing F(u) on 
the unit sphere 061 in H" or subject to the constraint 
¢(u) = (u, u) = 1. Applying the abstract Lagrange multi
plier rule (Ref. 14, p. 96), if ~ is an extremum point 
of F with respect to 061 and F is Frechet differentiable 
at~, then there exists a real number X such that 

(16) 

or u* is a critical point of (F + X¢). Also, u* is an in
variant direction_ of f on 061 if gradF(u*)"* e. Since the 
closed unit ball 61 in H" is weakly compact and weakly 
closed, by the generalized Weierstrass theorem (Ref. 
14, p. 100), FIz;1' the rest~ction of F to Lb attains its 
infimum and supremum on 61 provided that F is weakly 
continuous on L1 • Moreover, if F is Frechet differentia
ble on 61 and attains its infimum or supremum at an in
terior point Ii of Lb then gradF(U) == eo It follows that if 
gradF(e) = e and Ii gradF{u) II ::- 0 for all nonzero u E Lb 
then F 1~1 attains its infimum or supremum at one or 
more points on 061' Such points are invariant directions 
of f=gradF. This result is summarized below: 

Lemma 2: Let f be the strong gradient of a weakly 
continuous functional F on a real Hilbert space H". If 
f( e) = e and II feu) II > 0 for all nonzero u E ~1' then f has 
at least one invariant direction on il~1 

Direct application of Lemma 2 and Theorem 1 leads to 
the following result: 

Theorem 3: Let A be the zero transformation on a real 
Hilbert space H" and f be a gradient operator satisfying 
the hypotheses of Lemma 2 and assumption (A- 2) for all 
u E H". Then, (2) has at least one ray solution u(t) 
= r(t)v*, tEl, where ret) is given by (11) if k"* 1 or by 
(12) if k = 1, and v * is a minimum or maximum point of 
FI~1 or an invariant direction of f= gradF on a~1' 

Theorem 4: Let H" be a finite-dimensional real Hil
bert space and f be the gradient of a real C1 function F 
on H". If f satisfies assumption (A-2) for all u E. H" and 
feu) = gradF(u) "* e for all u E a 6 1, then (2) with feu) as its 
rhs has at least two distinct ray solutions. 

Proof: Since FlaB1 is continuous on the compact set 
06b by Weierstrass theorem, F I aJ;1 attains its minimum 
and maximum on 061 at some points ii and v respectively. 
Since F is C1 and gradF(u) * e on ilL1, then, in view of 
(16), there exist nonzero real numbers ~ and \ such that 
gradF(v) =).v and gradF(v) = \v. Thus, v and v are in
variant directions of f= gradF on J 61 . The desired result 
follows from Theorem 1. II 

Now, if f is a C1 function on R" into R", then a nec
essary and sufficient condition for f to be the gradient 
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of a real-valued function F is that the Jacobian matrix 
[afi/aUJ] is symmetric on R" and F is given by (14). If 
such aj is an odd gradient operator, then we have the 
following result: 

Theorem 5: Let f be a Cl gradient operator satisfying 
assumption (A-2) on R". If f is an odd operator such that 
f(u) "* e for all u E a Z;b then (2) with f(u) as its rhs has at 
least 2n distinct ray solutions. 

Proof: By hypothesis, f is the gradient of a real-val
ued Cz function F on R" given by (14). Since f is odd, 
then F is even. Thus, F can be regarded as a real
valued function on the (n - l)-dimensional projective 
space p"-l obtained by identifying the antipodal points 
of a Z;l. Since the category of p"-l (in the sense of 
Lusternik and Schnirelmann14

-
16

) is n, F has at least n 
distinct critical points u i , j = 1, ... , n on p"-l, or 2n 
distinct critical points ± u

j
, j = 1, ... , n on aZ;l. For each 

pair ±uJ, we have, in view of (16), f(±uj)=gradF(±uJ) 

= ± AjU
j 

for some real number AJ. Since f(u)"* eon aZ;l, 
Aj "* O. Thus, ± u

j 
are invariant directions of f on aZ;l. 

The existence of 2n distinct ray solutions of (2) follows 
from Theorem 1. I I 

Finally, we note that Theorem 3 can be generalized 
to the case where the rhs of (2) is the product of a lin
ear operator and a gradient operator. Using Theorem 1 
and a result due to Vainberg (Ref. 14, Thm. 15.1, 
p. 123), we have the following result on the existence of 
ray solutions of (2): 

Theorem 6: Let f=Kf, the rhs of (2), be a mapping on 
a real Hilbert space 11", where 1 is the strong gradient 
of a weakly continuous functional F on 11", and K is a 
positive self-adjoint linear operator whose domain is 
H". If 1 satisfies,assumption (A-2) on 11" and (f(u), u) > 0 
for all u"* 0, then (2) has at least one ray solution. 

Remarks: 

(R-1) Theorem 3 is a special case of Theorem 6 with 
K being the identity map on H". 

(R- 2) Under the hypotheses of Theorem 6, Vainberg's 
result (Ref. 14, Thm. 15.1, p. 123) ensures the exis
tence of an invariant direction ~ of K1 in the form u* 
= Kl/ZV, where v is a maximum point of the functional 
FK1/Z over aLb and Kl/Z is the positive square root of 
K. Thus, the corresponding ray solution of (2) has 
the form u(t) = r(t)(K1/Zv)/ II Kl/ZV II. 

(R-3) If, in addition to the conditions of Theorem 6, 
1 is a strongly continuous odd operator on 11", and K is 
a continuous compact operator on H" having a countable 
set of positive eigenvalues, then it can be shown (Ref. 
14, Thm. 15.6, p. 127) that '£ = Kf has at least a count
ably infinite number of distinct invariant directions on 
aLl' Consequently, (2) has at least a countably infinite 
number of distinct ray solutions. 

(R-4) Theorems 2-6 are applicable when Df , the do
main of f, is the whole space 11". When Df is a proper 
$ubspace of H", the problem of establishing conditions 
for the existence of invariant directions of f on Df 

n aZ;l or the ray solutions of (2) is considerably more 
complex. However, results are obtainable for special 
classes of operators such as those having invariant 
cones in H". 

254 J, Math. Phys., Vol. 16, No.2, February 1975 

(R-5) Theorems 1 and 2 remain valid for (2) defined 
on certain non-Hilbert spaces. In particular, consider 
the case where Dh=Dfn DA is the real Banach space 
Lp(Q), p > 2, and Q is a bounded open subset of Rm. Let 

r(t) = lIu(t) II Lp ={fo Iu(t, x) IPdx}lIP 

and v(t)=u(t)/r(t). Here, the equations for r(t) and v(t) 
are identical to (6) and (7) except that the terms 
Re(Av, v) and Re(f(v), v) are replaced respectively by 

a(v) = fo (sgnvP-l) I v I P-1Av dx 

and 

§(v) = fo (sgnvH ) Iv IP-lf(v) dx. 

If A andf have a common invariant direction v* E aZ;l 
C Lp(Q), then (2) has a ray solution as given in 
Theorem 1. 

IV. EXPLOSIVE SOLUTIONS 

By an explosive solution u(t) of (2), we mean there ex
ists a finite tl > 0 such that II u(t) II - 00 as t - ti, or the 
solution has finite escape time. Sufficient conditions for 
the existence of such solutions can be readily deduced 
from the results of Sec. ill. From Theorem 1, the ray 
solution (10) for a(v*)"* 0 and k"* 1 has finite escape 
time if there exists a finite 7> 0 such that 

a(v*) + J3(v*)r(O)k-l (l_ exp[a(v*)](k - 1)7) = 0. (17) 

Evidently, ifr(O»O, k>l, andsgna(v*)=sgn/3(v*), 
such a 7 exists and is given by 

7 = [(k - 1) a(v*) ]-lln[l + a(v *)j3(v *tlr(O)l-k]. (18) 

For k > 1, a(v*) = 0 and J3{v*) > 0, it is apparent that the 
ray solution (11) has finite escape time 7 given by 

(19) 

The foregoing observations are summarized in the fol
lowing theo rem: 

Theorem 7: Let r(O) = Iluoll > ° and f satisfies assump
tions (A-l) and (A- 2) with k > 1. If A and f have a com
mon invariant direction v * E Dh n aZ;l such that (i) a(v *) 
"* ° and sgna(v *) = sgnJ3(v*) or (ii) o(v *) = ° and J3(v *) 
> 0, then (2) has an explosive ray solution u(t) = r(t)v* 
defined on [0, 7], where r(t) is given by (10) or (11), 
and the escape time 7 is given by (18) or (19) 
respectively. 

From Corollary 1, we have a special case of the above 
result with a(v*) = 1 and j3(v*) = II v* II l -k. 

Corollary 2: Let r(O) = II Uo II> 0 and f satisfies (A-1) 
and (A-2) with k= 1. If A and f have a common nonzero 
fixed point u* E Dh, then the ray solution u(t) = r(t) u*/ 
II u* II with r(t) given by (10) is explosive and its escape 
time 7 is given by 

(20) 

Similar results can be established for various special 
classes of operators discussed earlier. We note that it 
is possible to have explosive solutions which are not ray 
solutions. A simple example is provided by the solutions 
of the following equation defined on RZ

: 

dUl 2 at =Ub Ul(O) =U10, 
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This equation has an explosive ray solution for U10=UaO 

> O. When U10 > 0 and U10 *uzo *0, the corresponding 
solutions are explosive but they are not ray solutions. 

For the case where r(O) > 0 and the degree of homo
geneity of f satisfies 0 < k < 1, r(t) as given by (10) or 
(11) goes to zero in finite t = 7 > 0 if a(v*).:: 0 and 
(3(v.) < 0, where 7 is given by (18) or (19). Since the 
origin of H n is an equilibrium solution of (2), such a 
ray solution remains at the origin for all t > 7. 

Now, we give a simple sufficient condition for the 
nonexistence of explosive solutions of (2). Let 

ci = sup{Re(Av, v); v E a1;1}, 

~ = sup{Re(f(v), v); v E a1;l}' 

From (6), we have 

d~;t) .:: [<H ~r(t)k-1] r(t). 

(21) 

For k > 1, if - 00 < ci < 0 and. 0 < ~ < 00; then for any initial 
point Uo in the set r ={u E H n : II u II < 'Y}, where 'Y is the 
positive (k - l)th root of 1 ci 1 /~, the corresponding solu
tion u(t) E r for all t ~ 0, since dr(t) / dt.:: 0 for all t > 0 
along such a solution. The boundedness of r implies 
that all the solutions initiating from r are nonexplosive. 
Similarly, for 0 < k < 1, if 0 < ci < 00 and - 00 < ~ < 0, all 
the solutions initiating from r = {u E H": II u II < y} are 
nonexplosive, where y is the positive (1 - k)th root of 
(id 1 ~ I. Finally, for k = 1, if ci + ~ < 0, all the solutions 
are nonexplosive. 

V. APPLICATIONS 

In this section, we apply some of the results in Secs. 
III and N to specific evolutional equations arising from 
physical situations. 

(1) Consider a system of ordinary differential equa
tions of the form (2) defined on the complex n-dimension
al space en, in which A is represented by a complex 
n x n matrix and f is a quadratic function of u given by 

f(u) = (f1(u), ... ,in(u», fj(u) = (u,QjU)cn, j=l, ... ,n, 

(22) 

where the Q/s are nXn complex matrices. Many physi
cal phenomena such as the nonlinear interaction of a 
finite number of waves in plasmas and in other media 
are describable by this type of equations. 2,5-10 It is of 
interest to establish conditions for the existence and 
nonexistenee of explosive solutions. 

First, we write Qi =Qj1 + iQja, where Qi1 and Qia are 
Hermitian matrices given by 

(23) 

where i = r-t. and (.)* denotes conjugate transposition. 
If QJ1 and QJ2 .are positive semidefinite, then we have 
the estimate 
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(24) 

for all UE en, where ~ik and i..ik are real numbers corre
sponding to the maximum and minimum eigenvalues of 

• ¥ ~ 
Qik' k = 1,2, respectively. Also, we have Aj1 + Aia 
'" 1 As(QJ) 12 .:: ~~1 + ~~z for s = 1, ... ,n, where As(QJ) is the 
sth eigenvalue of Qi' Obviously, f is a compact mapping 
on en into en. From Theorem 2, a sufficient condition 
for the foregoing system (with A being the zero trans
formation on en) to have at least one ray solution u(t) 
= r(t)v*, with ret) given by (11) and v. an invariant di
rection of f on a~b is that ~jk * 0 or Qik is nonsingular 
for some j. Such a solution is explosive if /3 (v *) 
= (f(v.), v*)cn > 0. To establish a sufficient condition for 
the nonexistence of explosive solutions of (2) with f given 
by (22), we consider ci and ~ as defined in (21). From 
(24), we have 

~.:: sup{llf(v) II ;VE a1;l}':: {t (~J1 + ~~Z)} lIZ. 
i=l 

If Qjk is nonsingular for some (j, k) and a < 0, then the 
solution corresponding to any initial point U o E r 
={u E en : II u II < 1 (} 1 /~} is nonexplosive. 

(2) Let n = ]0, 1[. Consider a single nonlinear partial 
differential equation of the form 

au(t, x) _ k-1 au(t, X)k n 
at - 'Y ax' x E , (25) 

where k is an integer > 1 and 'Y is a nonzero real num
ber. For k=2 and 'Y=-1, we have the equation describ
ing an one-dimensional, pressureless, inviscous fluid. 
Let the domain of f [defined by the right-hand side of 
(25)] be Df ={u E Lz(n) :f(u) E Lz(n)}. To determine the 
ray solutions of (25), we first seek the invariant direc
tions of f on Df n a1;1' This corresponds to finding a non
zero v* E Df satisfying 

k -1 dV*(X)k = A () 
Y dx v. x , XEn, (26) 

for some nonzero real A, and 

(27) 

Let ~ = A/y. By direct integration of (26), we have for 
k>1 

v.(x)={~(k-l)(x+eW/(k-1), XEn, (28) 

and for k= 1 

v. (x) = e exp(Xx), x E n. (29) 

The constant e in (28) or (29) is determined by (27), and 
A= (f(v.), v.). For k> 1, we have from (27) and (28) 

101 Iv.(x) IZdx= (k + 1)-1(k_1)(k+1)/(k-1):\a/(k-1) 

X{(1 + e) (M) 1(1)-1) _ e(k+1) l(k-1)} -1 = L (30) 

It is evident that the { .•• } term is > 1 for all real e ~ O. 
Consequently, I>;: 1 * 0 and there exist an uncountably in
finite number of invariant directions of f on Dfn a~1' By 
Theorem 1, for r(O) > 0 and each e ~ 0, there is a ray 
solution given by 
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u(t, x) = r(t)v*(x) = r(O)[:\(k - l)(x + c)/ 

{l- (k _l);\r(O)k-l t}]l l(k_1 >, t ~ 0, X En, (31) 

where ;\ is a nonzero real number satisfying (30) for the 
given c. For :\ > 0 (resp. ;\ < 0), the corresponding ray 
solution is explosive (resp. nonexplosive). For the case 
with k = 2, (30) reduces to X2 = 3/[ (1 + C)3 - c3

]. For c = 0, 
:\=± V3and there are two invariant directions v*(x) 
= ± V3x, x E n. They correspond to an explosive and a 
noneXplosive ray solution given by 

u(t, x) = ± V3r(O) x/(l =F V3r(O)t), t ~ 0, X En, 

where r(O) is a positive number. 

For the case where k = 1, (27) and (29) give: c2 = 2;\/ 
[exp(2;\) - 1]. Evidently, ~ > 0 for :\* 0, Hence (25) has 
an infinite number of nonexplosive ray solutions, Final
ly, we note that if we take n = R, then v* given by (28) 
or (29) no longer belongs to L 2(n). Consequently, there 
are no invariant directions of f on Dfn aZ;l' Also, if 
we add a linear term Au to the rhs of (25) with k = 2 and 
Y= - 1, where Au = /la2u/ax2 or - /la 3u/ax3 with /l be
ing a nonzero real number, then we have the well-known 
Burgers or Korteweg-de Vries equation respectively. 
It can be readily verified that such A's have no common 
invariant directions with f on Df n aZ;l in L 2(0). 

(3) Let n be a given bounded open subset of R m
, whose 

closure is denoted by TI. Consider the following partial 
differential-integral equation 

aU~t x) = j(u(t, .)(x), x En, (32) 

with initial data u(O, x) = uo(x), x En, at t = 0, where 
Uo E L 2P (n) and f is a Hammerstein integral operator on 
L2P of the form 

j(u(t, ,))(x) = In K(x, x') u2P(t, x') dX', (33) 

where p is an integer ~ 1. Assume that the kernel K is 
real and continuous on TI x TI and there exist constants 
it and M such that 0 < it .; K(x, x') .; Ai < 00 for all 
(x, x') E n xTI. Since /l(n), the total measure of n, is 
finite, we have 

II f(u) II L2P = { In ( 10 K(x, x') u2P(x') dx')?J> dxY 12P 

? M(/l(n))l 12P Ilu II~ =M(/l(O))l 12P > 0 

for all U E aZ;l c L 2P(n). It can be readily verified by 
using the Ascoli-Arzela theorem that f is a continuous 
compact mapping of Lzp(n) into itself. In view of Theo
rems 2 and 7 and Remark (R-5), (32) has at least one 
explosive ray solution u(t) = r(t)v*, 0.; t < T, with r(t) 
being a positive root of 

256 J. Math. Phys., Vol. 16, No.2, February 1975 

r(t)?J>-l = r(O)2P-l{l_ (2p _ 1) ~(v*) r(0)2P-1t}-1 
and 

T= [(2p -1) ~(V*)]-l r(0)2P-1, 

where 

x In K(x, x')v;:(x') dX'] dx. 

The point v* is an invariant direction of f on aZ;l' It 
can be found by first obtaining any nontrivial solution 
u* to the Hammerstein integral equation U = f(u) and 
then setting v*=u*/llu* IIL?J>' Analogous results can be 
obtained for certain systems of equation of a similar 
form, for example, 

aUj(t, x) 
at 

= t In Kjk(x, x') uj(t, x') uk(t, x') dX', j = 1, .. , n, 
k=l 

defined on L£(n), where KjkE Co(TIx TI) and its corre
sponding matrix is uniformly positive-definite on TIxTI. 
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Construction of spin-orbit potentials from the phase shifts at 
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The nonrelativistic scattering of spin-l/2 particles by central and spin-{)rbit potentials is considered. 
The form of central and spin-{)rbit potentials is deduced from a knowledge of the S matrix as a 
function of angular momentum at a fixed energy. Similar to the case of central potentials, the 
problem of constructing central and spin-{)rbit potentials from information on the phase shifts at a 
fixed energy has an infinity of solutions, depending on an infinite number of parameters. 

1. INTRODUCTION 

The problem of constructing interparticle forces 
from the scattering information is of obvious physical 
importance. Construction of nonrelativistic central 
potentials from the information on phase shifts at fixed 
energy was first carried out by Newton, 1 and later 
Sabatier2 generalized the method to contain a larger set 
of central potentials. 

An important tool in construction of central potentials 
from the phase shifts at fixed energy is the so called 
Hegge-Newton equation. For the case of spin-orbit 
potential the analog of the mentioned equation already 
exists and was first found by Sabatier. 3 In this work we 
will make use of this important equation, the Sabatier 
equation, in order to deduce central and spin-orbit 
potentials from the knowledge of phase shifts at a fixed 
energy. 

The procedure will be as follows. Since we need to 
depend heavily on the work of Sabatier, 3 for the ease of 
reader in Sec. 2 we review the relevant parts of that 
work. Section 3 is devoted to finding a set of input co
efficients from the information on the phase shifts, and 
in Sec. 4 we use these input coefficients to construct 
the spin-orbit and the central potentials, which are as
sociated with the desired phase shifts. In Sec. 4 we also 
show that when we have only one set of phase shifts, 
that is, "no spin-orbit interaction is present, " then 
the method can reduce to what is already known about 
central potentials. In this case if we do not make the 
method to reduce to the central potential problem, then 
it will give us the transparent spin-orbit field, that is, 
spin-orbit interactions whose presence can not be de
tected by doing scattering experiment at a fixed energy. 
Since the construction procedure is more involved than 
for the case of only central potentials, in Sec. 5 we 
have summarized the construction procedure. 

The conclusion of the paper is as follows. Provided 
that the phase shifts tend to zero rapidly with increasing 
angular momentum, and if they are related to spin
orbit potentials which go to zero faster than r-3 for large 
r, then we can find a set of central and spin-orbit po
tentials which will correspond to the same phase shifts. 
The corresponding set of central and spin-orbit poten
tials is not unique. In fact the method can generate 
transparent central and spin-orbit potentials at a fixed 
energy. The exact conditions that the phase shifts should 
satisfy so that the method can give us the potentials, in 
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other words, the class of potentials which can be con
structed by this method, are not considered in this paper 
and will be the subject of a forthcoming communication. 

2. A SURVEY OF PREVIOUS RESULTS 

When considering the scattering of spin-t particles by 
central and spin-orbit potentials, then the Schrodinger 
equation can be written in the following form: 

(2.1) 

The differential cross section is then given by4 

1(8)= 1/(8)1 2+ Ig(8)12, (2.2) 

where 

1(8)= 21. i; {(Z+1)[exp(2i1i;)-1]+Z[exp(2i1i;)-1l}P,(cos8) 
l 0 

(2.3) 

and 

(2.4) 

In the direct scattering problem one usually knows the 
Uc and Us and is asked to find the cross section. In that 
case, using Eq, (2.1), one finds the wavefunction, and 
from its asymptotic behavior one finds the phase shifts 
o~, from which the cross section can be calculated. The 
problem of our interest is the inverse of this case; That 
is, given the phase shifts, find the interaction U c and 
Us' In other words, find the potentials in such a way 
that the asymptotic behavior of the regular solutions 
1/\ (r), which satisfy the differential equations given be
low, will have the desired form: 

d 2 

r2 dr 2 </J~(r) + r2[1 - Uc(r) + Us(r) - Ws(r)] </J~(r) 

=(:>t2 
- t)¢~(r), (2.5) 

d 2 

r2 dr 2 </J-ir)+r2[1-Uc(r)+Us(r)+Ws(r)1</J~(r) 

= (:\2 _ t)</J~(r). (2.6) 

To put things in a more standard notation, let us state 
that 

V(r) = U c(r) - U&(r) and Q(r) = t U.(r). (2.7) 

By using the above notation, Eqs. (2.5) and (2.6) take 
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the following form: 

d 2 

r2 dr 2 <I'~(r)+r2[I-V(r)'f2\.Q(r)]<I\\r) 

= (\.2 - t)<I'i(r). (2.8) 

Having put the equations in the form considered by 
Sabatier, 3 we note that the wa vefunctions can be rep
resented as 

<I\(r) =F±(r)U~(r) - r K±(r, s)U~(s)s-2ds, (2.9) 
o 

where 

F'(r) = exp[±{ sQ(s)ds] 
o 

(2.10) 

and U~(r) is the regular solution of the following equation: 

r2 d~: U~(r)+r2[I-Vk(r)]U~(r)=(\.2-t)U~(r). (2.11) 

v k( r), which Sabatier calls the comparison potential, 
can be any physical potential, but in order to simplify 
the mathematics in our case, we choose Vk(r) to be 
zero. The work which follows can be easily generalized 
to all comparison potentials. If the comparison potential 
is zero, then 

(2.12) 

The function K±(r, s) is defined through the following 
integral equations: If we denote the function K±(r, s) by 

K±(r, s) =I"(r, s) - J±(r, s), 

then 

J'(r, r') = F'( r) e(r, r') 

and 

_ (r K±(r,s)e(s,r')s.2ds 
)0 

r(r, r') =F'(r)g±(r, r') 

-f: W(r, s)g±(s, r')s-2 ds, 

where 

e(r,r')= 2: a~U~(r)U~(r'), 
~,-::s 

g±(r,r)= 2: b~U~(r)U~(r') 
~Es 

with 

S = {1/2, 1, 3/2, 2, 5/2, 3, ... }. 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

For our special case, where Vk=O, a~ is nothing but5 

a = {2\./7T for positive integer \. 
~ 0 otherwise. 

(2.18) 

Finally the set of coefficients bi, which we shall call 
potential coefficients, are some constants containing 
the information on V and Q in such a way that the 
following holds: 

K±(r, r)= ~r F'(rH ±r2Q(r) 

+ r [S3 Q2(S) - sV(s)] ds}. 
o 

(2.19) 

To summarize, it is proved by Sabatier that, given a 
V and a Q, we can find a set of coefficients bi, in such 
a way that the functions K'(r, r') defined by Eqs. (2.13). 
(2.14), and (2.15) are such that they will satisfy Eq. 
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(2.19) and the regular solutions of Eq. (2.8) can be 
represented by them through Eq. (2.9). 

The way that the above results are presented, they 
seem more useful for the case of direct scattering 
problem than that of inverse scattering problem, be
cause even if we could find the potential coefficients 
from the information on phase shifts, so that we could 
define the input function g±, we would still not be able to 
use the definition of K± for finding them. Since in that 
definition F' which are related to Q are unknown, it is 
our task to find them. Knowing the input function g., we 
will show how to change the definition of K., so that the 
unknown functions do not appear in the analogs of (2. 14) 
and (2.15). Then we find functions related to K± from in
formation on g±. Having found these functions, we will 
then use the analog of (2. 19) to find the potentials V and 
Q. In any case the problem of constructing the input 
functions from the information on the phase shifts has 
to be dealt with first. To see the connection between 
the input functions, or the potential coefficients, with 
the phase shifts, let us substitute Eq. (2.16) and (2.17) 
in (2. 14) and (2.15). Noting Eq. (2.9), one finds K± in 
terms of 1/0.. Substitution of this new representation of 
K± in (2.9) will give us the following important relation: 

<I'~(r)=F'(r)U~(r) - L- l<l':(r)b~ - <J!~(r)at,JL~(r), (2.20) 
j.I.~S 

where 

L'(r)=lr U,(s)U (s)s-2ds. 
J). 0 1'1. U 

(2.21) 

Since the asymptotic form of 1/0. is assumed to be known, 
for large values of r, Eq. (2.20) is an statement about 
what the potential coefficients should be. In other words, 
find a set of coefficients b~ such that with a given set of 
phase shifts Eqs. (2.20) are satisfied for large values 
of r, and then the related potentials will give the desired 
scattering information. Thus the problem can be stated 
as such: Given a set of phase shifts, find the potential 
coefficients from Eq. (2.20). From the potential coef
ficients found, one has to find K± from which the interac
tion potentials will be defined. The potentials thus 
determined will give us the original phase shifts, be
cause. by construction, the associated wavefunctions 
have the desired asympototic form. 

3. DETERMINATION OF POTENTIAL COEFFICIENTS 

Our aim in this section is to find b~ from Eqs. (2.20). 
But. as we will see, these equations can only give us 
b~ up to an unknown constant multiplicative factor. Be
fore showing how we can get bi from phase shift informa
tion, let us mention that, in order to be able to use 
asymptotic forms of 1/0. and Ux in Eqs. (2.20). we need 
to make the following assumptions6

: 

I [' sQ(s) ds 1<00 for all r, 
o 0 

(3. 1) 
Q( r) = o( r -3) for large r 

As shown in the Appendix, using these assumptions, we 
can take the limit inside the summation in (2.20) if 

(3.2) 
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where 

c~ = 0(A1 /S) for large A and 

With the above assumptions we take the limit as r - 00 

of (2.20) and equate the coefficients of ely and e-
Iy sep

arately. Doing so, we get 

Ai exp[i( oi - 1T:\/2)] = h "e- lwA 
/2 

_ "" [A' hZa!' exp(io')-A' a exp(io")]exp(-iJ..l.1T/2)L~, LJ u ± u u u u u. .... 
uES 

(3.3) 

In deriving (3. 3) we have used the following asymptotic 
forms for large r: 

1/\ -A~ sin[r + o~ - 1T(:\ - ~)/2], 

UA -sin[r-1T(A-~)/21, (3.4) 

Let us call 

(3,5) 

Next multiply (3.3) by h. and since hA = 1, Eqs. (3.3) 
reduces to 

~ exp[i(o~ - A1T/2)] = exp( - i:\1T/2) 

- 6 [B' d" exp(io') 
uEs U u. u 

- B~ au exp(io~)] exp( - iJ..l.1T /2) L~. 

(3.6) 

It is the aim of this section to show that if o~ for phy
sical values of A are given, A r=- 5 p = {1/2, 3/2, 5/2, ... }, 
then we can find ~ for A E 5p • Note that for nonphysical 
val ues of A E 50 = {I, 2, 3, ... }, except for the conditions 
of (3.2), the values of d~ are at our disposal. In order 
to find ~ for physical values of A, we follow a method 
similar to the one first used by Sabatier, 2 and that is to 
define two column vectors ¢; and ¢~ in such a way that 
the elements of ¢~ are B~ exp[i(o~ - A1T/2)] with A E 50' 
and the elements of ¢~ are similar except that A ESp. 

Then we can write (3.6) in a vector form: 

¢~ = ~o- L~(a; ¢~ - ao¢~) - L~ d: ¢;, (3.7) 

¢~ = ~ - L!(a;¢~ - ao¢~) - L: dp"¢;, (3.8) 

where ~ is a column vector with elements exp(- iA1T/2) 
with A EOS o ' L~ is a matrix with elements L~ where 
J..l. ESp and A E So' a; and ao are diagonal matrice s with 
elements di and aA where :\ E 5 o' Other elements are de
fined likewise. It should be noted that in deriving (3. 7) 
and (3.8) we have made use of the fact that a A is zero 
for physical values of A. 

Using Eqs. (3.7), we find 

n"(d"A,' _ a A,") = F" + f" d"A,' + U± d':. A,± 
o '+"0 o"Po C;o Po/I> P '+'1>' 

where 

S'i" = aoJ3"[1 - d~(f3"aoL~ + L~aj3" 

+ L~ d~L~ - L ~aj3" aoL~)], 

~~ = [pta; - ao) - aoL~(d~ - a)]~o' 
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(3.9) 

r" = [Pao + aoL~d:]L~, 

U" = - [P'~ + aoL~ao]L~ 

with P = (1- aoL~)aj3" and f3" = (d;t 1
• Since a; are at 

our disposal, we can assume their inverses exist. Also, 
ao is invertable; therefore, in general, S'i" can be in
verted, Doing so, we get: 

d~¢~ - ao¢~ = ~~ + T"a;¢; + U"dp'1);, (3.10) 

where 

~~=n"~~, T"=n"T", 

U" = n" u., and n" = (n,,)-l. 

At this point we find it interesting to note that if we 
choose ~ = ao' which is the spin-orbit analog of the 
~lass of central potentials considered by Newton, 1 then 
n" is a matrix very similar to the now famous matrix 
M which Newton needed to invert. A trivial modification 
of inversion method given by Sabatier7 for matrix M can 
be used to invert matrix n", for the above mentioned 
case. In any case, let us continue the construction by 
substituting (3.10) in (3.8): 

¢: =1)" - (L: + ,,5)d;¢; -,.Ii dp'¢;, (3.11) 

where 

1]" = ~p - L! ~~, ,,5 = L~ T., and "R = L!U". 

Having eliminated the asymptotic form of the wave
function for nonphysical values of A, let us write (3.11) 
in terms of its elements: 

~ =1Ji exp[i(~i - oil] 

- 6 B:d~exp[i(o:-o~)]i"-U(L~+,,~) 
uEsp 

where the element of 7)" is represented by 
1J~ exp[i(~~ -:\1T /2)]. 

Next let us define the following: 

L~ = iU
-
A-

1 M~ + (1T/4A)0~ 

(3.12) 

"N~ = i).-U. ,,5~ + (1T / 4A )0: if A - J..l. is even, 0 otherwise, 

S). = i).-u -1 S). if A - /I is odd, 0 otherwise, 
±u ±tl ,-

XI. = e·- u Ii! if A - /I is even, 0 otherwise, ± u. ± U. ,..... 

"R: = i)'-,,-l "R~ if A - J..l. is odd, 0 otherwise. 

With this notation we separate the real and imaginary 
parts of (3.12). If we divide the imaginary part by 
coso~, then we get 

y" = 6 D± [(1 + tano" tano") R). - (tano" - tano") X'] x uE S p u u.), ± U. U. ). ± J1. 

- (tano: - tano~) .N~], 

where 
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and 

y~ =1J~ (cos~~ tan6~ - sin~~). 

Writing the above equations in matrix form, we have 

1" =, Y D' + M ,Z D', 

where 

,Y =,R + tan6' ,R tan6' - ,Xtan6' + tan6' ,X 

and 

(3.14) 

,Z = 1 + M-' [,5 + tan6'(M + ,5)tan6' - ,Ntan6' + tan6' ,N] 

From (3.14) we solve for D': 

D' = 8'(1" - ,Y ,Z-l M-1y') 

with 

8' = (1 _ ,Z-' M- ' ,Y ,Z-' M- 1 ,y)-l ,Z-' M- 1 • 

(3.15) 

Again since d~' for nonphysical values of A are under our 
control, and if the values of 6i tend to zero sufficiently 
fast as A tends to infinity, then the inverse of all the 
necessary matrices in general exist. 

Having found D', we now turn to the real part of Eqs. 
(3.12) which give us B': 

B~ = 1J~ cos( ~~ - 6i) 

-:0 D' [(cos6z + tan6' sin6') X~ E u A u l.. u 
u -Sp 

(3. 16) 

+ (tan 6: cos6~ - sin6~) (M: + ,5:)]. 

We are finally in a pOSition to find ~ from the knowledge 
of Bi and Di. Needless to say that besides the usual 
indetermination that exists because of introducing M-1

, 

we also have further indetermination in finding ~ due 
to the fact that we can choose ~ for nonphYSical values 
of A, to a large extent, arbitrarily. In other words the 
information on phase shifts by no means will specify a 
unique set of ~ for physical values of A. 

4. CONSTRUCTION OF POTENTIALS 

In Sec. 3 we showed that from information on phase 
shifts one cannot get the potential coefficients b~, but 
one can only find them up to unknown factor h,. It is the 
purpose of this section to show that the information that 
we can get is enough to specify the potentials. 

In order to see the problem clearly, let us write the 
equations for K'(r, r') in a more compact form. Using 
(2.13), (2.14), and (2.15), we write the integral equa
tions for K'(r, r') in the following way: 

K( r, r') = F(r) E(r, r') - r K(r, s)E(s, r' )S-2 ds, 
o (4.1) 

where 

K(r, r') = lW(r, r'),W(r, r')], F(r) = [F+(r), r(r)], 
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and 

E(r,r')= 
[

- e(r, r') 

g+(r, r') 

g-(r, r') J . 
-e(r,r') 

Since we do not know what F'(r) and g'(r, r') are in Eq. 
(4.1), one cannot use this equation to find K(r, r') which 
would have enabled us to find the potentials. In order to 
use our partial information on g', let us introduce the 
auxiliary matrix H( r, r') through the following integral 
equation: 

H(r, r') = G(r, r') - fr H(r, s) G(s, r' )S-2 ds, 
o 

where 

[

- e(r, r') 
G(r,r')= 

F(r,r') 

and 

r-(r,r')J 
-e(r,r') 

f'(r, r')= 2: Ux(r)~ Ux(r'). 
xES 

(4.2) 

We should note that from information on phase shifts we 
can find d~; therefore, G( r, r') is a known matrix, and, 
solving (4.2), we can find H(r, r'). Let us next note that 
the following is true: 

F(r)h- 1 H(r, r')h= F(r)E(r, r') 

-r F(r)h- ' H(r, s)hE(s, r')s-2 ds, (4.3) 
o 

where 

h= [
h+ 0 ] 
o h_ . 

It should be noted that in deriving (4.3) from (4.2) the 
following fact was used: 

h- 1 G(r, r')h=E(r, r'). (4.4) 

Comparing (4.3) and (4.1), we come to the conclusion 
that 

K(r, r') = F(r)h- ' H(r, r')h. (4.5) 

Let us mention that in this paper we assume that the 
homogeneous version of Eq. (4. 1) does not have a non
trivial solution for real values of r. In other words the 
associated Fredholm determinant is nonzero for real 
values of r. As for the case of central potentials this 
assumption is justified on physical grounds. Otherwise. 
we would be dealing with potentials which have poles 
for finite values of r. Clearly this is not acceptable. 

So up to now we have been able to find K'(r, r') up to 
some unknown function of r. We will show that this is all 
we need to specify the form of spin-orbit interaction. 
To see that this is indeed the case, let us subtract the 
equations in (2. 14) from each other: 

2r -2[r( r)W( r, r) - r( r)K-(r, r) 1 = 2rQ(r). (4.6) 

Substituting (4. 5) in (4.6) yields the following: 

d 
dr t(r) + H ,( r) t( r) + H2(r) t

2
( r) =H 3( r), 

with lim t(r) = 1, (4.7) 

M.A. Hooshyar 260 



                                                                                                                                    

where 

and 

Hl(r) = 2r-2lH22(r, r) - Hll(r, r)l, 

H 2(r) = 2r-2H1;(r, r), 

H 3(r) = 2r-2 H21( r, r), 

t(r)=h~ exp[2 r sQ(s)ds]. 
o 

We find it remarkable that the differential equation 
(4. 7) is nothing but the generalized Riccati equation, 8 

which was first studied by d' Alembert. At this point it 
is important to note that in Eq. (4.7) all the coefficients 
can be found from the information on the phase shifts; 
therefore, we can solve the equation and find t(r). Having 
found t(r), we find the spin-orbit interaction to be 

1 d 
Q(r)= 2rt(r) ~ t(r). (4.8) 

Knowing Q(r), one can find the functions F'(r) from 
(2.10), and from their asymptotic limits the constants 
h, can be found. Substituting the found values of h in 
(4.5) will give us W(r, r'). Knowing K'(r, r), we ;re 
able to find the central potential from (2.19), if we first 
add the equations together and then take derivative re
spect to r. Doing so leads us to the following equation: 

V(r)=r 2Q2(r)_ ~ d~ [r-1r(r)K'(r, r)+ r-1r(r)W(r, r)] 

(4.9) 
Knowing W(r, r) also enables us to find <I\(r) from 

(2. 8). By construction, we are guaranteed that the wave
functions Ij{( r) associated with the calculated central and 
spin-orbit potentials will have the desired asymptotic 
form. In other words, the calculated central and spin
orbit potentials will give us the desired scattering 
information. 

An interesting point becomes apparent if we ask the 
following question: In the case when the spin-orbit po
tential is not present, does this method reduce to 
Newton's method? In order to put this question in a more 
proper form, from the point of view of inverse scat
tering problem, let us rephrase the question in this 
manner. Given one set of phase shifts, o~ = 0;:, does this 
method reduce to Newton's method? A short answer 
would be yes, if we wanted it to. In other words, even 
for the case of one set of phase shifts, this method is 
still a generalization of the Newton l and Sabatier2 work 
on the inverse scattering problem for central potentials. 
To explain this in more detail, let us assume that 
o~ = 0;: for all physical values of A. If this is the case 
and we want to solve the inverse problem, then we 
notice that there are two cases to consider. Either we 
choose d~ = d;: for all the nonphysical values of A, which 
are at our disposal, or we do not. If we make the above 
choice then a glance at Sec. 3 is enough for us to note 
that, in that case, all the quantities with plus and minus 
are identical. Therefore, d~ = dx for physical values of 
A too. From this it follows that F(r, r')=r(r, r') and 
from (4.2) we find that 

Hll(r,r')=H22(r,r') and H l2(r,r')=H21(r,r') if o~=o;: 

(4.10) 
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Substitution of (4.10) in (4.7) leads us to 

(4.11) 

l(r)=1 is clearly the solution to (4.11). From (4.8) it 
follows that Q( r) = O. From this information it then 
follows that F'( r) = 1. In this case, it is easy to see that 
this method is identical with the previous works1

•
2 if 

o~ = 0;: for all physical values of A, which is the case 
when we "only have central potentials. " 

The interesting result becomes apparent if we do not 
choose d; to be the same as d;: for nonphysical values of 
A, when o~ = 0;: for physical values of A. In this case, in 
general, F(r, r') and F(r, r') are different from each 
other, and therefore t(r)=1 will no longer be the solu
tion to (4. 7). In other words, even when 0 ~ = 0;: for all 
physical values of A, it is still possible to have spin
orbit interaction. We call these types of potentials 
transparent spin-orbit potentials because one cannot 
detect their presence from scattering information at a 
fixed energy. In other words, the information that the 
differential cross section at a fixed energy has a form 
which is usually associated with central potential, and 
that there is no change in polarization, is not enough 
information to make us exclude the presence of spin
orbit interaction in that scattering experiment. 

5. SUMMARY 

Since the method presented for construction of central 
and spin-orbit potentials from information on phase 
shifts at a fixed energy is rather involved, we feel it is 
beneficial to summarize the method. 

Given a set of phase shifts o~, one chooses a set of 
acceptable constants ~ for nonphysical values of angular 
momentum, 1 = A + t. These d~ should satisfy condition 
(3.2) and be such that the relevant matrices could be 
inverted. Next using these ct:: and o~ in (3.15) and (3.16) 
will lead us to another set of constants ct:: for phySical 
values of A. Having found d~, then we are able to find the 
function H(r, r') from integral equation (4.2). Sub
stituting H(r, r) in (4.7) enables us to find a function t(r), 
from which the form of spin-orbit interaction, Q(r), 
can be easily found using (4.8). Knowing Q(r), then we 
are able to find r(r) and their asymptotic forms, h" 
from (2.10) and (3.2). We are finally in a position to 
find the functions K'( r, r') and the form of the central 
potential from (4.5) and (4.9). 
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APPENDIX 

In this appendix we would like to prove that we can use 
~e asymptotic forms of 1/J~(r), U~(r), and L:(r) in (2.20). 
If the conditions given in (3.2) are satisfied. To prove 
this fact, let us substitute (2.9) and (3.2) in (2.20), and 
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write the summation in the following form: 

- 6 r ds s-2[K'(r, s)h~ -K'(r, s)] 
u r:: 5 0 

Based on Sabatier's works, 7 the last summation is 
uniformly convergent, and therefore interchange of limit 
from the outside to the inside of summation is justified. 
We would like to show that the second term from the 
right could also be uniformly convergent if the spin
orbit interaction has the proper form. To see this, let 
us use the Schwarz's inequality to find that 

I r dss-2[K'(r,s)h;-K'(r,s)]U~(s)1 
o 

"" h [IT j(2( r, s) S-7/3.E ds J1/2 

• 0 

(A2) 

with 

K(r, s)=K-Cy, s)h. -W(Y, s)h_. 

If we use the integral formulas for Bessel's functions 9 

and use Stirling's formula to find a bound for the 
answer, we geFO 

c U~(s) S-5/3-, ds "" r U~(s) S-5/3-, ds "" CA-2
/

3
-'. (A3) 

'0 . 0 

From (A3) it follows that the second summation in (AI) 
is uniformly convergent if the first integral in right
hand side of (A2) is bounded. Clearly this integral can 
be bounded if the function Q(r) has_the proper form. Be
cause, as we have already seen, K(r, s) depends very 
much on Q(r), and if Q(r)=O then K(r, s) is also zero. 
In order to see what condition on Q( r) is needed to make 
the mentioned integral b~unded, let us assume that, for 
large values of rand s, K(r, s) increases as r'" sa where 
Qi and a are some constants. Since the function K(r, s) 
is finite for finite values of rand s, it follows that the 
mentioned integral is bounded if 

(Qi + a)< 2/3. (A4) 

A glance at (4.6), and noting that for large values of r 
the quantities at the left side of (4. 6) are nothing but 
±K(r, r), leads us to the conclusion that (A4) can be 
satisfied if we can have: 

Q(r)=o(y-7/3) for y- 00. (A5) 

In any case, if the phase shifts and ~ for nonphysical 
values of A are such that the condition (A4) could be 
satisfied, then we can have 
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(A6) 

From (A6) it follows that the second su.mmation from 
the right in (AI) is uniformly bounded, and therefore 
the interchange of limit is possibleo Again let us men
tion that finding the necessary conditions on the phase 
shifts and ~ for nonphysical values of A, 1>0 that con
dition (A4) is satisfied, is beyond the scope of this work. 
It is best to deal with such questions in a separate com
munication, in which we will consider the class of 
central and spin-orbit potentials which can be dealt with 
using this method. 

To show that interchange of limit in the remaining 
term in (AI) is also pOSSible, we note that for large 
values of r, the following inequalities hold: 

and 

6 U~(r)a~ L~(r) "" Cr 
~ES 

IP(r)h! - F"(r) I "" C I J ~ ds sQ(s) /. 
T 

From (A 7) it follows that: 

(A7) 

lim ([F'(r)h! - F"(r)] 6 U ,,(r)au L: (r)}= 0 (A B) 
r _00 JJ, ES 

if 

Q(r)=o(r-3) for large r. 

On the other hand, since each term in the above sum
mation is bounded, we have 

lim {(r(rW.-F"(r)]U (r)a L~(r)}=O. 
u "u 

(A9) 
T- .. 

From (AS) and (A9) it follows that the interchange of 
limit in the above summation is justified. Since the 
interchange of limit in all the terms in the right-hand 
side of (AI) is possible, it follows that interchange of 
limit in the summation on the left-hand side of (AI) is 
also justified. 
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The theorem describes the effect on the motion when the Hamiltonian is scaled, that is, when 
dimensioned parameters in the Hamiltonian are varied without changing any dimensionless parameters 
in it. The motion changes in a way that is not in general simple or predictable via dimensional 
analysis. But under certain conditions the motion scales with the Hamiltonian: Classical orbits scale 
in coordinate space and constants of the motion scale according to their dimensions. The theorem is 
based on the observation that the observable D which generates dilations may be expressed as a 
time derivative of a simple quantity. We find it most direct to use quantum mechanics to describe 
dynamics in the adiabatic limit. In so doing we develop methods that may be useful for other 
classical adiabatic problems. 

I. INTRODUCTION 

Sometimes one is led to study a secular variation of 
the Hamiltonian which is equivalent to a change of scale, 
In cosmology, for example, one would like to know the 
effect of a secularly changing gravitational constant G 
on celestial motions in general and on Kepler orbits in 
particular. The answer for the Kepler problem is al
ready known. 1,2 In the limit of slowly changing G an or
bit simply scales in time along with the Hamiltonian, 
Its shape and orientation in space remain constant while 
its size grows or shrinks to give the proper total energy 
as a function of time. These facts follow from the adia
batic invariance of the action variables JOt.;; if! q Ot. dp Ot.' For 
certain judiciOUS choices of the coordinates qOt. the cor
responding action variables can be shown to be locally 
computable 3 and to have simple interpretations in terms 
of the properties of the orbit, For example, the action 
J 0 associated with the azimuthal angle is precisely the 
angular momentum, Likewise the total energy and the 
Lenz vector 

A -p x(xxp} GmMr 
o = --~ - -I-r-I-

(which points toward the apogee) can be Simply stated in 
terms of J 0 and the canonical actions associated with the 
parabolic coordinates fJ and ~. 4 From the invariance of 
the J's one verifies directly, e. g" that the eccentricity 
remains constant, and that the apogee does not precess, 

A parallel line of reasoning applies to motion in an 
isotropic oscillator potential. There also relations have 
been discovered between the orbit parameters and the 
canonical action integrals. For this system the end re
sult is the same as for the Kepler problem: The orbits 
scale when the strength of the interaction (the potential) 
is changed adiabatically. 

These two cases suggest that any classical orbit 
scales if its Hamiltonian is adiabatically scaled in time, 
The purpose of this note is to examine this hypothesis. 
We find that it is partly correct, If the scaling transfor
mation is of a restricted "canonical" form and if the in
teractions depend only on position then the orbits do 
scale with the Hamiltonian. Applied to the Kepler prob
lem and the isotropic oscillator, this result only re
iterates what is known. Its virtue is that it avoids the 
case-by-case approach of previous work, which relies 
on knowing the specific functional form of conserved 
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quantities peculiar to each problem, Further, our re
sult is in principle more general, since it applies to 
closed-orbit problems with an arbitrary number of par
ticles in an arbitrary potential and does not rely on spe
cial symmetry conditions. 5 Our theorem is not a simple 
result of dimensional analysis, From dimensional analy
sis one can learn that a scaled orbit is a possible motion 
in a scaled Hamiltonian. The theorem shows that the 
actual motion scales during a slow scaling of the Hamil
tonian in time under the proper conditions. 

One necessary condition is that the change take place 
adiabatically, For in the Kepler problem if G is sudden
ly increased by a large factor the orbit certainly does 
not scale, Instead, the point along the orbit where the 
change was made becomes the apogee while the eccen
tricity increases nearly to one, Even with adiabatic 
changes of the Hamiltonian the orbit need not scale in 
generaL To see this, consider a Hamiltonian of the form 

_ p2 e 2 
1 2 2 

H - 2m - (X2 + y2)TT2 + 2fnW Z , (1) 

The projection of the motion in the x-y plane is a Kepler 
orbit while the z motion is simple harmonic with angular 
frequency w. The initial conditions may be set to make 
the total motion periodic, From the three parameters 
specifying this Hamiltonian-m, e, and w-it is not pos
sible to form a dimensionless combination, Thus a 
change in any of these may be accomplished by a change 
of scale, i. e" by a change of units, Suppose then that 
the parameter w is slowly changed, Then the period of 
the z motion changes while the period of the x-y motion 
remains unaffected. Certainly there is nO scaling of the 
orbit; indeed, there is no longer an orbit, Thus not any 
type of scaling of the Hamiltonian produces scaling of 
the motion; we now go on to investigate a type of scaling 
that does produce scaling of the motion, 

II. CANONICAL SCALING 

We begin with a Hamiltonian H defined in 2d-dimen
sional phase space which has at least one dynamical tra
jectory that is a closed orbit, Mathematically the Hamil
tonian has some numerical value for every numerical 
value of the coordinates Xi and conjugate momenta PI' 
We define a "scale transformation" as one which changes 
the numerical Hamiltonian function as though the units 
of physical quantities had been changed. That is, 
H'(xiP j );; cH(axp bPi}' This transformation is equiva-
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lent to changing the unit of length by a factor of a, the 
unit of momentum by a factor of b, and the unit of energy 
by a factor of c. The consequences of making a trans
formation like the above are not in general simple, as 
we saw above with the Hamiltonian of Eq, (1), We thus 
restrict ourselves to "canonical" scale changes-i.e" 
those which leave the units of action invarianL Ex
pressed in the above form, a canonical scale change is 
one in which b = a-1 • 

This "canonical" scale change consists of two types 
of transformation. One of these (the c factor) amounts 
simply to multiplying the Hamiltonian by a constant; the 
other is a canonical dilation in phase space 0 This latter 
can be generated by a function on phase space just as a 
rotation can be generated by the angular momentum 
function, Thus, an infinitesimal canonical scale change 
can be expressed in the form 

H'=H+yH+Q!{H,D}, (2) 

where the small quantity 'Y is equal to c - 1 and Q! is 
a - 1. The function D appearing in the Poisson bracket 
is the generating function for dilations. If x j denote the 
Cartesian position coordinates of the particles and Pj 

their conjugate momenta, then the function D which gen
erates a dilation outward from the origin is given by 

D= t6(X iPi + PiX!). 
i 

(3) 

With this order of x and p the formula is valid both clas
sically and quantum -mechanically. Indeed, it is readily 
verified that a wavefunction I/J(x) is dilated by a factor of 
1 +Q! under the action of (l-iQ!D): 

(l-iQ!D)~(x)= zp(x) _~(x'3iJ! +~(xzp») 
2 ax ax 

(The function D arises in classical mechanics in the 
proof of the virial theorem. 6 ) 

(4) 

What happens to the motion when the Hamiltonian is 
transformed continually in time by this scaling trans
formation? We can study the dynamiCS of this adiabatic 
change most conveniently from the point of view of quan
tum mechanics. Then we may readily recover the classi
cal motion using the correspondence principle. Mes
siah's textbook7 gives a concise formulation of the mo
tion in the adiabatic limit. For this purpose the Hamil
tonian is expressed in terms of projection operators ~n 

(5) 

The EM(t) project a state into the nth invariant subspace 
of the Hamiltonian, which has the eigenvalue En(t). The 
En may be represented by Ljl n,j)(n,jl, where the index 
j enumerates a basis of states in the nth invariant sub
space. In this work we confine ourselves to the case of 
bounded motion, and hence the sum on n is a discrete 
sumo If the En and Pn vary sufficiently slowly, 8 an eigen
state I n, j) will develop in time according to 

. a I ') En (t) I .) ia En I .) lat n,) = n n,) +Tt n,) • (6) 

The first term describes the ordinary time development 
that the state would undergo if the Hamiltonian were 
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time dependent. The second term arises because the in
variant subspaces are changing with time, and because 
a state in the nth subspace must stay in that subspaceo 
This term produces a change in In, j) just sufficient to 
move it into the current invariant subspace. The state 
changes as little as possible consistent with the require
ment that it remain in the subspace p"(t). 

In our canonical scaling process the effect of the vari
ation in the energy scale is simply to multiply all the 
original En by the time-dependent factor c(t). The effect 
of the change in length and momentum scales is to trans
form the projection operators En by a dilation propor
tional to the length factor a(t): 

i a~n = [pn(t), g]~ ~ (7) 

where g is the dilation generator of Eq. (3)0 This op
eration dilates all the states in the Pn subspace, but it 
does not necessarily change the operator En itself. For 
example, if the various states spanning Pn simply rotat
ed into one another under dilation, then the subspace as 
a whole would remain unchanged, Pn would commute with 
g, and the operator Pn would remain unaffected by the 
dilation, In this case the state In, j) would not be chang
ed during an adiabatic dilationo In the general case In, j) 
develops according to 

. a In,j) (t)En I .) a (DI ') P DI .» t-o-t-=C ti n,) -na _ n,) -_n_ n,) , (8) 

The first term in this expression changes the overall 
phase of the eigenstate; the second one causes it to di
late according to the change in length scale 0 The third 
term removes that part of the dilation that does not con
tribute to ap/oto We are interested here in the condi
tions necessary to cause the motion to scale along with 
the Hamiltonian. The third term spoils the scaling of 
In, j); accordingly, we shall seek conditions under which 
this term vanishes 0 9 

By forming a linear combination of the states I n,j) 
we may deduce the time development equation for a gen
eral state 

i al
1J;)=H(t) IZP>-.!:..(D-6 P (t)DP(t)\ 1iJ;)" (9) at n lia - n - n - -" J 

The effect of the adiabatic change is evidently to replace 
the Hamiltonian by a new time development operator 
!! err given by 

a -
Heff=H --(D-D), 

a 
(10) 

where we have denoted the prOjected dilation operator 
'LEn!!En by po This same Heff must generate the time 
development of a Heisenberg operator 6(t) 

dA i [ ) aA 
Tt= - Ii A, Heff +iit' (11) 

where the last term takes account of explicit changes in 
the definition of A as a function on phase space. This 
term is important, for example, in computing the change 
in the Lenz vector, When G is varied in the Kepler prob
lem the Lenz vector changes not only because the motion 
changes, but also because G appears in its definition, 
The time development equation must be valid c1assical-

T,A. Witten Jr. 264 



                                                                                                                                    

ly also provided (- i/Ii times commutator) is replaced 
by a Poisson bracket everywhere. (In practice, one 
must also find the classical analog of the operator [J.) 

III. THE VANISHING OF D 

We have argued that the motion scales with the Hamil
tonian provided the term in D gives no contribution, In 
this section we find the classical interpretation of D, 
and we find a broad class of Hamiltonians for which [j 
vanishes. We may find the physical significance of D by 
taking its expectation value in an arbitrary state, (Ques
tions of adiabatic change do not concern us at the mo
ment, so that we may consider the Hamiltonian to be 
fixed" ) 

(<p(t) I g I <p(t» =6a:, !,an,exp(iEn, t) exp( - iEnt ) 
nn' 
!!' 

I 

(12) 

Evidently the only terms that can contribute in this sum 
are those for which n' = n = 1. This means that En,= En' 
and the time dependence drops out: 

(<p(t) I.Q I <p(l» = 6 a:j,an,(n,j' I pi nj), (13) 
njj' 

The expectation value of the bare dilation operator D 
may be expressed as in Eq. (12), except that the ~z 's 
are absent and thus all the time -dependent terms are 
present, Apparently one may extract (D) from (D) by 
simply taking the time -independent terms, In other 
words, D is the time average of D, 

Now we seek a condition that would make the time 
average of D vanish. In periodic motion the average 
would vanish if D were the time derivative of some quan
tity I, for then 

(D)=~ iT(D)dt=~ IT:
t 

(I) dt=1(T)T-1(0) O. (14) 

As it happens, D does have this form for interactions 
that depend only on coordinates. Whenever the interac
tion is of this form the canonical momeI!tum P; is pro
portional to the corresponding velocity x;, Then the 
quantity I we seek is simply the trace of the inertial 
tensor, 

1=t6m ;x;2, 
i 

(15) 

To verify rigorously that the operator D must vanish in 
this case, we express it in the form 

(16) 

The last step follows because the projection operators 
force £1 ,l£1n to be diagonal with lJ. 

We have suggested that it was the presence of D that 
prevented the motion from scaling when the Hamiltonian 
is scaled. We now substantiate this assertion by show
ing that if jj = 0, orbits scale and conserved quantities 
scale, A conserved quantity A obeys the equation of 
motion 

265 J. Math. Phys., Vol. 16, No.2, February 1975 

dA ia aA 
Tt= + Pia [A, D] + at' (17) 

where we have assumed that D vanishes and used [lJ, 4] 
= 0, We wish to prove that A scales according to its di
mensions. That is, if A has dimensions of (length)m 
X(momentum)nX(energy)k, then it expands according to 

(18) 

If A is a vector, its direction must evidently remain un
changed. The above is just what will happen if all the 
quantities defining A scale in time according to their di
mensions. This must be true since A must be a dimen
sionally consistent function of its arguments, These 
arguments are of two kinds: (1) phase space coordinates 
x; and Pi> and (2) parameters s! taken from the Hamil
tonian. The quantity A will expand properly according 
to Eq. (18) if it obeys, 

dA Ii " ilA 1 d -1">' ilA ">' ilA , 
-dt = - -L..i-~ -x; - -=r dt a L..i-::;-P P; + ~-~ -s j' a I uX; a ; u ; JUS, 

(19) 

where the S j are presumed to expand analogously to Eq, 
(18), this being what we mean by a scaling transforma
tion of the Hamiltonian. 

The actual time development of A may be expressed 
as 

(20) 

We may show this equivalent to the desired form, Eq. 
(19), by writing out XI and PI in terms of Heff and writing 
ilA/ill in terms of the s,: 

dA=6 ilA (-i[Xj)(H -~D)])+6 ilA 
dt ; ilx; Ii a i il PI 

x(-~[p!,(!!-~p)])+~::,sJ' (21) 

Rearranging 

dA { ilA (i ) aA (i 1\ } Tt= li'ilX
I 

-ji[XpH] +ilP
I 

-ji[PpH]j 

-~ 6- -!.~ D] +- _!'[p. D] '[ ilA (. ) aA (. )] 
a I ilx; Ii j) - ilP; Ii -"-

vilA. 
+~-::;-s,. 

! uS j 

(22) 

The expression in braces vanishes, since by hypothesis 
A is a conserved quantity, The commutator -times
minus i/Ii (Poisson bracket) of p with ~ I gives!i> and 
with !!.; it gives -!!.;o Thus 

dA Ii" ilA a ">' ilA ">' ilA • (23) 
-dt = - -L..i-~ -XI + -~-::;-P PI + ~-~ -s j' 

a ; uX; a j U j j us, 

This expression is clearly equal to Eq. (19), thus prov
ing our assertion that A scales according to its 
dimensions, 

We now turn to the scaling of classical orbits. We as
sume that the initial motion was in a closed orbit with 
orbital period T. Then we wish to show that during the 
adiabatic scale change the orbit retains its orientation 
and shape but expands by a factor of a-1 , Similarly, the 
orbital period should expand by a factor of c-1 , One way 
to show this scaling might be to characterize the orbit 
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in terms of conserved quantities A and then to use the 
scaling of A that has just been established. We prefer 
instead to use a more physically transparent method 
based on the classical limit of quantum mechanics. This 
method relies On the fact that an "orbit eigenstate" 
I n)(t} may be constructed which (1) is an eigenstate of 
the quantum Hamiltonian, and (2) describes a particle 
confined near the locus of the classical orbit in d-dimen
sional configuration space. We may construct this state 
as a linear combination of wave packets ljJ(x, t} corre
sponding to particles moving along the orbit 

(xl n)(t) = JoT /(s) ljJ(x, t -s) ds. (24) 

The states ljJ(x, t} may be chosen to be tightly localized 
near the position of the classical particle at time t; this 
follows from the correspondence principle. Thus it is 
clear that the particle described by I n) must lie near the 
locus of the orbit. We show in the Appendix that the co
efficients /(s) may be chosen to make I n) an eigenstate 
corresponding to an eigenvalue En close to the classical 
energy of the orbit. We also show there that the energy 
spacing En+1 - En near En is equal to the orbital frequency 
times 2 "n. 

From Eq. (8) the state I n) evolves according to 

i a1n) =c(l) E \n)-~D\n> 
at Ii n na- (25) 

where we have assumed that fJ vanishes. The first term 
gives I n) a time-dependent phase factor, which has nO 
effect on the probability distribution in space. The sec-
0nd term causes the state to dilate by a factor of a-1 

over time. ThUS, 

\ (x I n)(t) 12 = ad \ (a xl n)(O) \ 2. (26) 

Evidently after the scaling process the particle remains 
confined to an orbit, and this orbit is a dilation of the 
original one. Since the energies and energy difference 
scale by a factor of c, the orbital frequency must also. 
This is what we wished to prove. 

IV. CONCLUSION 

In the above development we have established the fol
lowing Theorem. Given (1) a system of particles inter
acting via a potential that depends only on position, (2) 
that the initial motion is periodic with period T, and (3) 
that parameters in the Hamiltonian are changed adia
batically in a way equivalent to a continuous change of 
length and energy (but not action) units, then (1) a con
served quantity remains a conserved quantity and scales 
according to its phySical dimensions, and (2) the motion 
remains periodic with a suitably scaled period and an 
orbit unchanged except for an overall expansion in size 
given by the expansion of the length scale. The theorem 
applies to the Kepler problem and the harmonic oscilla
tor problem and thus it establishes their scaling prop
erties within a general framework. The result shows 
directly the scaling of other known periodic motions such 
as that arising from the Hamiltonian of Eq. (1). The re
sult may prove useful for more realistic N-particle mo
tions in celestial mechanics10 and in plasma physics. 11 
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Moreover, the techniques used to obtain this theorem 
may prove valuable in other problems involving adia
batic invariants. The use of quantum dynamics to de
scribe adiabatic motions appears attractive, since it is 
simply stated and avoids the use of the delicate remap
pings and time averages often needed in the classical 
caSe. 3 
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APPENDIX: CONSTRUCTION OF THE ORBIT 
WAVEFUNCTIONS 

Let us suppose that the claSSical particle has an en
ergy equal to the nth eigenvalue En of the quantum Hamil
tonian. The wave packet describing this particle is com
posed of a superposition of eigenstates having energies 
near En' 

ljJ(r, t) =.0 bk/r I k, j) exp(iEki ), (A1) 
k, j 

where k labels the energy level and j denotes the other 
quantum numbers necessary to specify the state. The 
classical motion is periodic with period T; thus the wave 
packet function if! must also have this period12 (up to a 
phase factor). This means that the spacing of the energy 
levels near En must be 27T/T or multiples thereof, as is 
evident from Eq. (A1). We now form the superposition 
of IjJ states which is to yield the orbit wavefunction, de
noted <P, 

(A2) 

(The function <P is not normalized, since the integral is 
not taken with respect to orthogonal states.) In terms of 
the I k, j) states <P has the form 

<p(r, t) =.0 bkJ(r \ k, j) exp(iEkt) 
k , j 

(A3) 

Because of the spacing of the levelS, the integral must 
vanish when k"" n, and hence 

<p(r, t) = T.0 bk/r \ n, j) exp(iEnt). 
j 

(A4) 

Evidently q, represents a pure eigenstate. Moreover, it 
mu st vanish except near the classical orbit since all the 
functions IjJ do. The orbit eigenstate thus has the prop
erties claimed for it. 
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'Roman U. Sexl, Acta Phys.Austr. 22, 159 (1966). 
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11 and ~ are defined symmetrically about the z axiS, then 
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G2m3
M3 _ (JT/-Je ) 

E 2(m+M)(Jn+J,+IJ4)I)2' <AO>.-GmM I n+J,+IJ4)1 • 

See L. D. landau, and E. M. Lifshitz Quantum Mechanics 
(Addison-Wesley, Reading, Mass., 1965), 2nd ed., p. 125ff. 
The eccentricity E is given in terms of E and the angular mo
mentum L : E = 0. + 2EL2 /G2 lIflm3)1 /2. 

5The existence of periodic motions in the first place may, 
however, require a special symmetry in the problem. 

6H. Goldstein, Classical Mechanics (Addison-Wesley, 
Reading, Mass., 1950), p. 69. 

TAlbert Messiah, Quantum Mechanics, 5th printing (Wiley, 
New York, 1966), p. 744. 

8En must not vary appreciably during the time n(Ert+1 - En)-I for 
any populated state I n,j). 
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9Actually, it is possible for the state to scale even when the 
EnD term does not vanish. It is sufficient for it to have the 
same form as the En term, as this would simply introduce an 
extra phase factor into the eigenstate. 

lOSee, e.g., A. Ollongren, in Galactic Structure, edited by A. 
Blaauw and M. Schmidt (University of Chicago Press, 
Chicago, 1965). 

IIT.G. Northrop and E. Teller, Phys. Rev. 117, 215, (1960). 
12For finite n the wave packet may undergo a slow spreading 

motion in addition to its periodic motion. This spreading mo
tion may be made as small as desired by increasing n and re
ducing the range of Ek • We shall assume that this spreading 
motion has been made negligibly small on the time scale of 
the adiabatic variation. 
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A method for finding the eigenvalues and the eigenvectors of the Schrodinger equation is presented. 
If H = T + V is an M -body Hamiltonian, we use Trotter's formula in the form e -~T In e -~v In 

~ e -~H In (for n large). This allows the computation of the matrix elements of e -~H in the 
configuration representation. and the moments /L, = (lji,(e -~HYlji) (r = 1,2.···) for any wavefunction 
lji. From the moments /L, we compute the [N - liN] Pade approximant. whose poles are the 
approximate eigenvalues of e -~H. The convergence of the method is proved and asymptotic formulas 
for the matrix elements of e -~T projected on states of given angular momentum are derived. 

INTRODUCTION 

The aim of this work is to present a method for find
ing the eigenvalues of the Schrodinger equation of a few
body system, combining the Trotter's formula and the 
method of moments. 

Trotter's theorem not only provides a theoretical 
basis for proving the Feynman-Kac formula (see Ref, 
1), but is also a powerful tool for the actual computa
tion of the functional integral appearing in the 
Feynman-Kac formula. 

ConSider a quantum system of M spinless equal parti
cles of mass m. Choosing Ii = m = 1, the kinetic energy 
operator is 

1 3M a2 

T=--L-2' 
21=1 oq 1 

We denote by V the potential energy operator 

(1) 

and by H = T + V the total Hamiltonian. V(q) is a real 
measurable function bounded from below; throughout 
this paper we shall assume V such that H is self-adjoint 
and bounded from below. The scalar product in L 2(R 3M) 
will be denoted by (, ). 

Trotter's theorem can be formulated as follows (see 
Ref. 1): 

Trotter'S Theorem: Let T, V and T + V be linear 
operators defined in a Hilbert space K, all self-adjoint 
and bounded from below. Then for all {3 > ° 

s-lim[exp( - (:IT In) exp(- (3V In)]" = exp[ - (:l(T + V»). 
"-~ 

(2) 
It follows that 

s-lim[exp( - (3V 12n) exp( - (:IT In) exp( - (3V /2n»)" 
".~ 

=exp[-{:l(T+V»). (2') 

We denote by A 1(,B) the operator exp( - (3V /2) exp( - (3 T) 
xexp(- (:lV/2), by A({:l) the operator exp(- {:lH), and by 
I q I the distance (L:l=~ q~)I/ 2; then the kernel correspond
ing to the operator A 1({:l/n) is 
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(
2 7T (3)-3M / 2 

A 1({:l/n, qll q2) = -;;- exp[ - ({:l/2n)V(qJ] 

xexp(-lql-q2!2n/2{:l)exp[-({:l/n)V(q2)]' 

(3) 

Formulas (2), (3) have been widely used by Storer and 
collaborators2

-
5 in order to compute the bound states of 

a two-or three-body system. They devoted their atten
tion especially to the ground state problem. 

Choosing a finite set of base pOints q j (j = 1, 2, ... , R) 
for the numerical integration, they replace the kernel 
(3) by an R XR matrix; taking n very large, they obtain 
an approximation scheme for computing ('PI' e-en 1J;) in 
any orthonormal baSis {,p /} of L 2(R3M). Furthermore, 
for large {3 and normalized 1J;, the expectation value 
(,p, e-en1J;) tends to e-aEo where Eo is the ground state 
energy. 

We propose here an improvement of the method which 
makes use of the good features of the Pade approxi
mants, and is especially suited to compute the excited 
energy levels. We consider the set of moments 

I-Lr = (1J;, A({3)"P)=(1J;, A(r{3)1J;), r=O, 1,2, ",,2N-1, 

1J;EL2(R3M), (1J;,1J;)=1. (4) 

This set uniquely determines the eigenvalues of the 
operator AN =:PNA({3)PN, where PN is the projection 
operator on the subspace HN generated by ,p, A({3)1J;, 
A({:l)21J;, ... , A({3)N1J;. It is well known (see Ref. 6) that 
if 1J; is such that U';=lHN is dense in L2(R3M), AN con
verges strongly to A({:l) as N - 00. Since the operator 
A({:l) is bounded, no domain questions are involved in 
the choice of <p. 

Formulas (2)-(4) allow us to compute numerically 
the moments I-Lr (r= 1, 2, ... , 2N -1) and the 
[(N -1)/N] Pade approximant gives the expectation value 

where P N -) and QN are polynomials of degree N -1 and 
N, respectively. 

As is well known, QN is given by 
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Ilo III IlN 

/-Ll 112 IlN.l 
QN(Z) = det 

/-LN-l ilN 1l2N -1 

ZN N-l Z • 1 

2. CONVERGENCE OF THE METHOD AND 
ESTIMATE OF THE ERROR 

We make the following additional assumption on the 
Hamiltonian H = T + V: 

(6) 

Assumption 1: In the interval ]- 00, 0 [ there is only a 
discrete spectrum with a finite number of points El 
<E '" <E <0 

2 "D· 

Let f3>0, and denote by a(A(f3» the spectrum of A({3) 
= e- BH

• It follows from Assumption 1 that A(J3) has a 
finite number of eigenvalues Al > A2 •.. > An D with An D > 1. 
The remaining part of a(A(f3}) is contained in the interval 
[0,1]. 

The following results are well known (see Refs. 6-8): 
(a) If ?/! is such that U';.r H N is dense in the Hilbert space, 
(I - zAN)'1 strongly converges to (I - zA)"l for e-1 having 
positive distance from a(A(f3». The convergence is 
locally uniform in e. 

(b) Between two consecutive eigenvalues Ai_I> Ai (i ~ nD) 
there can be at most one eigenvalue A\N) of AN' 

(c) For any i ~ n D there exists an N such that for N> N 
we have 

(7) 

(8) 

monotonically from above, unless ?/! is orthogonal to the 
eigenvectors of H. 

In order to estimate the "errors" ~A\N)=A:N) -Ai 
(i = 1, 2, ... , n D)' the following lemma is useful. 

Lemma: For any integer m > O. there exists an 
(m +nD)X(m +nD) diagonal matrix A and a mapping 
cp : ?/! E L 2(R3M) - V E em •• D such that 

l/-Lr-/J.TI~rlm (r=l, 2, ... , 2N-l), (9) 

where /-Lr is given by (4) and Mr =(v, k v). (By <,) we 
denote the scalar product in em+" D. ) 

Proof: Let 
n D 

A =A({3) = f AdP(A) +"6 AiPi 
o 1=1 

(10) 

be the spectral decomposition of A(f3) [with P(A) con
tinuous from the right]. Let ~~",) denote the semiclosed 
interval ](k-l)lm, kim], k=1, 2, ... , m, and ~ (~~m» 
its characteristic function. Setting p~m) =P{klm) 
- PC(k -1)lm) = ~(~~m»(A), the operator B = L/;.1 p~m)klm 
+ 2: ~Pl A / P / uniformly approximates A: 

liB-Ali,,:; 11m. (11) 

On the other hand, 

(,p, Br?/!) = f; (!..)r I p~m)?/! 12 + ~ A~ I Pi?/! /2 
k.l m /=1 (12) 

( r = 1, 2, ... , 2N - 1). 
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Therefore, introducing the diagonal matrix A, 
~ 1 - 2 - m 
A ll =;;, A 22 = m . "A""", = m =1, 

- -
A m+ 1 ,1n+l == AnD' •• Am+nD,m+n D:= AI' 

and a mapping cp : l/J - v with 

vk=lp~m)l/J1 (k=I,2, .•• ,m), 

v",+s= IPnD+1 - s ,pl (s=l, 2, "', nD)' 

we can write 
__ m+n

D 
....-

My = (v, A'v) = L (Akk)' v~ = (?/!, B r l/J). 
k=1 

It remains to prove that Illr - ilr I ~ rim 

(13) 

(14) 

(r=l, 2, ..• , 2N-Oo LetusputPc=I-L;:~IPi' Since 
IIA Pc II ,,:; 1, II BPcll,,:; 1, and A and B commute, we have 

lilT - iIr I = I (?/!, (Ar - Br)l/J) I = / (Pc l/J, (Ar - Br)Pe?jJ) / 

= /0c l/J, (A - B)(~ A'-k-l B~ Pc l/J) / 
r-l 

~ IIA -BilL IIA r
-k-1 Bk Pe ll 

k=O 

1 T-l 
~-L II(AP Y-k-1(BP )kll,,:;'!'" 

m k=O e e m QED 

In our case An =e-SEnD; therefore, it is possible to 
D 

choose f3 in such a way that An > 2. Assuming that we 
D 

are already in such a situation, we can prove the 
following. 

Theorem: We define, for a normalized l/J E L 2(R3M
), 

al=/P/l/J/, i=l, 2, ... , nD' 

y=sup I~ I, O=An -2 >0. 
i,i Ai -"j D 
itj 

The following inequality holds: 

I 
~A:N) I,,:; y2("~-I) (_I_)2(N-n D ). 

Aj a i 1 + 0 
(15) 

Proof: We denote by ~\N\m) the zeros of QN(e) where 
QN is obtained by QN [see Eq. (6)] replacing the mo
ments /-LT by the moments ilT considered in the Lemma. 
We have 

/~AlN)/ = IAI-AlN)I,,:; /AI-~\N)(m)/ + /~iN)(m)-A\N)I, 

i==l, 2, ... , nD' (16) 

To the first term we can apply the following estimate 
(see Ref. 6): 

{ )

2(N-nv) 
~ AI 2(n -1 1 '" -y D -- • 

a~ 1 + 6 
(17) 

We notice that the rhs of (17) does not depend on m. 
Therefore, we can perform the limit for m _ 00 in (16). 
Since for fixed N the coefficients of QN are continuous 
functions of the moments, and the zeros XlN)(m) are 
continuous functions of these coefficients we have, using 
the preceeding Lemma, that lim .. ~~ IX~N)(m) _;\:N)I =0. 
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The theorem follows. It shows that we have at least 
geometric convergence to the true eigenvalues unless 
a;=O. 

3. PROJECTION ON THE STATES WITH GIVEN 
ANGULAR MOMENTUM 

Assume now that V is a two-body potential depending 
only on the interparticle distance. Let P j be the pro
jection operator on the subspace of L 2(R 3M

) correspond
ing to states of total angular momentum j. We restrict 
the problem to such states. For simplicity we consider 
the case of Boltzmann statistics. 

We need the kernel corresponding to the operator 
A;({3)=Al({3)Pj=PjAl({3)Pj. We denote by G the rotation 
group in R3

, by g an element of G, and by R(g) the usual 
vector representation of G by 3 x3 orthogonal matrices. 
Then the above kernel can be obtained applying R(g) to 
q2 = (qw q22"'" q2M) (with q2/ E R3

) in formula (3), 
multiplying by the character Xj(g) of the irreducible 
representation of G with spin j. and averaging over the 
group. We obtain 

A}({3/n, ql. q2) == (2j + 1 )(21T{3/nt3M 
/2 

xexp~2~ kf V(lqll -qljl») 

x [f d~g Xj(g) exp (- ~ Iqli -R(g)q2l ;(3)] 

where IJ. g denotes the invariant measure over G. 

In actual computations it is very useful to have 
approximate expressions of 

Ij({3) = f djJ.gXj(g)exp(-klqIl-R(g)q2iI2 2~). 

(18) 

(19) 

An asymptotic expansion of (19) for small (3 can be 
obtained by the saddle-point method. The expression 

M 

U(qll qz, g) = L: Iqlj -R(g)q2J2 
i=l 

M 

= LJ (I qJj 12 + 1 q2! 12 - 2qH • R(g) q2/) (20) 
1=1 

can be interpreted as the harmonic potential energy of 
two rigid configurations q1 and q2 where the pOints qll 
and q2i are linked by elastic strings. The configuration 
q2 is free to rotate (for instance around the common 
center of mass at the origin of the coordinates). Hence 
there exists at least a minimum of U with respect to a 
set Q'1> Ql2. Ql3 of parameters labeling an element g of 
the rotation group. Expanding U around the minimum 
pOint,R(QlO), wehave(Qlo=QI~, (lI~, a~) 

Denoting by p(a) the "density of elements" of the 
group G, the saddle-point method gives 
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(21) 

x exp(-t IqJj-R(go)Q2iI
2 21(3) 

where K is the 3 x 3 matrix 

(22) 

Of course formula (22) holds only if aD gives a stable 
equilibrium pOSition, i. e., K <0. 

We notice that, due to the invariance of the measure 
~g, A }=o(f:l, q II q2) depends only on the spatial invariants 
that can be formed from ql and q2 separately (angles, 
VOlumes, etc.). A;=o({3, ql1 q2) does not depend on the 
relative pOSition of q2 with respect to q,. 

The approximation scheme that we propose consists in 
choosing for n a power of 2, i. e., n = 2"'; then using the 
appropriate base pOints and weights for the numerical 
integration, we repeatedly square the matrix 
A ~({3/n, ql1 q2): 

(23) 

Finally, we choose </! E L 2(R3M
) and we compute the mo

ments Ilr [see Eq. (4)] and the zeros of QN [see Eq. (6)]. 
By Trotter's formula and by inequality (15) we see that 
in principle any desired accuracy can be reached by 
taking m and N sufficiently large. Of course, the eigen
value ?t; can be obtained only if a;* O. Approximate 
eigenvectors of e -BH, i. e., eigenvectors of AN' are 
easily determined by the usual methods (see, e. g. , 
Ref. 6, p. 56). 

Finally, we add two remarks. (1) Our approximation 
of Trotter's formula is equivalent to replacing the func
tional integral which appears in the Feynman-Kac 
formula by an integral over Rn with n == 2m • (2) Singular 
"hard-core" potentials can be treated without difficulty 
since the potential appears only through the factor 
e-BV !2n. 

Numerical calculations, using the IBM 370/165 of the 
Centro di Calcolo del CNEN, Bologna, and the CDC 
6600 of the University of Bologna, have been performed 
in the two- and three-body cases. The results confirm 
the good features of the method and will be published 
elsewhere. See also Refs. 9 and 10. 
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Particles and simple scattering theory 
J. V. Corbett* 

Mathematics Department. Indiana University. Bloomington. Indiana 
(Received 18 July 1974) 

A necessary and sufficient condition for a pair of subs paces to be the in and out scattering subspaces 
for a simple scattering system is obtained. It involves the existence of certain representations of the 
Galilean presymmetry group on these subs paces. The physical interpretation is that, in scattering, 
particles remain as particles even in the presence of the interaction. 

The purpose of this note is to give a necessary and 
sufficient condition for a pair of subs paces to be the in 
and out scattering subspaces for a simple scattering 
process. 

Consider a system of two massive spinless particles 
whose interaction can be represented by a potential func
tion V that depends only on the relative separation of the 
particles. The relative motion of the particles is gov
erned by a Hamiltonian H =Ho + V with domain dense in 
U(:R3). Ho is the relative kinetic energy of the pair of 
particles. V is taken to be such that Ho + V is self
adjoint. Suppose that we are given a pair of subspaces 
M'(H)C U(:R3) that reduce H; under what conditions are 
they scattering subspaces associated with a unitary S 
matrix? 

In order to have a scattering theory we must identify 
the following structures; 

(S1) A pair of subspaces H In(H), H out(H), the subspaces 
of incoming and outgoing scattering states for the dyna
mics given by the Hamiltonian H. Both H In(H) and H out(H) 
reduce H. 

(S2) An S matrix S(H) that is a unitary map from 
H out(H) to H In(H) and that intertwines the restrictions of 
the Hamiltonian H to H out(H) and to H In(H), 

S(H): H out(H) - H In(H); S(H)H. =H.S(H). (1) 

In general these two conditions are not sufficient con
ditions for S(H) to be a physical S matrix in the sense 
that observable quantities, such as cross sections, can 
be deduced from the properties of S(HL The additional 
structure that gives a physical S matrix can be present
ed in many ways; the usual method is the following: 

(S3) Define a standard dynamics through a standard 
Hamiltonian Ho for which the scattering subspaces are 
equal, H In (Ho) =H out(Ho) =H scat(Ho), and the scattering 
matrix is trivial, S(Ho) =1. Then S(H) for the nonstan
dard Hamiltonian H will be a physical S matrix if there 
exist isometries Q, from H scat(Ho) to H ~Ht(H) such that 

Q.HoIH =HIH Q, scat(HO) out (H) • 

nH I =HI n - 0 H (H) H (H) -, 
Beat 0 in 

and S(H) will be given by 

S(H)=n_n:. 

(2) 

(3) 

It should be noted that under these conditions both Q, 

are only defined up to a multiplicative constant of mod-
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ulus 1. This nonuniqueness is usually absorbed by taking 
S(H) to have the form 

S(H) =1 + T(H) , 

The usual standard dynamics for a nonrelativistic sys
tem of two particles is that governed by the free Hamil
tonian Ho. In the relative coordinates HO=-V2/21l. This 
is not the only candidate. It may be argued that the dy
namics given by an external gravitational field should be 
employed. In this case the apparent effectiveness of the 
standard of free dynamics would be due to the homo
geneity of the external gravitational field over the di
mensions of the apparatus that is used in scattering ex
periments, It is easy to think of situations in which this 
effective homogeneity would not be a good approxima
tion. It is also possible that other standards are neces
sary in other studies. For example we may wish to 
study the nuclear forces between a pair of protons by 
comparing the unbound motion of such a system with the 
unbound motion of a pair of particles of the same mass 
where only interaction is coulombic. In the following we 
take the free dynamiCS as the standard. 

The standard model given by the free dynamics has the 
following characteristic: 

(a) H scat(Ho) =I}(R3
). 

(b) The physical kinematic observables associated with 
the free particle of mass Il and spin 0 are given by the 
self-adjoint elements of the Lie algebra of the unitary 
irreducible projective representation, labelled by (J-I., 0), 
of the group G t. We call this representation U" (g), 
gEG t • 

The group G t is the subgroup of the Galilean group 
obtained by deleting the temporal displacements. If 
gE Gt> 

g= (a, v, R) 

where a is a spatial displacement, v is a boost (dis
placement in velocity space), and RE SU(2), the cover
ing group of the rotations. It is the subgroup of the pre
symmetry group, called the kinematic subgroup, that 
maps a fixed -time hyper surface , t = const, onto itself. 1 

(c) The generators of the spatial displacements in the 
representation U" (g) of G tare P (the triplet of mom en -
tum operators) and are related to the Hamiltonian Ho by 

Ho=P' P/2J-1. (4) 

on a dense subset of U(:R3). 

The canonical irreducible unitary projective repre
sentation U,,(g) of G t is obtained from a true represen-
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tation u(e,g) of the covering group Gt ,,, of Gt • Gt ,,, is 
the central extension of G t by the Abelian group of real 
numbers. Members of G t," are ordered ordered pairs 
(e,g), eF1R, gF G t • The group law of multiplication is 

(e',g')(e, g) = (e' + 8 + ~,,(g',g),g'g), (5) 

where w'" (g', g) = expli~" (g', g)] = exp(i/-i v . R'a). The 
choice of w",(g',g) is not unique; equivalent ray repre
sentations can be obtained if w~{g',g)=[<I>(g)<I>(g')/ 
1> (g'g)]w,,(g', g) replaces the factor w,,(g',g), where <I>(g) 

is a complex function of modulus 1 on the group G t' 2 

The choice given here leads to the usual projective re
presentation U" (g) of G t through the formula 

U ,,(g) = exp( - i8) U( e, g), 

where U(8,g) is the true representation of Gt ,,,, with 
group multiplication given by Eq, (5): 

(U/<(g)if)(x) = ex p(i/-ia'V/2 - i/-iV 'x')if(x'), 

where x'=Rx+a. 3 

A different equivalent choice of the factor w '" (g', g) 
would lead to a representation 

U~(g) = <I> (g)U" (g). 

It is usual to consider not Gt but G, the Galilean 
group, as the group whose representations are associat
ed with a free particle, and the representation of G t 
given here can be extended to a representation of G On 
account of the relation between P and Ho, given under 
(c). However, in the presence of an external field we 
can, in general, only assume the existence of a repre
sentation of Gt • Even if the external field can be repre
sented by a potential function, the corresponding Hamil
tonian need not be the generator of time translations for 
the representation of G induced from that of G t' In fact, 
the next theorem can be viewed as a statement of the 
fact that it is only when the representation of G t is car
ried by a space of scattering states that this extension 
of the representation of G t to a representation of Gis 
possible, The possible importance of representation of 
G t as distinct from representations of G was first dis
cussed in Ekstein' s articles on pre symmetry .1,4 

We will now obtain necessary and sufficient conditions 
for a pair of subspaces to be scattering subspaces that 
are associated with a unitary S matrix. In the following 
U ,,(g) will stand for an irreducible representation label
led by (/-i,0). H+=Hl w (Hl1 H_=HIM-(H) are the restric
tions of the Hamiltonian H to the subspaces M'(H) that 
reduce H, 

Theorem 1: M'(H) are subspaces of scattering states 
if and only if there exists a pair of unitary irreducible 
projective representations of Go U /«g, out) on M+(H), 
U ,,(g, in) on M-(H) such that 

H+ = P(out). p(out)/2/J., 

H_ = P(in) . P(in)/2/-i, 

where P(out), P(in) are the generators of the spatial 
translations in the corresponding representations 
U ,,(g,out), U,,(g, in) of Gt • 

(6) 

Proof: The sufficiency is evident from the equivalence 
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of the unitary irreducible representations of G t," label
led by (/-i, 0). Let W+ be the unitary that intertwines 
U ,,(g, out) and U J.>(g) and W_ that which intertwines 
U,,(g,in) and U,,(g): 

W+: L 2(]R3)_ M+(H), 

W_: L 2(R 3 )_ M-(H). 

If S(H) = W_W:, it is a unitary map from M+(H) to M-(H) 
that intertwines U,,(g,out) and U,,(g,in). In particular 

p( in) S(H) = S(H)P(out) 

on a dense subset of M+(H), because P(in), p(out) are 
self -adjoint representatives of elements in the Lie alge
bra of G/, But by Eq. (4) and the unitarity of S(H), 

H_S(H) =S(H)H~ 

on a dense subset of M+(H). 

The necessity goes as follows. If S(H) == fLn: is a uni
tary map from M+(R) to M-(H) with the n. isometrics 
from L2(:R 3) to M'(H) such that 

fLHo==Kn_ onf) (Ho)S. L2(R3), 

n+Ho=H+n_ onf) (Ho)S L 2 (1R 3
), 

then we can define representations U" (g, out), u" (g, in) 
on M+(H) and JW(H) by the equations 

U ,,(g, out) = n+u ,,(g)n!, 

U ,,(g, in) = n_u ,,(g)n~. 

These representations of G / are unitary, irreducible 
projective representations on account of the isometric 
property of n., and the fact that 

U" (g, ~:t) =e xp(- ie)n.U(e,g)n:, 

where n.U(e, g)n: is a unitary irreducible representa
tion of G t, Il' The representatives of the Lie algebra of 
G t are mapped onto each other in such a way that 

P(in) = n_pn~ and P(out) = n+pm 

are, respectively, the generators of the spatial transla
tions for the representations U ,,(g, in) and U ,,(g, out). But 
Ho == p. P/2/-i and therefore 

H_ = P(in) . P(in)/2/-i and H+ = P(out) . P(out)/2/-i. 

As was mentioned in the discussion preceding the state
ment of this theorem, the theorem can be given the fol
lOwing form, 

Corollary: The subspace M'(H) are subspaces of scat
tering states if and only if they each are the carrier 
spaces for a unitary irreducible projective representa
tion (/J., 0, 0) of the Galilean group G, in which the repre
sentative of the generator of temporal translations is the 
restriction of H to M'(H), respectively, 

If the motion -reversal invariance of the Hamiltonian 
H is used, a relation between P(H,in) and P(H,out) is 
obtained that permits a development of the correspon
dence between the previous conditions for the existence 
of a unitary S matrix and spectral properties of the 
Hamiltonian H. 

We begin by assuming that a unitary S matrix S(H) of 
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the form S(H) = !Ul~ exists as a linear map from H out (H) 
to H In(H). The motion reversal operators e is an anti
unitary map from H aut(H) to H In(H) with the following 
property: If <P EHout(H) is an outgoing scattering state 
with mean outgoing momentum k, 

(<p , P(H, out)<P) =k, 

then 9<P E H In(H) is an incoming scattering state with 
mean incoming momentum -k, 

(e<p, P(H, in)e<p)= -k. 

Since this holds for all <P E.o (P(H, out» , 

e-1P(H,in)e= -P(H,out) (7) 

holds as an operator equality on.o (P(H, out». Moreover, 
H oot(H) =H In(H) =H seat(H)· 

Theorem 2: If H is motion reversal invariant, 

n.=e-1n_e, (8) 

Proof: By definition of n_, for all >It E.o (P) 

n_p>It = - ep(H, out)e-1n_>lt, 

but - P = epe-1 and e.o (P) =.0 (P); 

.'. n_epe-1>lt = ep(H, out)e-1n_>lt. 

Let x = e-1>lt E.o (P); then e-1n_epx = P(H, out)Er1n_ex. 

Furthermore, e-1n_e is a linear unitary map from 
L2(R3

) to H scat(H) and 

e-ln_eHo~ =HI e-ln_e~ 
H seat(Hl 

for all t, E.o (Ho). Since 

we have the result that 

(9) 

e-1n_e=exp(ia)n. for some real numbers a. Since 
n~ are only defined up to such a multiplicative constant, 
we can take a = 0 without loss of generality. 

The following theorem relates the existence of a phy
sical S matrix to the spectral properties of H. 

Theorem 3: If H is motion-reversal invariant and such 
that M(H) =H a. Co' the subspace of absolute continuity of 
H, and H a. Co has uniformly infinite spectral multiplicity, 
(1 .. Co (H) = (0,00), then there exists a unitary S matrix 
S(H) that maps M(H) onto M{H). 

Proof: Under the stated conditions HIM(H) =Ha.e. is uni
tarily equivalent to Ho. Let W denote the unitary map 
from F(JR3) to M(H) that intertwines Ho and Ha. c.' Since 
Ho= p. P/21J" where P is the generator of spatial trans
lations for the representation U IJ, (g) of G t on L2(R 3), W 
maps this structure onto a representation U IJ, (g, M) of 
G t on Ha.c.(H), for which PM is the generator of spatial 
translations and Ha.e. = PM' P M/21J,. 

Therefore, we can take Was n., without loss of gen
erality. n_ will then be given by Theorem 2, 

n.= W, n_=ewe-1, 
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and therefore, taking 

S(H) = e we-1 W*, 

we have constructed a unitary S matrix, and M(H) 
=Ha.c.(R) is the subspace of scattering states. 

It is worthwhile to compare this result with the usual 
formulation of scattering. We first note that the demand 
for asymptotic freedom is satisfied in the sense that the 
scattering states carry an irreducible representation of 
G., and hence, of the canonical commutation relations, 
that is unitarily equivalent to the free representation. 
The fact that the irreducible representation carried by 
these states is unitarily equivalent to the free represen
tation is an accident due to the lack of inequivalent irre
ducible representations of the commutation relations for 
finite numbers of particles. In an analogous field theo
retic model we could only expect that scattering states 
carry an irreducible representation of the commutation 
relations, the in and out representations would be uni
tarily equivalent to each other but inequivalent to the 
Fock space representation. 

This analysis also illustrates the care that must be 
taken when describing the symmetry properties of the 
Hamiltonian. The Hamiltonian H may break a symmetry 
in one representation of the symmetry group, and yet 
the restriction of H will not break the symmetry in a re
presentation that is carried on the reducing subspace. 
For example, the Hamiltonian need not be spherically 
symmetric for Theorem 1 to hold but the restriction of 
H to M~(H) will be rotationally invariant under the action 
of the representation U IJ, (R, ~~t) of the rotation group ob
tained from the representation of U IJ, (g, ~~t) on Mi(H). 
Similarly the Hamiltonian H is not dilation invariant in 
general with respect to the representation of the dilation 
group generated by the self -adjoint operator A = ~(x . P 
+ p. x), which is contained in the enveloping algebra of 
the Lie algebra of G •• 5 Nevertheless, H/ Mi(H) is dilation 
invariant relative to the dilation group generated by 
A(~:t) which is contained in the enveloping algebra of G+ 
in the representation UIJ,(g, ~:t). The question then be
comes which representation of G+ is the physically cor
rect representation, and this work indicates that the re
presentation best suited to scattering states is that which 
is carried by the manifold of scattering states. 

It is of some interest to note that a result similar to 
this has been obtained by Thomas, 6 using the algebraic 
approach to simple scattering. In his work Thomas uses 
representations of the Euclidean group to obtain the gen
eralized wave operators that correspond to our n •. 

As is indicated by Theorem 3, the mOdel of scattering 
discussed in this paper is similar to the Kato-Kuroda 
model in which asymptotic completeness is taken to 
mean M+(H) =M-(H) =H a.c. (H). 7 In effect the content of 
this paper is merely the natural remark that scattering 
has to do with particles and particles are defined, in a 
nonrelativistic theory, by unitary irreducible represen
tations of the Galilean group labelled by their asymptotic 
particles, that is, in the language of this paper, par
ticles existing in the presence of the external field. It is 
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interesting that such a demand leads to the identification 
of the subspaces of scattering states with the states in 
the absolutely continuous subspace of H. 

The extension of this result to particles with nonzero 
spin can also be handled by suitably changing the repre
sentation of the pre symmetry group. The extension to 
many -particle systems is more complicated and will be 
discussed in a subsequent article. 

274 J. Math. Phys., Vol. 16, No.2, February 1975 

* Present address: Department of Mathematical Physics, 
University of Adelaide, Adelaide, South Australia 5001. 

1H. Ekstein, Phys. Rev. 153, 1937 (1967). 
2J . M• Levy-Leblond, J. Math. Phys. 4,776 (1963). 
3J.V. Corbett, Phys. Rev. D 1,3331 (1970). 
4H. Ekstein, Phys. Rev. 184, 1315 (1969). 
5H. A. Kastrup, Nucl. Phys. B 7, 574 (1968). For a compari
son of some of approaches to simple scattering theory see 
B. Simon, Quantum Mechanics for Hamiltonians Defined as 
Quadratic Forms (Princeton U.P., Princeton, N.J., 1971), 
Chap. IV. 

6L. E. Thomas, "On the algebraic theory of scattering," 
Geneva preprint, May 1973. 

78. T. Kuroda, Nuovo Cimento 12, 431 (1959). 

J. V. Corbett 274 
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An approximate, direct variational method, simple in concept, and straightforward in application is 
presented to deal with the problem of forced oscillation of nonlinear systems. The general procedure 
is illustrated in detail by treating a particular example, i.e., the Duffing's equation. The same 
procedure is also applied to some other examples in mathematical physics. 

I. INTRODUCTION 

Direct methods in the calculus of variation are often 
useful for obtaining approximate solutions of differential 
equations. We usually start with the formulation of an 
equivalent variational problem, and then substitute in 
the functional to be varied some trial functions with ad
justable parameters. The adjustable parameters are 
then determined by the condition that the functional be 
stationary. From the practical point of view, the suc
cess of this approach depends very much on the trial 
function we choose. 

Literature abounds with the use of variational meth
ods for the solution of both linear and nonlinear differ
ential equations of various kinds. 1,2 However, to our 
knowledge, it has scarcely been applied to the problems 
of forced OSCillation, especially the nonlinear forced os
cillation. It is well known that the effect of an external 
forcing term on a nonlinear system is one of the most 
complicated problems in the theory of nonlinear oscilla
tions. 3 Many interesting and challenging questions are 
raised from the study of these problems. We may men
tion, among others, the existence of asymptotic period
ic solutions, the generation of subharmonic solutions, 
and the jump phenomenon as observed from numerical 
studies. 4 

Besides the numerical studies, most works on non
linear oscillations adopt in essence the procedure of per
turbation expansions. Therefore, the practical useful
ness is limited to areas where the nonlinearity is not 
large. The variational scheme to be developed in this 
paper, however, is capable of dealing with the general 
nonlinear problem, although it has other defects. It is 
also an analytical method simple in concept, therefore 
we should be able to gain some inSight from the approxi
mate solution on this class of difficult problems. 

In the following, we shall first briefly sketch the gen
eral procedure, then treat one example, Le., the 
Duffing's equation, in detail to illustrate the procedure. 
Then we indicate how the same protedure can also be 
applied to some other well-known equations in mathe
matical physics. 

II. GENERAL SCHEME OF THE VARIATIONAL 
METHOD 

Consider an ordinary differential equation of the form 

L(x(n>, X (n-ll , ••• ,x', x, sinwt) = 0, 

where we have used the notation x' = dxl dt, x(n) (t) 
= tf'xl dtn and so on. A special case of (11.1) is the 
equation 

(11.1) 
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(11.2) 

When K = 0, Eq. (11.2) may represent the free oscil
lation of a dynamical system; and when K# 0, it repre
sents the forced oscillation of the system. Let us take 
the case that the solution (11.1) is such that the 
functional 

J= Jot F(x(n) ,x(n-l>, .•• ,x',x, sinwt) dt (11.3) 

is stationary. Thus a direct substitution of some trial 
solution x(t) in (11.3) and the minimization of J will yield 
an approximate solution. However, in this case the in
definite upper limit t in the functional integral presents 
a serious difficulty. What we propose to do for finding 
an approximate solution is to expect that asymptotically 
a solution of the form 

x(t) =A(t) sin[wt + O(t)] + B(t) (11.4) 

may prevail. In the expression (11.4), we require that 
A(t) and ott) are both slowly varying functions of t, and 
B(t) is a slowly varying function of t, or a periodic func
tion of t with periods different from 21T I w. The first 
term will hopefully take care of the direct effect of the 
forcing terms, and the second term the free oscillations 
when the forcing term is absent. After substitution of 
(11.4) into (11.3), the evaluation of various integral 
terms in J is to be carried out in the following manner. 
We first express 

I t m ijA it =~ dt+ dt, 
o j.1 j-1)A ~ 

where ~ is either 21TI w or the period of B(t), and 
It - m~ I <~. In each integral over a period, we take A 
and 0 as constants, say AU~) and oU~). B(t) and sin[vJt 
+ ott)] are assumed to have an annihilative interference 
between them, thus terms with odd powers of sin[wt + 0] 
will have vanishingly small contribution to the integral. 
When t is large, the contribution from f~A dt is insignifi
cant compared with the rest. In this way, the effect of 
the factors sin[wt + 0] and sinwt is explicitly integrated 
out, and then we revert the sums over functions of AU~) 
and oU~) to the original integral fcf dt. Thus the func
tional J would be approximated by an expression as 
follows: 

J=};/ G(A(n), ••• ,A;o(n), •.• , 0; B(n), ••• , B) dt. (11.5) 

From the expression (11.5), we can deduce three 
Euler-Langrange equations from the independent vari
ation of A, 0, and B. 

It may appear that the problem is getting even more 
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complicated than before since we now have three coupled 
nonlinear equations instead of one. In fact, the problem 
is greatly simplified since we have taken A(t) and o(t) as 
slowly varying functions of time. Often we may indeed 
take A and 6 as constants to be our first approximation. 
Also, the forcing term which causes most of the diffi
culties is no longer there. 

The form of trial solution (11.4) may not be adequate 
for certain situations. For instance, when subharmonic 
resonance is expected to occur, a trial function of the 
form 

x(t) =A(t) sin[wt + O(t)} + B(t} sin[pwt + lI(t)], (11.6) 

may be a better choice. 

If the system is dissipative, and we cannot find a func
tional J whose variation will lead to the differential Eq. 
(II. 1), we can still formulate the problem to be equiva
lent of 

aJ+Al=o, (11.7) 

where J is again of the same form as (3) and 

a[ = fc/ E(x(n), ••• ,x) ax· dt. (11.8) 

Then we proceed as before. 

In what follows, we shall treat an example in consi
derable detail, and how the scheme just outlined works 
will become quite clear. 

III. APPROXIMATE ASYMPTOTIC SOLUTIONS OF 
DUFFING'S EQUATION 

Consider the Duffing equation 

x" +x + rx3=Ksinwt, (III. 1) 

where rand K are real constants. When r= 0, the nat
ural frequency of the system is 1. When K = 0, the solu
tion of the nonlinear differential equation can be ex
pressed in terms of elliptic finctions. From (III. 1) we 
can construct the functional 

J= f
o

t [t(x'2 _x2 _trx4) + Kxsinwt] dt. (III. 2) 

Now let us take 

x =A(t) sin[wt + 6(t)] + B(t), (III. 3) 

where A(t} and 6(t) are slowly varying functions of t, and 
B(t) is such that 

fat Bmsin"(wt + 6) dt = O(t) for m integers, n odd 

integers. (IlIA) 

Thus B(t) could be a slowly varying function of t, or a 
periodic function with periods different from 21T/W, cer
tain multiples or rational fractions of 21T / w, or the pro
duct of such periodic functions and a slowly varying 
function of t. From (III. 3) we obtain, for instance, 

x' =A' sin(wt + 6) + (w + 6')A cos(wt + 6) + B', 

X4 =A4 sin4(wt + 0) + 4A3Bsin3(wt + 6) + 6A2B2 sin2(wt + 6) 

+ 4AB3 sin(wt + 6) + B4. 

Let us substitute these expressions in (111.2). Take a 
typical term JJ A2B2 sin2(wt + 6) dt as an example. Now, 

276 J. Math. Phys., Vol. 16, No.2, February 1975 

if pet) and Q(t) are both periodic functions with period 
'T p and TO' respectively. let 

1 fHTP 1 fT+TO 
(P)=_ Pdt, (Q2)=_ Q2dt. 

Tp T TO T 

Then [p2 _ (P)] and [Q2 - (Q2,] are both periodic functions 
with zerO mean. If T p and TO are different and one is not 
a rational multiple of the other, we obtain, when t is 
large, 

Thus we obtain 

fc/ A2B2 sin2(wt + 6) dt"" 1/ A2(B2)(sin2(wt + 6» dt 

= t fat A2(B2) dt. 

We shall use the above result as far as A-variation is 
concerned. When B-variation is applied, we shall use 
tM A2B2 dt instead. Thus we obtain after some straight
forward computations 

J"" fat HA,2 + t[(w + 6')2 -1]A2 - f2rA4 -trA2(B2) 

+ t(B,2 - B2 - trW) + tKA cOS6} dt. (III. 5) 

The Euler equations obtained from variations of A, 0, 
and Bare 

A" + [1 - (w + 6')2]A + trA3 + 3r(B2)A = K cos6, (III. 6) 

(III. 7) 

(III. 8) 

Since A(t) and 6(/) are supposed to be slowly varying 
functions of t. Thus as a first approximation, we may 
take both A and 6 as real constants. Then we obtain 

sin6 =0 or 6 =0 or 1T, (III. 9) 

and 

(III. 10) 

When A is constant, Eq. (III. 8) can be solved and its 
solution can be expressed in terms of elliptical functions 
with A2 as a parameter. Since (B2) enters in the expres
sion of A as a parameter, there is a coupling between 
Eqs. (III. 8) and (III. 10). The coupling is insignificant if 
r is smalL 

For r = 0, i. e., the linear case, Eqs. (10) and (8) 
become, if we take 6 = 0, 

(111.11) 

and 

B+B=O, (111.12) 

and we reCOver the familiar result. 

For the next approximation, let us take 6' «w, and 
retain the A' term only; thus, we obtain 

(111.13) 

and 
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dA K' 2wTt=- smo. (III. 14) 

Thus, we obtain 

4w2 (~~) 2 = K2 _ {[1 _ w2 + 3r(B2)]A + trA 3}2. (III. 15) 

It is again illuminating to consider the linear case for 
which r = 0, Then the solution is readily found to be 

A =± -1 ~sin[(l- w2 )/2w]t + $}. 
-w 

(III. 16) 

We should recall that A(t) is supposed to be a slowly 
varying function of time compared with sinwt. It is evi
dent unless 1-w2 ::::O, A(t) will not be so. We should also 
note that A and 0 both constants are solutions for Eqs. 
(III. 6) and (III.7). Thus they represent more reasonable 
solutions, than (III. 16) if (1 - w2

) is not small. For 
1 - w2

:::: 0, to keep A finite, we shall take (:3 = 0; thus, as 
1 - w 2 _ 0, we obtain 

A =±(K/2w)t, (III. 17) 

while 

sinO='f1 or 0='f1T/2, 

Again we recover the familiar results for the linear 
case. 

For the nonlinear case, the situation may not quite be 
the same. It is easy to see that the solution of (III. 15) 
will be a periodic function of time, Thus unless tha pe
riod is large compared with 21T/ w, we cannot consider 
A(t) as a slowly varying function of time. Hence the con
stant solutions of (III, 9) and (III. 10) are more appro
priate. Even at the linear resonance, i. e., when w 2 == 1, 
the constant solutions may still be adequate, unless r is 
very small. When r is very small, we have 

4w2 (~r =K2 _ ~~2 AS, (III. 18) 

where we have ignored the term with (B2), since the in
clusion of B when w 2 :::: 1 is unnecessary. Equation (III. 18) 
may be readily put in the form, 

3r dA 
8w dt == ±l(4K/3rF -A S]1I2 • (III. 19) 

Thus A(t) will be a periodic function of t, with maximum 
amplitude 14K/3rl l /3 and a rough estimate of the period 
-r::::10/K2/3y1/3. 

The plausibility of the constant solution given by 
(III. 9) and (III. 10) may be checked by a stability analysis 
based on Eqs. (III. 6) and (III, 7). Let the solution of 
(III, 9) and (III. 10) be denoted as 00 and A o, and write 
0= 00 + 01 , A =Ao + Au then for small 01 and AI> we 
have, to the first order of 01 and Al 

A{' + [1 - w2 + 3r(B2) +trA~]Al - 2wAoo{ = 0, 

A~o{' ± KAOOI + 2wAoA{ = o. 
(III. 20) 

(III. 21) 

There is no loss of generality to take 00 == 0 and hence 
+ Kin Eq. (III.21). Then we obtain 
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(III. 22) 

Let us put Al =exp(vt); then after making use of (III. 10), 
we obtain 

v2 == H- (4W2 + 2K/Ao + %rA~)±W-rA~ +40)2)2 

+ 16w2 K/AoP /2]. (III. 23) 

Thus if K/ Ao > 0 and r> 0, v2 will be real and negative 
and the constant solutions are stable. Otherwise, the 
constant solution may be unstable. We should note Eq. 
(III. 10) may admit more than one real solution, the sta
bility consideration can help to determine which branch 
to take. 

IV. SUBHARMONIC OSCILLATIONS IN DUFFING'S 
PROBLEM 

In order to deal with the phenomenon of subharmonic 
oscillations which is a common feature in nonlinear os
cillation, we shall take the trial function, instead of 
(III. 3): 

x =A(t) sin[wt + o(t)] + B(t) sin[pwt + v(t)] (IV .1) 

where A, B, 0, and v are all slowly varying functions of 
t and p *- 1 is some positive real number. If p = 1, then 
the second term can be absorbed into the first term, 

Substitute (IV .1) into (III.2), and carry out the same 
procedure as we have done in the Sec. III, the Euler 
equations obtained from variations of A, 0, B, and v 
become 

A" + [1 - (w + o'F]A + trA3 + %rB2A =K coso + RAo (IV. 2) 

ft [N(w + 0')] = - KA sino + R 6 , (IV. 3) 

B" + [1 - (pw + v')2]B + trB3 + %rA2B= RB, (1V.4) 

and 

d 
_[B2(PW + v')] =R dt v, 

where 

RA = tyB3 cos(3v - 0) 

R6 = tyAB3 sin(3v - 0) 

RB =t rAB2 cos(3v - 0) 

Rv = -t rAB3 s in(311 - 0) 

RA =trNBcos(30 -v) 

R6= -trA3Bsin(30 -v) 

RB=trA3cos(30 -v) 

Rv= trA3Bsin(30 -ll) 

and 

(IV. 5) 

for p=t, (IV. 6) 

for p= 3, (IV. 7) 

(IV. 8) 

Let us consider only the constant solutions such that 
A'=o'=B'=v'=O. Thus, for p*-t and p*-3, we obtain 
from (IV. 3) 

sino=O or 0=0, (IV. 9) 

with no loss of generality. Equations (IV. 2) and (IV. 4) 
then lead to 
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A(l - W2) +tr(A3 +B2A) =K, 

1 - (pw)2 + tr(B2 + 2A2) = 0. 

For p=t, Eqs. (IV. 3), (IV.5), and (IV. 6) lead to 

(IV. 10) 

(IV. 11) 

0=0 andsin(3lJ-o)=0. (IV. 12) 

Then we obtain from (IV. 2), (IV.4), and (IV. 6) 

A(l - w2) + tr(3A3 + 6B2A ± B3) =K, 

1- (w/3)2 +t r(B2 + 2A2±AB) = 0. 

(IV. 13) 

(IV. 14) 

Similarly, for p = 3, we obtain from (IV. 2)-(IV. 5), and 
(IV. 7) 

(IV .15) 

and 

(IV. 16) 

These results are the so-called frequency response re
lations for subharmonic oscillations. 5 When the nonlin
ear effects are small, these simple harmonic solutions 
with constant amplitudes and phases should be very good 
approximation solutions. 

v. DUFFING EQUATION WITH DAMPING 

Let us now consider the Duffing equation with damping: 

x" +CY.x' +x + rx3= KSinu1t, (V.1) 

where CY. is a real and positive constant. The equivalent 
variational formulation will be 

fl.J+ fl.I= 0, 

where 

(V.2) 

(V.3) 

and J is again given by (ill. 2). Let us again take the 
trial function as (IV .1): 

x =A(t) sin[wt + o(t)] + B(t) sin[pwt + lJ(t)]' (V. 4) 

where p * 1 is a positive constant. 

Thus, for instance, 

x'fl.x = [A' sin(wt + 0) + (w + o')A cos(wt + 0) 

+ B' sin(pwt + lJ) + B(pw + lJ') cos(pwt + v)] 

x [sin(wt + o)fl.A +A cos(wt + o)fl.o + sin(pwt + lJ)fl.B 

+ B cos(pwt + lJ)fl.lJ J. 

Since A, B, 0, and lJ as well as their variations are 
again supposed to be slowly varying functions of time, 
for large t, the approximate expression of fl.I can be 
evaluated by the same procedure as before. The Euler 
equation then becomes 

A" +CY.A' + [1 - (w + O')2]A +trA3 +%rAB2 =Kcoso +RA> 

(V.5) 

B" +CY.B' + [1 - (pw + lJ')2]B + trB3 +%rA2B=RB • 

and 
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(V.6) 

(V, 7) 

(V.8) 

where RA> Rij' RB , and Rv are again given by (IV. 6)
(IV. 8). If we again look for constant solutions, then 
some very interesting results are obtained. When A, B, 
0, and lJ are all independent of t, Eqs. (V. 5)-(V. 8) 
become 

and 

(1 - w2)A + tr(A3 + 2AB2) = K coso + RA , 

O!wA 2 = - KA sino + Rij' 

(1 - p2w2)B + tr(B3 + 2A2B) =RB , 

O!WB2=Rv· 

From (V.12), we obtain immediately for Ci *0, 
B=O, 

(V. 9) 

(V. 10) 

(V. 11) 

(V. 12) 

(V.13) 

unless p=1/3 or p=3. This means, if the system is 
dissipative, only the subharmonics and the harmonics 
of order 3 can persist. 

When the nonlinear effect is small, i.e., when r is 
small, we also obtain readily from (V. 9) and (V. 10) the 
familiar result 

(V. 14) 

and 

(V.15) 

Let us now investigate in more detail the case p = 1/3, 
i. e" the subharmonic oscillation of order 3. For this 
case, Eqs. (V.l!) and (V. 12) have the form 

1 - ~W2 + l r(B2 + 2A2) = trAB cos(3lJ - 0), 

CY.w= -irABsin(3lJ - 0). 

Eliminating the (3lJ - 0) term, we obtain 

The last equation is of the form 

(a + bB2)2 + c=dB2, 

where 

a=1-iw2+%rA2, b=tr, 

C=cy' 2W2, d=&r2A2. 

Thus we obtain 

(V. 16) 

(V.17) 

(V. 18) 

(V. 19) 

(V. 20) 

The solution is meaningful only when B2 is real and posi
tive. Since both c and d are positive, it is necessary 
that 

d-4ab>0, 

or 

(V.21) 

Thus for r< 0, the subharmonic oscillation can be 
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established only for w < 3. Let us keep in mind the ex
pression of A for the linear case (V. 14) as a background 
guide. Thus as w decreases to toward the value 1, A 
may become rather large. This will offer a lower bound 
for the permissible value of w. Further, since it is also 
necessary that 

d(d -4ab» 4b2 c. 

Therefore, a minimum threshold value of A2 or J<2 is 
required to overcome the interaction of damping and 
nonlinearity as expressed by 4b2c=~ra2w2. 

This term {ra 2 w2 will also furnish an upper bound for 
the permissible value of w if r> 0 0 For the case r> 0, 
the criterion (V. 21) will require that w> 3. 

The above analysis may again be best only when the 
nonlinear effect is not too large, since we have been 
using the simple harmonic solutions with constant am
plitudes and phases. For the highly nonlinear system, 
the general Eqs. (V. 5)-(V. 8) need to be explored more 
fully. 

VI. OTHER EXAMPLES 

We now briefly describe the application of this vari
ational method to a few other equations. 

A. The Mathieu equation 

For the Mathieu equation 

X" + (O! + i3 cos2t)x = 0, 

we take 

(VI. 1) 

(VI. 2) 

The Mathieu equation is a linear equation, and we shall 
let 

(VI. 3) 

where A k , Bk's are all constants. 

Substitute (VI. 3) into (VI. 2), and use the same proce
dure as we used in previous sections; we obtain 

J'" 1- r t dt [_ 1-aA z _ 1-i3A 2 + 1-.0 (m2 _ a)A Z 
2 Jo 4 0 4, 12m 

=1 

- if3 6 A".Am.z + t8B~ + i.0 (m 2 
- a )B~ 

m=O ~1 

I'}'BB] -"28 LJ m 171+2 • 

m=O 

The variations of Am and Bm lead to 

aAo + i3A2 = 0, 

and 

(1 -a)A1 - i8(A1 +A3) =0, 

(m 2 -a)Am -il3(Am_2 +Am<2)=0 for m:;" 2, 

(1 - a )Bl + ii3(B1 - B 3) = 0, 

(VI.4) 

(VI. 5) 

(VI. 6) 

(VI. 7) 

(VI. 8) 

(VI. 9) 

Equations (VI. 5)-(VI. 9) are the same as those may be 
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found in standard tests. 6 

We may also apply the variational scheme to the non
linear Mathieu equation 

X" + (a + 8 cos2t)x + rx3 = O. 

The corresponding functional is now 

J= J,/ i(x,2 _ax2 - .i3X2 cos2t - irx4
) dt. 

If we take as trial function 

X =A cosmt, m integers, 

then we obtain 

The variation of J with respect to A leads to 

(m2-a)_~rA2=0 formn 

and 

1-a -is -trA2=0 for m=l, 

which is the same as given elsewhere. 5 

B. The Van der Pol equations 

The Van der Pol equation 

x"-a(1-x2)x'+x=Ksinwt, 

(VI. 10) 

(VI. 11) 

(VI. 12) 

(VI. 13) 

(VI. 14) 

(VI. 15) 

(VI. 16) 

contains a dissipative term. Hence the corresponding 
variational problem is 

t:J..J+t:J..I=O, 

where 

i t (X,2 X2 ) 
J= 0 Y-2"+Kxsinwt dl, 

and 

Consider a trial function 

X =A(t) sin(wt + o(t)) + B(t), 

(VI. 17) 

(VI. 18) 

(VI. 19) 

(VI. 20) 

where A(t), ott), and B(l), their derivatives and varia
tions are all slowly varying functions t or those func
tions which will not yield secular terms as we discussed 
in Sec. ill. Then the application of our approximation 
scheme, after some computations, lead to 

A" -0'[1 -tAZ - (B2»)A, + [1- (w + 0')2]A +aA(BB') 

= K coso, (VI. 21) 

d 
dt[A2(w + 0')] -a (w + 0')(A2 

- tA4 _A2(B2» = -KA sino 

and 

B"-a(l- tA2 _B2)B' + taABA' +B=O. 

When constant solutions are sought, we found 

B=O, 

and 

[(1 - W2)2 + a 2w2(1 - tA2)]A2 = J<2. 
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(VI. 24) 

(VI. 25) 
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C. Nonlinear oscillation of a gas bubble in a liquid 

The variational method has also been applied to the 
following equation: 

RR" +%R,2 +OIRR' +AR _B/R3Y + C=Ksinwt, (VI. 26) 

which describes the oscillation of a spherical bubble in 
a liquid in an external sinusoidal pressure field, The 
threshold subharmonic oscillations of order 2 and 3 can 
be established by the schemes developed in this paper, 
The detailed analysis of this problem is reported 
elsewhere. 7 

The variational method developed here is simple in 
concept and straightforward in application. We have de
monstrated its usefulness by applying the method to 
some familiar equations as well as to not so familiar 
ones, For cases when the nonlinear effects are small, 
usually the only cases with available results since per
turbation approach is ordinarily adopted, the established 
results are recovered. The variational method 
should be useful also when nonlinear effects are not 
small, and we have indicated the direction of the study 
one should follow, As is common for all variational ap
proaches' the defect of this method is the difficulty to 
assess the accuracy of the solution, Hence a good trial 
solution either from experience or ingenuity is often 
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essential for the successful application of this method, 
Therefore, much more work is needed to explore vari
ous aspects of this scheme, But let us emphasize one 
point here, 1, e" this is an analytical method. Thus this 
method could offer much needed insight to the problem 
we study which purely numerical solutions often fail to 
accomplish, 
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Degeneracies in energy levels of quantum systems of variable 
dimensionality 
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Introduction of variable dimensionality to the SchrOdinger equation gives rise to interdimensional 
degeneracies in the energy levels of one-, two-, and three-electron atoms and molecules. In all cases 
the degeneracies result from a factorization of the wavefunction into a product of a "radial" type 
function times an "angular" type function. Scaling of the orbital angular momentum quantum 
number in the one-electron radial equation to obtain "excess angular momentum" is shown to be 
equivalent to a variation in dimensionality. 

I. INTRODUCTION 

This paper demonstrates, for the first time, the 
existence of degeneracies in the energy spectra of one-, 
two-, and three-electron atoms and molecules of vari
able dimensionality (=D). Our interest in the D depen
dence of energy levels arose in an earlier investigationl 

in which the ground state energy of helium like ions was 
determined variationally as a continuous function of D. 
Comparison of these approximate energies with the 
exact ground state result for D = 1 and 5 ions was made 
possible by the fact that the D = 1 state is equivalent (by 
suitable scaling of length and energy) to the simple delta 
function model atom, 2 and the D = 5 state is identical 
(to within trivial factors in the wavefunction) to the 
doubly excited 2p2 3 pe state at D = 3. Our current investi
gation shows that many such "interdimensional degen
eracies" exist, and a study of the examples given may 
eventually lead to a formulation of methods for predict
ing all degeneracies of this type. 

II. ONE-ELECTRON SYSTEMS 

The single-electron Schrodinger equation in a D
dimensional Cartesian coordinate system x

ll 
, 

k = 1 , 2, ... , D, is 

(~(D) + 2(E _ V»w (D) = 0, 

where ~ (D) is the Laplacian 

(1) 

(2) 

and V = V(r) is an arbitrary potential function of the 
coordinates, r = (xu X 2 , ••• , x D) 0 Whenever V(r) is such 
that the wavefunction w (D) factors into a product of two 
functions, one of which is a spherical harmonic for a 
subspace D' < D, then there is an effective reduction in 
the number of coordinates necessary to describe the 
energy spectrum. 

In the case of a central field potential V = V(r) the 
factorization is simply 

w(D)=rcRJ!')(r)' YID), (3) 

where YID) is a D-dimensional spherical harmonic of 
characteristic value A(A+D-2), A=O,l, ... , and RID) 
is a radial function. The power c is arbitrary, but for 
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convenience we set c = A. 3 The corresponding radial 
Schrodinger equation is 

(~+2A+D-1~+2(E_V») R(D)=O (4) or r or A' 

which cl~arly is invariant to the transformation 

(A,D)-(A±l,D'f 2). (5) 

This invariance establishes the existence of interdimen
sional degeneracies in the energy spectrum. In fact re
peated application of (5) shows that every state with 
A"* 0 is degenerate with a state having A = 0 in a higher 
dimensionality. 

Example: Bound state hydrogen atom: For V= -l/r 
the radial function is4 

R~~) =exp(- kr) F(- n+ A + 1; 2A +D-1; 2kr), (6) 

where n is the principal quantum number 
(n=A+1,A+2,·oo) and k=2/(2n+D-3). The energy 
is independent of A (an intradimensional degeneracy), 
with EnA = - k2/2. Application of transform (5) to the 
RnA shows that in order to preserve the number of nodes 
(= n - A -1) in a particular radial solution we must 
Simultaneously transform n- n± 1. For instance the 
ground state solution R~d is identical to the excited R~l) 
state, and both have energy = - 1/8. 5 

Identical results are obtained for less symmetric 
potentials VCr). For instance, a cylindrically symmetric 
potential v(R,z), wherez=xD andR=[L~il~]l/2, al
lows the factorization 

(7) 

FA is the cylindrical analogue of the radial function and 
satisfies 

(~+~+ (2A+D-2)~+2(E_V)" F =0 (8) 
OZ2 oR2 R oR J A , 

which is invariant under transformation (5). A special 
case of a cylindrically symmetric potential is that of 
the H~ molecular ion, V= -lirA -l/rB • Here rA and rB 
are the distances of the particle from the fixed attrac
tive nuclei A and B located at + R/2 and - R/2 respec
tively on the xD axis. In terms of hyperelliptic coordi
nates p = (rB + rA)/R and J.L = (rB - r )IR the factorization 
is 

(9) 
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Invariance of the corresponding SchrOdinger equation 
under transformation (5) shows for instance that the 
lowest energy (]~ state6 at D = 5 is degenerate with the 
lowest energy 7Tu state at D = 3 for all R. The united 
atom limits (R - 0) of these molecular states are the 
1s(D = 5) and 2p(D = 3) atomic states respectively. At 
infinite nuclear separation the D= 5 (], state correlates 
to the 1 SA + 1SB linear combination, while the 7Tu state 
goes to 2PA + 2PB • In analogy to our previous remark for 
the atom, each potential energy curve with l\ > 0 for this 
one-electron problem is degenerate with a curve having 
l\ = 0 in a higher dimensionality. 

These one-electron results have a very general 
nature, being independent of the precise form of the 
potential. It is clear that interdimensional degeneracies 
exist for other simple molecular systems, such as H;+. 

III. MANY-ELECTRON SYSTEMS 

The N-electron Schrodinger equation is 

(t AW) + 2(E - V) ) cpCD) = 0, 
J.1 J 

(10) 

where V = VCr l' r 2' ••• , r N) 0 It is not obvious at first 
sight that interdimensional degeneracies exist for sys
tems with two or more interacting electrons, although 
the one-electron results indicate that degeneracies may 
exist for states which can be factored into a product of 
a "radial" function and an "angular" function. Such a 
separation was possible in Ref 0 1 for the 2pZ 3 pe state 
(D = 3) of helium, for which the wavefunction is 

\II (3) = po q, (ru r 2, r 12 ), 

P=X1Y2 - Y1 X2' 

(lla) 

(Ub) 

Xi and Y I being any two different Cartesian coordinates. 
The function q, was shown to satisfy the same 
Schrodinger equation as the exact ground state wave
function at D:=: 5. For convenience in what follOWS, we 
shall assume all potentials to be Coulombic, although 
generalization to other forms is equally possibleo 

A. Hydrogen molecule 

In direct analogy with the helium results, the ground 
state wavefunction of H2 in D dimensions may be written 
as q,W) (rU,r2A,rlB,r2B,r12)' where riA and riB were de
fined for the H; molecule. The explicit form of the 
Laplacian in this coordinate system, Ai~!AB' is omitted 
for brevity. It is easily seen that if X is a function only 
of rlA,rZA,rlB,r2B' and r 12 , then 

(12) 

Here Q =X1Y2 - Y1X2' where XI and YI are CarteSian 
coordinates perpendicular to the nuclear axis. Q has 
zero angular momentum about the internuclear axis. If 
X is taken to be q,CD), Eqo (12) shows that an interdimen
sional degeneracy exists, with Qq,CD) and q,CD) having the 
same energy eigenvalue in (D - 2) and D dimenSions re
spectively. Thus the ground state 11;; energy at D = 5 is 
the same as the lowest energy doubly excited 32:; state 
at D = 3 0 The united atom lim its of the states are 
ls21se and 2p2 3 p', in agreement with the helium results. 
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It is evident from Eq. (12) that similar degeneracies 
exist for other states in the 1;+(D=5) and :0-(D=3) 
spectra. 

B. Helium atom, excited states 

The singly excited D:=: 5 states having one unit of 
angular momentum and odd parity (1. eo, lsnp, 
n = 2,3,0 0 .) are exactly degenerate with the doubly ex
cited states 2pnd, pO (n = 3,4,00.) at D= 3. The D= 5 
states can be written generally as 

(13) 

where F{2 and F 1-Z are functions only of r1 , r2, and Y12 

(=u), and Zk is one of the CarteSian coordinates. w. and 
\II_ are symmetric and antisymmetric with respect to 
electron exchangeo By defining the operator 

a2 a2 a2 

AD ,I2 = ar. + o-r. + 2 o,r 
1 2 

+ u2 + 11- 11 ~ + ,r + 11 - ti a2 

urI or1ou ur2 oraou 

+ (D -1) (! _0_ + !. _0- + ~ l..) (14) 
r 1 orl ra ora u au ' 

F{2 and F;z are seen to satisfy the exchange coupled 
equations 

(A5'12+1.-!-+~-aa +2(E-V)\ F1~==±(~l..) Fi1 r z vr2 U U ') u au 

Note that F1~ '* Fil' 

(15) 

Making use of the one-electron spherical harmonics 
Pm and dm in three dimensions, the function 

(16) 

will be recognized as having two units of angular mo
mentum (1. e., a pd, D state). It is straightforward to 
show that if G12 is any function of only r1 ,r2 , and u, 
then 

(A?) + A~3) Y12G12 

_Y (A +~_o_+i. _O_+~l..)G 
- 12 3,12 r

l 
or

1 
r

2 
or

2 
u OU 12 

+Y21 (; a~) G12 • (17) 

The corresponding exchange symmetrized functions 

X= = Y12Gtz ± Y 21 G~ll (18) 

which are eigenfunctions of the Schr1:ldinger equation, 
lead to the coupled equations 

(A + 1. _0- + ~ l.. + 2(E - V») G= ='1' (~l..) G~l" 
5,12 r z or2 u au 12 u au 

(19) 

The ± superscripts have been added to indicate that 
Gr2 * G~2' Comparison of Eqs 0 (19) and (15) shows that 
each singly excited P eigenfunction in five dimensions 
can be used to construct a doubly excited D eigenfunction 
in three dimensions by the correspondence Giz = Fiz' 
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Since both states satisfy the same Schrodinger equation, 
they are necessarily degenerate 0 7 

C. The lithium atom 

In all of the preceding examples it was not necessary 
to discuss spin explicitly, since in each case the total 
wavefunction factors into a product of a spatial function 
times a spin function 0 By analogy with the D = 3 spin 
formalism, one may define single particle spin repre
sentations of the D-dimensional angular momentum 
group which can be coupled to give spin eigenstates. We 
shall not discuss multidimensional spin further since 
the only example of an interdimensional degeneracy we 
have found for the Li atom is not spin dependent. 

Consider for D = 3 the triply excited 2p34S fermion 
state of Li. The spin function is a(1)a(2)cv(3) for the 
Ms= 3/2 component, and the corresponding spatial 
wavefunction may be written 

.y 123 = W 123 • <P 123 , (20) 

where <P123 is a function only of the six coordinates 
r1,r2)r3,r12,r23,r31' W123 is the totally antisymmetric 
(with respect to two-electron exchange) function of the 
three coordinates x, y, z: 

(21) 

The condition of antisymmetry for the total wavefunction 
W123<P 123a(1)a(2)a(3) leads to the requirement that <Pm 
be a totally symmetric function with respect to exchange. 

If ~D,123 is the three-electron representation of the 
D-dimensional Laplacian in the coordinates 
r1'r2,r3,r12,r23,r31' then one easily verifies that 

( 
202020 

-W ~ +--+--+--
- 123 3,123 r or 1': or r or 

1 1 2 2 3 3 

+ -.! _0_ + -.! _0_ + -.! _0_) <P 
r 12 or12 r 23 or23 r 31 or31 123 (22a) 

= W123 (~5,123<I> 123) 0 
(22b) 

We thus have the interesting result that any totally 
symmetric eigenfunction <P 123 of the five-dimensional 
Schrodinger equation can be used to define a (degene
rate) solution .y 123 of the three-dimensional Schr6dinger 
equation by means of Eq. (20). In particular the exact 
2p3 4S(D=3) fermion state is degenerate with the exact 
spinless boson 1S 3 (D = 3) ground state. 

IV. RELATIONSHIP OF VARIABLE DIMENSIONALITY 
TO "EXCESS ANGULAR MOMENTUM" 

Recent investigations8,9 have used continuous scaling 
of the angular momentum (i. e., excess angular mo
mentum) of one-particle quantum systems for purposes 
of determining degeneracies. It is clear from our pres
ent work (and also Ref. 1) that each variation in angular 
momentum is equivalent to a variation in Do This is 
most easily seen if the power c in Eq. (3) is chosen to 
be c = (D - 1)/2, so that the corresponding radial 
Schr6dinger equation effectively describes a one-dimen-
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sional motion (by removal of r D - 1 from the integration 
volume element) along the r coordinate: 

(- :~ + K~+1) -2(E- V)) R~D)=O, (23a) 

with 

K=A + «D- 3)/2). (23b) 

Changes in the magnitude of K(K + 1) can be effected by 
variations of either A or D, or both. For the hydrogen 
atom [Eq. (6)] the shift A - A + «D - 3)/2) =K is ac
companied by a similar shift of the principal quantum 
number: n- n + «D -3)/2):; N, which preserves the de
generacy of radial states having the same n. 10 In the 
present paper we have considered only transformations 
of A and D which leave K(K + 1) unchanged. 

V. CONCLUDING REMARKS 

The existence of interdimensional degeneracies in the 
spectra of one-, two-, and three-particle systems is 
quite interesting, although at present no general cri
teria exist for predicting the occurrence of the degen
eracies. In all cases the proof of degeneracy was made 
by investigation of the kinetic energy portion of the en
ergy, and identical results may be obtained in the cor
responding momentum space representation of the wave
function . Separability of the wavefunctions into a 
product of "angular" and "radial" functions is found in 
all of our examples. 
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Using the methods of partial differential equations and functional analysis. we investigate the electric 
field in the presence of a screen composed of wires of radius r spaced at distance R spread over a 
surface S. In the limit as rand R converge to zero if [R Inrj-l -; - 00, the field in the 
presence of the screen converges to the field with a conducting sheet spread over S. If [R lnrj-l 
-; 0, the field converges to the field with no conductors. 

1. INTRODUCTION 

It is well known that a region enclosed by a mesh of 
conducting wire is shielded from external static electric 
fields. In this sense the mesh acts like a solid sheet of 
conductor. On the other hand, it is clear that if the 
wires of the mesh are sufficiently narrow (for fixed 
mesh width), then they will have a negligible effect on 
the electric field. In this note we will study the problem 
of determining what range of physical parameters cor
respond to these two types of behavior. If the screen 
consists of wires of radius r whose axes are spaced at 
approximately distance R from each other, the critical 
parameter is [R lnrj-l =' 5. We consider screens spread 
over a surface s in the limit as rand R approach zero 
and prove that for any charge distribution, if {5 - + 00, 

then the field in the presence of the screens converges to 
the field in the presence of a sheet of conductor spread 
over S (Theorem 2). In the opposite extreme case, if {5 

- 0, then the field converges to the field without any 
conductors present, that is, the screen becomes 
negligible. 

2. VARIATIONAL FORMULATION OF THE BASIC 
BOUNDARY VALUE PROBLEM 

We seek the electrostatic potential u in the exterior 
of a finite number of conductors Ku K2,' 0 " KJ , arising 
from a charge distribution with density p(xL For con
venience we suppose that the whole system lies inside a 
very large but bounded region R whose boundary is kept 
at potential zero and is assumed to be smooth. With a 
little extra effort the problem in unbounded regions can 
also be handled by our methods. The boundary value 
problem for u is 

u = const on each K;, i,.·· ,j, 

f ~-O i-1 ••• J' all -, -, " 
a"1 

u=O on aR. 

(1 ) 

(2) 

(3) 

(4) 

From a mathematical standpoint the condition (3) which 
asserts that the conductors carry no charge is the most 
troublesome, and we will give a weak or variational 
formulation in which (3) becomes a natural boundary 
condition. Let K=U KO n=R\K, and H1 (n) the Sobolev 
space of functions on n which are square integrable 
together with their partial derivatives of order one. 

Dejinition 1: B is the closed subspace of HI (n) consist
ing of functions u which vanish on aR and in addition are 
constant on a KH i = 1, 2,0' ,j. For u, v E HI (n) let 

a(u, v)= -1 (gradu' gradv). 
a 

It is not hard to show that u is a solution of (1)- (4) if 
and only if u E Band 

a(u,v)=41T J p(x)v(x)dx 'fI vEB. (5) 
a 

Equation (5) is just the Euler-Lagrange equation asso
ciated with Thompson's principle: u minimizes - a (u, u)/ 
2 + fa pu over all u E B. Note that (3) is a natural bound
ary condition. It is useful to notice that if u E B satisfies 
(5), then a..u=p in the sense of distributions and u=const 
on a KI so that the regularity theorems for the Dirichlet 
problem can be applied to show that u is smooth pro
vided that the boundaries of the KI are smooth, which we 
will assume henceforth. 

The quadratic form a on L2(n) with domain D(a)=B is 
a closed symmetric and nonpositive. It is well known1 

that there is a self-adjoint operator a.. defined by the 
recipe 

D(a..)={UEB: (::JjEL2(n» 

such that a(u,v)= (j,Vh2w J, 
a..u=j for uED(a..). 

With the aid of the regularity theorems mentioned above 
one can show that 

D(a..>={UE~(n):UEB and f ~~ =0, i=1,"',j}, 
a"1 

n a2u 
a..u=L;;--2 foruED(a..). 

1.1 uX j 

The solution to the electrostatics problem (1)-(4) is 
therefore a..-1 (-41Tp), the inverse of a.. applied to -41Tp. 

3. A THEOREM ON VANISHING SCREENS 

We now pose the basic problem. For each integer n 
we consider the electrostatics problem in the presence 
of conductors K';" K~,"', Kin and we ask whether the 
effect of the conductors has some limiting behavior as 
n - 00. In this section we prove a theorem which asserts 
that the effect of the conductors disappears as n - 00 

provided they are sufficiently small. As an application 
we obtain the result on vanishing screens mentioned in 
the Introduction. 

The appropriate measure of smallness turns out to be 
electrostatic capacity. Recall that for reasonable sub-
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sets A of 1R\ cap (A) is defined as follows: Let v be the 
solution of the boundary value problems 

~v=O on 1R3 \A, 
v=O(l/lxl) as Ixl-oo, 
v=l on2A. 

Then - fl xl=L2v/2r is independent of L for L large 
and is the total charge on a conductor occupying the re
gion A and raised to potential one. This quantity is 
cap(A), the capacity of A. 

Notations: Let ~n' an' Bn be the operator, form, and 
form domain on nn =A.\ Uj Kj as defined in Sec. 2. In 
addition, for v E L2(A.) let Pnv E L2(nn) be the restriction 
of v to nno Any element of L2(nn) is considered as an 
element of L2(A.) by extending it to vanish on the union 
of the K'j. Let K(n) = UjK'l denote this union. We suppose 
all K(n) are contained in some compact set rcA.. 

The main tool we use to show that K(n) vanishes is 
Theorem 3.1 of Ref. 2. This asserts thatf(~n)Pnu 
- f(~}u in L2(1<,) for all U E L2(A.) and any f bounded and 
continuous on (- 00,0] provided the nn satisfy mild reg
ularity conditions, that the quadratiC form a (u, u) s atis
fies the coerciveness hypothesis - a(u,u) ~ Ion I'gradu 12 
for all u E Bn , and the following two special assumptions: 

(A) There exist extension operators En: Bn - B [the 
domain of the form a (u, v) on A. without conductors] with 
the properties 

(i) Enu=u on nn for all uEBn, 

(ii) there is a constant M such that for all n and u 
EBn , 

IIEnul/HI rfl. )1'; MlluIIH1 (Qn); 

and either 

(B) Meas (K(n» - 0, and if u E B, there exist uJ - u in B 

such that uJ I oJ E B J, 

or 

(B') cap (K(n» - 0 as n _00. 
That (A), (B') imply operator convergence is stated in 

Theorem 4.2 of Ref. 2; alternatively, condition (B') 
implies condition (B). 

Theorem 1: Suppose there is a compact set rCR 
with K(n) c r for all n and that cap (K(n» - 0 as n - 00. 

Then for any continuous functionfon (- 00,0) bounded 
at - 00 and any uE L2(A.) we have 

f(~n)Pnu - f(6.}u in L 2(A.), 

Where 6. is the operator on A. without any conductors. 

As a particular example, for pEL 2 (A. ) with p sup
ported in the exterior of all conductors, we can take 
f(Jc)= l/x to get 6.;I(p) - 6.-1 (p) in L2(P..). Thus the solu
tions of the electrostatics problems converge to the 
solution to the problem with no conductors at all. 

Proof: Note that a(6.) and a(~n)c (- 00,0) for some 0 
< 0, so f can be altered to be bounded and continuous on 
(- 00,0] without changing f(~n) or f(6.). To complete the 
proof, it is only necessary to verify hypothesis (A). 
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To describe En notice that if u E Bn , then u is constant 
on 2K'j, i=1,2,.· ·,jn' say u=c j on 2K'j. Define Enu=c j 

on K'j. It is clear that IR I gradEnu 12 = Ion I gradu 12. Fur
thermore, since Enu=O on 2R, we have 

.k I Enu 12.; " I gradEnu 12, 
where A < 0 is the largest eigenvalue of the Laplacian on 
A. with Dirichlet boundary conditions on A.. Thus (ii) is 
satisfied with M = 1 + A-I and the proof is complete. 0 

It is quite easy to apply this result to screens. The 
basic fact that is needed is that the capacity of a solid 
circular cylinder of length L and radius r is 
proportional to - L/lnr. Similarly a not excessively 
curved piece of wire of length L and radius A. has capac
ity 0(- L/lnr). In addition, capacity is a sub additive set 
function, that is, cap(UAj)';:6; cap(Aj) for any countable 
union of sets. Thus the capacity of a curved screen of 
fixed area with wires of radius r and spacing R between 
axes of the wires is 0(- l/Rlnr). Thus if K(n) is a 
screen as above with r and R approaching zero as n - 00 

in such a way that l/Rlnr - 0, then the effect of the 
screen is negligible for n large. 

For the electrostatic problem, capK(n) - 0 is by no 
means a necessary condition for the K(n) to have a 
negligible effect. Suppose, for example, that K(n) con
sists of n balls, of radius rn , and say their center ~Jn 
are spaced at a distance at least 4rn • By defining ex
tension operators En as in the proof of Theorem 1, it is 
easy to see that hypothesis (A) is satisfied. We show 
that hypotheSiS (B) is verified, assuming volK(n) 
= (4/31T)nr~ _ o. 

Define a continuous linear map Q: HI (B2) - HI (B2) (B2 

={x: Ixl .; 2}) such that 

(i) Qu(x)=u(x) for 3/2'; Ixl .; 2 

(ii) Qu (x) is constant for I x I .; 1 

(iii) 1 I QUI2.; Col lul 2 
B2 B2 

(iv) 1 IgradQul 2
.; Co!. I gradu I 2. 

B2 B2 
This is .easy to arrange. Given this, you can scale B2 to 
B 2rn (~Jn)= {x: I x - ~Jn I .; 2rn} and get maps with the same 
properties as i-iv (same constant Co). Thus you get 
maps Qn: Bn - B such that 

(i) Qnu(x)=u(x), x¢Y B2rn(~in)' 

(ii) IIQnull~I(B2 (~J»'; Collull~I(B2 <t
J 

», 
~ n ~ n 

(iii) Qnu I Il
n 

E Bn' 

Now with un = Qnu you get 

I/un - ull~l(R) =~ Ilun - uI/~I(B2rn(~Jn» 
';4Co61Iull~(B (~»-o J 1 2rn In 

as n-oo since meas yB2""(~Jn)-0. 

This verifies hypothesis (B). 

The conclusion is that if K(n) consists of n "well 
spaced" balls of radius r n, then K(n) disappears as n 
- 00, assuming only that vol K(n) - O. 

4. THE CASE OF ELECTROSTATIC SCREENING 

In this section we will investigate the observed phe-
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nomenon of screens behaving like solid barriers. To be 
more precise. suppose that K(n) is a conducting screen, 
with wires of radius r and spacing R, spread smoothly 
over the surface S and that r and R tend to zero as n-
00. If (-Rlnrtl- + 00 as n - 00, then for any charge dis
tribution p on R. the solutions, ~~l(p). of the electro
statics problems in R.\K(n) converge to the solution u of 
the problem where S is covered by a sheet of perfect 
conductor, that is, 

~u = - 4rrp in R.\s, 

u = const on S, 

{[~~J = 0 a] denotes jump on crossing S) 

u=O on aR.. 

(6) 

(7) 

(8) 

(9) 

This result complements the result of Sec. 3 and con
firms the idea that the parameter (- R lnr )-1 is a reason
able measure of the solidity of a screen. It is interesting 
to note the same parameter occurs in the clever special 
problem treated in §203 of Maxwell's treatise. 3 In addi
tion, as Maxwell observed, a complete screen is not 
needed, just one family of parallel wires which are con
nected to each other in any way at all will suffice. 

We must make precise the notion of a screen spread 
smoothly over S, where S is an open subset of a compact 
surface in the interior of R.. The intuitive idea is to take 
a piece of planar screen and give a mapping of the 
planar region to the surface. Precisely, if s E S and 0 
is an open neighborhood of s in R 3

, then a mapping iJ!: 
U - 0 is called a 0 bending if 

(i) U is a cube IXII < a, i=1, 2, 3, 

(ii) iJ![Un{x3 =0}]=snO, 

(iii) iJ! is a diffeomorphism with IIJ.1i and IIJ._111Iess 
than 0 where J is the Jacobian matrix. 

Screens are laid on S by placing a screen in the X3 = 0 
plane of U and carrying it to S by the map iJ!. 

Definition 2: A patch of 0 bent screen on S consisting 
of wires of radius r and spacing R is the set iJ![~], where 
iJ!: U - 0 is a 0 bending and 

~ = {x E U: (xl - jR)2 + X~ '" r2 for some j}. 

In addition we require R > 3r. 

To form a picture, notice that the wires in ~ are par
allel to the x2 axis. The only interesting case of screen
ing is when the screen has large gaps, that is, R »r. 

Definition 3: A sequence of systems of conductors will 
be called screens smoothly covering S if there is a 0> 0, 
an a> 0, and an integer M such that (1) each system 
consists of at most M patches of 0 bent screen on S, (2) 
the sets iJ!(UI ), i=1," ',M, cover S for each system, 
and (3) the lengths of the sides of the cubes are all 
greater than a. 

It is important that the electrostatic potential be con
stant on the screen, not just on the individual wires 
from which it is constructed. There are two ways we 
could arrange this. In one approach, we could suppose 
that a few wires are added to the screen so that it be-
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comes a connected set. In the second we just prescribe 
the constancy of the potential on the screen as a bound
ary condition. Both methods yield the same results and 
we will adopt the second so that the basic boundary value 
problem becomes (1)- (4) with j = 1 and Kl the screen on 
S. 

As in Sec. 2: the boundary value problem (6)- (9) can 
be given a variational formulation in which u = ~;}(- 4rrp), 
where ~~ is the operator on L2(R) defined by the qua
dratic form 

a(u,v)= -' gradu' gradv, 

D(a~)={uE H1(R): u=O on oR. and u 

is constant on S}. 

Theorem 2: Suppose that K(n), n=1,2,' ", are 
screens smoothly placed on S, where K(n) consists of 
wires of radius rn and spacing Rn' Let ~n be the operator 
on L2(R.\K(n)} as in Sec. 2 and Pn: L2(R) - L 2(R.\K(n» be 
the restriction mapping. If (-Rnlnrn)-l- 00, then for any 
continuous function f on (- 00,0) bounded at - 00, f(~n )PnP 
- f(~~)p in L 2 (R.) for any p E L 2(R.). 

Proof: We describe the modifications that are required 
to adopt the methods of our paper on wild perturbations2 

to this setting. For the remainder of the proof this paper 
is referred to as PSWPD. First we define uniformly 
bounded extension operators En: Bn - B ~ -= D(a~) by ex
tending functions to be constant inside 1<'/. As in our 
previous work (see the proof of Theorem 1.2 of PSWPD) 
it suffices to prove the result for f= (1_X)-1. Imitating 
the proof of Theorem 4.4 of PSWPD, we notice that for 
gE L 2 (R.) 

11(1 - ~nt1Pngll~1<R\KCn» 

= «1- ~n)(1- ~n)-lpng, (1 - ~nt1p ~)R.\KCn> 

= (Png, (1 - ~n)-lp ~)R.\KCn> 

'" IlgllhcR.> 
so that wn -= En (1 - ~ntlpng is a bounded sequence in 
H1 fA). By using Eq. (5) on n =R. \K(n) for the function 
W n it is easy to show that if w is a limit point of the 
sequence {wn} in the weak topology for H1 fA), then 

~ (wu - gradw' gradu) = .0 gu (10) 

for all u E H1 (R. ) such that u is constant on a neighbor
hood of S. Since these u are dense inB~=D(a), (10) 
holds for all u E B ~. To show that w = (1 - ~~ t1g, it 
therefore suffices to prove that w E B~, that is, w 
=const on Sand w=O on aR.. The latter is true since 
{VEH1 fA)lv=O on oR.} is a closed linear subspace, 
hence weakly closed. That w is constant on S lies con
siderably deeper. The crucial inequality is the following: 

Let U, ~, r, R be as in Definition 2 and let 

UH =Un{lx3 1 "'H}. 

There is a constant b independent of H such 

that for all v E H1 (lj) with v I r: = 0, 

fUH Igradvl
2

/ i IvI2~}j2_H!ln(r/R) 
provided H> R > 3r. 
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FIG. 1. 

The verification of inequality (11) is postponed to the 
end of the proof. Let U1, •• '. UJn be cubes with U j </fj Wi) 
~S, the screenK(n)=UjIfiP(l:j). Let cn=wn'sereen 
and apply the inequality to wn 0 1/JP - cn' In this case, 
Rnln(rn/Rn) - 0 as n - 00 so the right-hand side of (11) 
behaves like const H C2 for n large. Letting S;;=~ilP~(ljH)' 
we get 

~.n 1 wn - Cn 12 ~ const lfl. (12) 
H 

Let SH = {x: dist (X, S) ~ H}; then, since 1 cn - cm 1 ~ 1 wn 

- cn 1 + 1 wn - cm, it follows that ISH 1 cn - Cm 12 ~ const H2 
provided oH > Rn, Rm for some 0 independent of n, m. 
Since vol (SH) approaches zero like a multiple of H, 
we get Icn-cmI2=O(H) for H>Rn, Rm. Lettingn,m 
tend to infinity, we see that {cn} is a Cauchy sequence so 
that cn - C for some C. Passing to the limit in (12) yields 

~ i Iw-cI2=O(H), (13) 
SH 

and it follows that W = C on S, since 

1 (w - C)2 ~ const lim H-Il (W - c)2 • 
S H-O SH 

We have now shown that wn converges weakly in HI (R) 
to W= (1 _Il • .)-lg. Since IIwniiHI<R> is bounded independent 
of n, it follows by the Rellich compactness theorem that 
{wn} is precon,pact in L 2 (R). Since wn converges weakly 
to W in L 2 (R) it follows that wn - win L 2 (R) which is the 
desired result. 

We now return to the proof of inequality (11). This is 
reduced to a two-dimensional problem by considering 
the x 2 = const cross sections of U H. For these cross 
sections we prove that 

i (~\ 2 + (~\ 2 dx dx 
cross section axl) ax2 ) I 3 

const [ 2 

:>- H2 -HR log(r/R) Jeros. section V (14) 

for v which vanish on :6. This in turn can be proven by 
chopping the cross section into punctured rectangles as 
in Fig. 1. It suffices to prove (14) where the integra
tion is only over one of the punctured rectangles. The 
lower bound for the punctured rectangles is proved ex
actly as inequality (4.1) of PSWPD and the argument is 
not reproduced here. This completes the proof of 
Theorem 2. 0 

287 J. Math. Phys., Vol. 16, No.2, February 1975 

The phenomenon just considered has a great deal in 
common with the behavior of the Dirichlet problem, al
though the proof in the case of the electrostatic boundary 
problem is a little more involved. It is interesting to 
note that the electrostatic problem can exhibit behavior 
markedly different from that of the Dirichlet problem. 
For example, suppose the wire screen described above 
consists of wires which are not connected, that is, not 
at a common potential. If the wires are parallel to a 
vector field X on the surface S, and if - (Rn logrntl- 00, 

then the un converge to a solution to the problem 

IlU=-41TP onR\S, (14) 

[u]=O on S, (15) 

Xu=O on S, (16) 

1 [~~J V=O for all v E c~ (S) with Xv = 0, (17) 

U=O on 'OR. (18) 

Since this is not a straightforward application of pre
viously stated results, we indicate a proof. Let un = 
Il~l (- 41Tp), where Iln is defined on R with electrostatic 
boundary conditions on the wires K(n), and Un is extended 
as a constant on each wire. As usual, {u } is bounded in 
o n 
HI (R), and so has a weak limit point U E III (R). Clearly 
u satisfies (14), (15), and (18) above so that we need to 
prove (16) and (17). Furthermore, we need only consider 
thOSe p which vanish in a neighborhood of S since these 
are dense in L 2 (R). If we prove 

-a(u,v) =(-41Tp,V) for alivEB 

whereB={vEHI(R):Xv=OonS}, (19) 

then (17) will arise as a natural boundary condition. 

To prove (19), we need only observe that for each v 
E B there exist vn E B such that vn is constant on each 
wire of K(n) and vn -v in Bas n- 00. Then (19) holds 
for vn and we may pass to the limit. The existence of 
such vn is proven by constructing operators analogous 
to the Q's at the end of Sec. 3. 

U only remains to prove that Xu = 0 on S, i. e., that 
u E B. Indeed, by previous calculations 

.!.f Iu -c 12~b(H-R lnrn) H n n n R • 
SH n 

This time, cn is not a constant, but it is constant on the 
wires of K(n), and in the direction normal to S. It 
merely varies from wire to wire. Thus cn E L 2 (S), XCn 
=0. A trivial estimate is 

! i 1 un - Un 12 ~ (3(H) - 0 as H - 0, 
SH 

where un = un 1 S extended to SH as a function independent 
of the normal variable. Putting these together and let
letting H - 0 yields 

.is lun -cn I2 -o asn-oo. 

Since un E HI/2(S) is bounded, pasSing to a subsequence 
you get un - u 1 S in L 2 (S). Hence cn - u I S in L 2 (S), so 
that Xu = 0 on S. as desired. 
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An even greater disparity is observed if K(n) consists 
of n balls of radius r n' with center ~jn lying on S and 
spaced apart a distance at least 4rn [or K(n) could con
sist of discs, the intersection of S with these balls J. If 
these obstacles are connected, say by arbitrarily thin 
wires, arguments as in the proof of Theorem 2 show 
that K(n) behaves in the limit as a solid, screen S, pro
vided nrn _ 00, For this proof Lemma 4.5 of ReL 2 is 
needed in place of (11), On the other hand, surely 
volK{n) - 0, so if K(n) is not connected, as we have seen 
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at the end of Sec. 3, the obstacles disappear as n - 00 0 
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The rules for the construction of the nth order cumulant for time-dependent, stochastic, matrices or 
operators which do not commute with themselves at unequal times are derived. The results are 
identical with van Kampen's rules. In the Gaussian case, Kubo's concept of a generalized Gaussian 
process is criticized. Under certain conditions Kubo's idea becomes asymptotically valid, while the 
same conditions justify use of the author's earlier delta function theory. A generalized density matrix 
equation is presented and its behavior during the approach to equilibrium is discussed. A finite 
correlation time, T" does not necessarily invalidate a monotonic approach to equilibrium. 

1. INTRODUCTION 

In this paper, the author's earlier theory of multipli
cative stochastic processes, 1 with its application to the 
treatment of the time development of the quantum me
chanical density matrix, 2,3 is generalized o The earlier 
theory was restricted to the consideration of purely 
random, Gaussian, stochastic matrices, whereas the 
theory presented here applies to any class of stochastic 
matrices 0 

Following earlier work by Kubo4
,5 and more recent 

work by van Kampen,6,7 cumulant techniques are used to 
achieve the generalization. General rules for the 
construction of the nth order cumulant expressions have 
been published by van Kampen. In this paper a deriva
tion of those rules is presented, and the derivation re
quires the introduction of the concept of a time-ordered 
logarithm. The Gaussian property is introduced, but 
without the added restriction of "purely randomness, " 
and it is shown that, for stochastic matrices which do 
not commute with themselves at unequal times, the 
cumulant expansion does not truncate to the first two 
cumulants only. While this point has been published 
before, 8 here it is pointed out that this circumstance 
invalidates Kubo's concept of a "generalized Gaussian" 
stochastic, matrix process. 4, 5 By studying a special 
case in which the correlation matrices dampen out ex
ponentially, it is demonstrated that the Gaussian prop
erty does lead to the desired truncation, asymptotically 
in time, after all. 

The application of these mathematical results to the 
density matrix is made in the last section. A generalized 
density matrix equation for the approach to the micro
canonical density matrix is presented. With the Gaussian 
property imposed, the generalized equation asymptoti
cally approaches the Redfield equation presented ear
lier.1 Moreover, the H-theorem, proved within context 
of the earlier, Gaussian, purely random, theory, 2 can 
be generalized in some situations which are discussed. 

Because the asymptotic behavior of the generalized 
equations is identical with the earlier, more restricted 
theory, the general theory has as one of its virtues the 
property that it justifies the earlier theory, rather than 
replaces ito 

2. MATHEMATICAL FOUNDATIONS 

It is the purpose of the following calculations to in-

vestigate the averaged behavior of the equation: 

(1 ) 

when 

(A,u,' (t)=M",,,,,, (2) 

(A",,,,, (t)A88, (s)= 2Q ",""88' (t - s) + M ",,,,,M8s'; (3) 

and there are nonvanishing higher order moments of 
A(t) which will not be explicitly indicated at this point. 
Both A(t) and M are antisymmetric matrices 0 Repeated 
indices imply summation, and the variance tetratic, 
Q "''''' w (t - s), is a function of the time interval t - so In 
the earlier, purely random, theory, the time dependence 
was always given by a delta function times a time-inde
pendent, tetratic variance, Q", "" 8S' X Ii (t - S)1. That re
striction is now removed. 

The study of Eq. (1) is equivalent to the study of the 
averaged behavior of 

when 

(AI "''''' (t)= 0, 

<A' "''''' (t)A' S8' (s )= 2Q "''''' 8S' (t - s), 

(4) 

(5) 

(6) 

and again the higher order moments will not yet be ex
plicity indicated. 

It is also equivalent, and convenient, to perform a 
linear transformation and work with the equation 

d -
dt bCt(t)=B",,,,, (t)b"" (0 (7) 

wherein b",(t) and B",,,,,(t) are defined by 

a",(t)= [exp(tM)]",,,,,b,,,, (t), (8) 

B",,,,, (t)= [exp(- tM)]aaAss' (t)[exp(tM)]s' Ct" (9) 

It follows from (5) and (6) that 

(B a "" (t)=0, (10) 

(B a "" (t)B88, (s) 

= 2Q",hv' (t - s )[exp(- tM)]",,,[exp(tM)).,, a' 

X [exp(- sM)]sJexp(sM)]v'8' 0 (11) 

Note also that the antisymmetry of A(t) and M imply 
through (9) that 
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(12) 

The solution to (7) is expressible as a series of time 
ordered integrals: 

b",(t)='t l t1 t 2 •• '1
tn02 rtno1 [B (t1)B (t ) •• 0 

naG 0 0 0 o.fo "'''1 "1"2 2 

x B"n""21'n_1 (tn-1)B"n_l"" (tn)]dtn••• dt1b",. (0) 

= [r exp(t:8(s)ds)]",,,,.b,,,. (0) (13) 
o 

wherein the n = 0 term of the sum is defined to be 
<5 "''''' b "" (0) == b ",(0), and the last equivalence defines the 
time ordering symbol, I. 

The average of (13) may be expressed using time 
ordered cumulants4

- 8 : 

(14) 

(15) 

So far, all that has been done is to define the cumulant 
averages through (14) and (15), and it is necessary to 
find expressions for GCn) Js) solely in terms of ordinary 
averages of products of B(t) 's if (14) is to be useful. 
This task is the heart of the difficulty with the cumulant 
method, and the purpose of this section of this paper 
will be to demonstrate a general method of solution. 

_ The m~thod of solution begins with the replacement of 
B(t) by AB(t) everywhere in (14) and (15). The parameter 
A is an ordinary real number, with respect to which de
rivatives may be performed. Using (13), (14), and (15) 
gives 

(Iexp(t A:8(s)ds» 
~ 0 t t 

=611 1 t 2• 0 'ltn-21tn-1 An(:8(t ):8(t ) ••• 
n.o 0 0 0 0 0 1 2 

X :8 (tn_1):8(tn»dtn ••• dt1 
~ t ==LJAn 1 ACn)(s)ds 
n:O 0 

:==Iexp(~y tG<n)(s)ds) , (16) 

where A Cn) (s) is defined by 

A<n) (s) == f t 2 ••• /n-2/n-1 (:8(s ):8 (t2) •• ':8(t l):8(t» 
o 0 e 0 n- n 

X dtn 0 0 ·dt2• (17) 

Clearly, A Cn) (s) is the analog, in terms of ordinary 
averages, of G<n)(s) which is given in (15) by cumulant 
averages. Now, notice that if (16) is differentiated with 
respect to A, n times, and then A is set equal to 0, the 
first and third terms in (16) give 

d~: (rexp(i
t 

A:8(S)d)I).:o=n! r A<n) (s)ds. (18) 

The corresponding quantity which comes from the fourth 
term in (16) is 

.£..TexpitAn (G<n)(s)ds) I =? (19) 
dAn - \;,.1 Jo ),:0' 
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The right-hand side of (19) is sufficiently complicated 
that a special method is required to arrive at an ex
plicit formula. 

The evaluation of (19) is a special case of the general 
problem of evaluating the nth derivative of a composite 
function which is time ordered. The method to be 
employed here is suggested by Riordan. 9 Let i be a time 
ordered composite function of the form 

(20) 

In (19), Y (u) is exp(u) and W(A) is Ln.1An ftGCn) (s )ds. De
note (d'/dAn)i(A) by in' (d'/dAn)w(A) by w~, and (d'/dun)/ 
y(u) by Yn ' From (20) it follows that 

i1:== I(w1Y1), 

i2= r(W~1 + W~Y2)1 

i3 = I (WsY1 + 2W2W1Y2 + W1W~2 + W~Y3)' 

i4 = r(W4Y1 + 3W3W1Y2 + 3W~2 + W1WsY2 + 3w2wiY3 

+ 2W1W2W1Y3 + W~W:aY3 + WiY4) 

(21) 

So far, careful preservation of the order of terms in 
these derivatives has been observed because noncom
mutivity is in general possible. The presence of the 
time ordering operator, I, however, makes this 
scrupulous observance of order unnecessary because 
r permits treating the noncommutative quantities as if 
they commuted up until the time ordering is applied. 10 

For example, r(2w2WrY2 + W1W:aY2)= r(3W2WiY2)' There
fore, Eqs. (21) may be rewritten as 

i1 = x (w1yrl, 
i2= I(W~l + WiY2)' 

i3 = I(WsY1 + 3W2W1Y2 + W~3 ), (22) 

i4=r(W4Y1 +4W3WIY2 +3W~2+6w2W~3+WiY4)' 
These expressions are sufficient to suggest the conjec
ture that the nth term is 

i n = :0 r{ii(l!):,1 I (WI)m I Yp} , wherep==tm" 'Cir:;.lmz _n 'al m, '.1 
(23) 

where 'Zi.Ilm, = n defines a partition of n, and the sum
mation in (23) is over all such partitions. The values of 
the multiplicities, m" are 0, 1, 2, ••.• Therefore, p 
== Li elm 1 is always finite because all but a finite number 
of the m,'s are zero. The formula given by (23) is the 
time ordered generalization of di Brunno's formula. 11 

It may be proved by induction as follows, 

Clearly, (23) agrees with (22) for n= 1, 2, 3, and 4. 
Therefore, assume that (23) is true for n, and it shall 
be proved that it is true for n + 1. Then, by induction, 
(23) is true for all positive n. Using (23), in+1 can be 
directly obtained and is given by 

- LJ II mIl W, m' (W1)m 1 +IYp +I j, "T{' ~ nIl ( ) } 
n+l - r;i.1ml ... - 102 (l! )m,m,! 

(24) 
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+ 6 'tT{ Ii nl ml 
1:" 1m .,,1.1- 1.1 (ll)mlml! (jl)mlmJl 

1.1 I If-I 
If-J +1 

X «. + 1)'~ 1 , (WI)ml(WI)ml-l(WJ+l)mj+I+lyp ,} 
J .1+mj +1 • 

where P= 'tmlo 
101 

The first summation comes from one more derivative 
of y which generates another factor of wI> whereas the 
second summation comes from the derivative of all 
other factors in (23) other than the y factor. It must be 
shown that (24) is of the form given by (23) for n+ 1, 
which is 

'" { .. (n+l)1 m} 
fn+l=- ~ ~ r 1~I(ll);;;Hn 1 (WI) IYp? 

I:I.l/m I'" +l I , 

where p=.'tiii l • (25) 
101 

To show the equivalence of (24) and (25) the following 
replacements are needed: 

1 m 1 +1 
m1!- (m1 + I)! ' 

1 1 
(j! )mj - 'T(J:";' !")m=-J-='-1r:-j 7! ' (26) 

1 (j + I)! (mj +1 + 1) 
{(j + I)! h+1ml+1!- «j + 1)!h+1+1(mJ+1 + 1)!' 

Using (26) in (24) gives 

~ ~ {~ nl (j+1HmJ+l+ 1) ( )m ( )m -1{ )m +1} h ",t 
+ .. LJ, J~r. PI {l,)mlm '(J',)mJ-i{m -1)1[(J'+1),]mJ+l+1{m +1)' WI I Wj j wj +1 j+l yp werep-I1m,. 

BZallmz=n D l;j· t·· J • J+l· • 

'f-} +l 

(27) 

In arriving at (27), m/mJ ! has been replaced by 1/ 
(m} -1)1, and this does not lead to difficulty when ml 
= 0 if it is simply recalled that 

1 mOO 
(m} -I)! =~=-Of=l=O. 

In the first summation in (27) let iii, == m, for l ~ 2 and 
let iiil =- m 1 + 1. Then it follows that 

f':liii, =- (m1 + 1)+ 'tlm, = 1 +'tlm, == 1 + n. t;l 1=2 1.1 

Similarly, in the second summation in (27) let iii, = ml 
forl=1~ 2,"', butl*j andl*j+l, andletiii j =-m j -1 
while letting iii 1+1 = m 1+1 + 1. Then it follOWS that 

'tliii l = f: lml + j(mj -1) + (j + 1)(mj +1 + 1) 
'111 t;i 

If-j 
'f- I +1 

=='tlm,- j+ (j+ l)=-n+ 1. 
1.1 

In addition, in the first summation in (27) 

p + 1 =-('tml) + 1 ='tiii" '01 '01 
whereas in the second summation in (27) p==L:i.lm, 
=L:iuriz,=P. 

These considerations permit rewriting (27) as 

,- } 
fn+l =- .. ~ I III (ll )mliiil (w, )m,y, '" {'" n.m1 -

I:I=llm Ion +1 , 

ml;!111 

+ 6 'tr.{Iin!(j+l)iiij+l(W,)iiilY_} 
1:~1,ml=n+11.1 1:1 (ll)m1m,1 p 

;;;1#n+1 

where [i='tiii,. (28) 
101 

Notice that the summations over partitions of n + 1 are 
not unrestricted, and that the numerators still require 
Simplification. Reductions of (28) to (25) requires con
sideration of two cases. iiil =- 0 and iiil * O. In the case 
in which iii1 =- 0 only the second summation can contribute 
and the summation over j gives 

't(j+l){iii j +l)='tjiiij =-n+l wheniii1=-0. (29) 
}01 I.'}. 
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Therefore, the numerator becomes n! {n+ 1}=- (n+ I)! 
and the j summation is gone. In the case in which iii1 * 0, 
both summations in (28) contribute, and the combination 
of the first summation with the j summation in the 
second summation yields 

n! (iii1+'t(j+l)iiij) =-n!(iiil+'tjiiil\ ~}01 Y j. ~ 
=-n!(tjiii} =-n!(n+l)=- (n+1)1. (30) 

j.l ~ 
Consequently, (28) is identical with (25). This completes 
the proof of (23). 

The original objective was to find the right-hand side 
of (19) and equate it with the right-hand side of (18). 
Equation (19) may be treated as an example of 
(23) in which y (u) =. exp(u) and weAl =. L:';:1 An f; G(n) (s)ds as 
was previously indicated in the discussion of (20). In 
this case, it follows that 

Yn 'x.o =- y.l .=o=- 1 for aU n 

and (31) 
w.ll.oo=-n! t G(n)(s)ds. 

Therefore, (23) becomes 

f.lx.o=- ~6 r{~ (lJ)~; 1 (l!)m/ft G(')(S)dSt ,} 
I:,=r'mr=n '_I ml ~ 0 ') 

=~.6 r.{i'i ~(ft G(I)(s)d) m,}. (32) 
1:/=1 1m I=n 1=1 mil 0 'J 

However, from (16) and (18) it is also true that 

f.l~=o=n! lot A(n)(s)ds. (33) 

Therefore, it follows that 

it A(n)(s)ds = ~ 6 X{t\_l_, flt G(/)(S)dS\ m,}. (34) 
o c'=l lml=n - mi' ~o J 

By explicitly working out (34) through n =- 4, agreement 
with previously published expressions, derived by a 
more laborious method, will be reached. 8 

The problem of inverting (34) in order to obtain ex
pressions for f: G(n) (s)ds in terms of appropriate pro-
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ducts of t A(I)(s)ds is not simple because (34) is non
linear in Ott G( I) (s )ds. This problem is the original 
obj ective and it has so far lead to (34). Its solution is 
obtained by applying the method used to obtain (34) in a 
different manner, as was also suggested by Riordan. 9 

Use of (23) will again be required, although this time W 

and y will be different functions than those used to 
arrive at (34). It is necessary to find the appropriate 
new functions. 

To get (34), use of (16) has been made; particular ly 
~ t 
I) An 1 A(n)(s)ds 
ncO 0 ( ~ t ) 

=Xexp ?;AnfO G(n)(s)ds 

=(X exp (A ~tB(S)dS))' 
Define W(A,t) and R(A,t) by 

W(A, t) =~An.f G(n) (s)ds, 

R(A,t)=tAn t A(n)(s)ds. 
n=l 0 . 

Using (36) in (35) gives 

1 +R(A, t) = 1 + t+ X{(W(A, t»n}. 
n=1 n. 

Finally, define R'(A, t) by 

R '(A, t) = t ~ !{ (W(A, t) )n}. 
n=1 n. 

Consequently, (37) is simply 

1 + R(A, f) = 1 +R'(A, f). 

(35) 

(36) 

(37) 

(38) 

(39) 

For SUfficiently small A, both R(A, f) and R'(A, t) can be 
made to approach the zero matrix as closely as is de
sired. Therefore, it is possible to define a time-ordered 
logarithm by the formula 

~[1 +R(A, f)]=?j(-l)/-l yX{(R(A, f»/} 

= m[l + R'(A, t)] = fj (- 1)/-1 T X{(R(A, f»/} 
(40) 

If the matrices in (40) are replaced by commuting 
quantities, then the time ordering operations become 
unnecessary and the series correspond with the series 
expansion for the ordinary logarithm, In(l + Ax), which 
is valid for sufficiently small A. Because the A deriva
tives to be performed will be evaluated at A = 0, (40) is 
entirely sufficient, even though it only makes sense for 
sufficiently small A. To use (23) in this case, identify 
fwith ill[l +R'(A, f»)=ln[l +R(A, t»). For y(u) in this case 
take: y(u) "'L;~=l[(-l)/-l/Z]ul,and for W(A) take: W(A) 
=R(A, f). 

Observe that 

lD[l +R'(A, t)]=W(A, t) (41) 

This remarkable result can be written as 

wt[exp[W(A, t)]}=W(A, t), (42) 

where use of (35) and (36) has been made. The proof of 
(41) and (42) goes as follows: 

ill [1 +R'(A, t)] 

=t(-1)/-1.!..X{(R'(A, t»/} 
1,1 I 
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(43) 

The last equality follows from the definition of the time 
ordering operator. 10 It may be expressed by: the time
ordered product of factors which are themselves time
ordered is equal to the time-ordered product of those 
same factors without internal time ordering. 12 The 
easiest way to see this point is to use the definition of 
! which involves () factions. 10 The last line of (43) is 
most easily evaluated after taking the time-ordering 
operator T. out in front of the sum over I. The result is 

~[1 + R'(A, t)] = X{t(- 1)/-1-
Z

1 (t -i- (W(A, t»~ I}. (44) 
'=1 n.1 n. J 

Now, consider tf for x positive but less than ln2. Then 
it is so that 

tf = 1 +t-\xn and t-\xn< 1. 
n.ln. n=ln. 

(45) 

Consequently, 

The form of (46) is precisely the same as the form of 
(44) provided A is small enough. Consequently, be
cause In[l + L::..1 (lin [)xn] = In(tf) =X, it follows from 
(44) that -

In[l +R'(A, f)]=W(A, t). (47) 

The time-ordering operator in front of the right-hand 
side of (44) is not present explicitly in (47) because 
W(A, t) is already fully time-ordered according to (36) 
and (15). This completes the proof of (41) and (42), but 
it must be remembered that the attendant analysis is 
only valid for sufficiently small A, and (41) and (42) 
have not been proved for arbitrary A. 

Returning to the discussion between Eqs. (40) and (41), 
it follows that 

fn 1 ~=o = :;"n ill [1 + R'(A, f)]1 hO = :;"n W(A, f) I ~.O 
=n! t G(n)(s)ds. (48) 

o 
On the other hand, the equivalence of In [1 + R'(A, t)] and 
In[l +R(A, t)], along with the choices for y(u) and W(A) 
given in the discussion between Eqs. (40) and (41), im
ply through (23) that 

fJ=o=:O: ~ I) X{/~1 (I !)~/!m [ (W/)m1yp \ } 
l:/.1/m/cn - I ~,o 

where p "'L;;"=1m" To get (49), the following two identi
ties were used: 

WI! =pd
l 

(tAn rt A(n) (S)dS\ I~=o ~,o A n=1 J 0 : J 

=l[ .fa t 
A(n)(s)ds (50) 
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and 

(51) 

wherein u = 0 corresponds with A = O. 

Combining (48) and (49) provides the desired inversion 
formula: 

t 

~ G(n)(s)ds 

= ~ (_1)H(P_1)!X{fr __ 1:_/jt A (!)(S)d)ml
}, 

~"'"llml=n 1=1 m!. ~o / 

(52) 

where P ~L,;:lml in each summand of the partition sum
mation. Formula (52) is identical with the results ob
tained from van Kampen's rules. 6,7 Together, (19), (17), 
and (52) provide a general expression for the nth order, 
time-ordered cumulant averages in terms of ordinary, 
time-ordered averages. 

The averaged solution to (7) can be written using (13) 
and (14) as 

(bOl.(t» = [rexp(ff fG(n) (S)dS) ]OI.OI.,b",(O). (53) 

The corresponding differential equation is 

!(b",(t»=fj [G(n) (t)]",,,, ,(b", ,(I». (54) 

By using (8), this corresponds with 

:t (a", (t» ,= ~OI. ,(aOi. ,(t» + [exp(tM) ]OI.sB [G(n) (t)]aB' 

x [exp(- tM)1,,, ,(aOi. ,(t». (55) 

Because only the first two moments of B(t) have been 
explicitly indicated in (10) and (11), only for n= 1 and 
n = 2 in (55) will explicit expressions be given at this 
point. From (52) it follows that 

G(I)(t) =A(I)(t) = (B(t» =0. (56) 

The second and third equalities follow from (17) and (10) 
respectively. Again from (52), it follows that 

G(2)(t) =A(2)(t) = f (i3(t)B(s»ds, (57) 
o 

where the second equality follows from (17). Therefore, 
the n = 2 term in (55) becomes 

[exp(tM) ]OI.sG£:Ht)[exp(- tM) ]s'OI.' 

= t (A~ .. (t)[exp(t- s)ML;i~(s)[exp(s - t)M)101.,)ds 
o t 

= 2 I QOI.I'!I8(t - s)[exp(s - t)ML[exp(s - t)M)101.,ds, 
o 

(58) 

where (9) and (6) have been used to get the last two lines. 
lines. Without explicit expressions for the higher order 
moments of A 'et), the higher order terms in (55) can be 
rewritten part way only, giving 

exp(tl M)G(n) (tl ) exp(- tIM) 

= fl t 2 ••• fn-2 fn-l (I.' (t1 ) IT exP[(tI_l- t/)M]A'(tl ) 
o 0 0 0 1=2 

X exp[(tl - tl )M] )cdtn dtn_1 o •• dt2 0 (59) 

This expression contains cumulant averaging in the in-
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tegrand, and (52) must be used to get an expression in 
terms of ordinary averaging. The explicit, very com
plicated expression will not be written down here. 

3. THE GAUSSIAN PROPERTY 

When dealing with stochastic processes which do not 
involve the difficulties of noncommutivity, the stipula
tion that the stochastic process is Gaussian leads to 
great Simplifications in the cumulant expression. 8 All 
cumulants of order higher than two vanish for Gaussian, 
commutative, stochastic processes. 8 However, the 
presence of noncommutivity leads to nonvanishing higher 
than second order cumulants. 8 It is for this reason that 
Kuba's concept of a generalized Gaussian process in 
the noncommutative case is invalid. 4,5 To further 
clarify this situation, the following brief review of the 
principal points of relevance are presented. 

For convenience assume that M= 0 in the preceding 
section. It then follows that A(t) ~A'(t) ~B(t), and 

(A(t» =0, 

(AOI.s(t)AOI. 's,(s» = 2QOI.sOl. 's,(t - s). 

(60) 

(61) 

The Gaussian property leads to explicit expressions for 
all higher order moments: 

(AOI.181 (tl) •• • A0I.2n_182n_l (t2n-l » = 0, 

(ACt 1.81 (tl) •• • A" 2bn (tZn» 

(62) 

=_1_ ~ fHA (t)..4 (t» 
2nn! pESz

n
J=l OI. P(2J_l)Sp(2J_l) P(2J-l) "P(2J)8p(2J) P(2J) , 

where P is a permutation in the symmetric group of 
order (2n) !, S2n' The easiest way to understand the 
origin of these formulas is to use the method of S. O. 
Rice. 13,14 A(t) is represented by a Fourier series: 

(63) 

-- (2)1/2N (- 2rrnt -- . 2rrnt) A(t)= l' ?; Ancos-y-+BnSlll-y- , (64) 

in which both Nand T ultimately are allowed to go to 
infinity and the coefficients An and 13n are time-indepen
dent, statistically independent, stochastic matrices with 
Gaussian distributions. In particular, the distribution 
for An is of the form 

D(A ) = ( IIGnll)1/2 exp(- ~A 0 GoA) 
n (2rr)n 2 n n n , 

(65) 

where Gn is a positive definite tej'ratic correlation with 
determinant IIGnli. Using (64) in t.he left-hand side of 
(63) leads to all the different products of pairs on the 
right-hand side. In the special case in which all the cor
relation tetratics for all the An's and Bn's are identical, 
the time dependence in (61) will be B(t - s), and 2Q ~ G-1 • 

This is seen by using (64) in (61) which gives 

(AOI.s(t)A".s' (s» 

2 f. ( -- -- 2rrnt 2rrns 
=1';;1 ,<An"sAnOl.'8') cos-y- cos--;y- (66) 

+ (B B ). 2rrnt . 2rrns) 
nOl. s nOl.'8' sln-rslll-y-
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-1 . 21Tnt . 21TnS) 
+G(",a)(a'a') Slll---r-Slll---r-

- G(~a)("'''B.)6(t - s) as T- 00 and N - 00. 

The first equality follows from the postulated statistical 
independence of all the stochastic, matrix coefficients 
in (64). The second equality follows from the assumption 
for this special case that all correlation tetratics are 
the same, and the fact that 

iA A ) 00 f . .. f (J!Q!L \ 1 /z exp[-.!.A G • A ] 
\ n"v nJJ,'V' J (21T)riJ 2 n",a (",a)(a'a) n""a' 

XAn"vAn"'v.dAn = G(~V)("'v')" (67) 

The validity of (67) is perhaps best seen in a more 
f..amiliar matrix notation in the case of a vector process, 
XI' where i = 1, 2, '"", N with a Gaussian distribution 
given by 

D(X) = [IIEII/(21T)n]1 /Z exp(- FjEijXJ), (68) 

where liE II is the determinant of EiJ which is positive 
definite and symmetric. Therefore, 

f f ("EII \1 /Z 
(X1Xk) = • • • (21T)ri) exp(- tXjEijXj)X/XkdX 

= Ei}. (69) 

Equation (67) is the natural generalization of (69) when 
vectors become matrices, and matrices become 
tetratics. Other special cases will involve Gn's which 
are not all equal, and as a consequence the time depen
dence in (61) will not be simply 6(t- s) as in (66). Of 
particular interest is the special case in which G;l has 
the form 

7 
G~l = 2Q 1 + (21T~/T)27~ [1- exp(- T /7)], (70) 

Following the procedure used in (66) leads to 

- - 2 f: 21Tn 
(A",a(t)A""a'(s) = 2Q("'6)(""B')r ~ cosT (t - s) 

as N - 00 and T - 00 (71) 

This special case will be of interest when Kubo's con
cept of a generalized Gaussian process is considered. 

With the stipulation Moo 0, introduced at the beginning 
of this section, the fourth-order cumulant, according to 
(52), (17), (15), and (9), is 

f l (1 fZ t~ (A(t1)A(t2)A(t3)A{t4) dt4dt3dt2dt1 
0·0 0 '0 c 

= t f1 fZ t 3 (i~(t1)A(tz)A(t3)A(t4)dt4dt3dt2dtl 
. 0 0 0 • 0 

- t (1 (11 (I~ (A(t1)A(tz)(A(t3)A(t4)dt4dt3dt2dtl' 
'0 '0 '0 '0 

(72) 

Notice the upper limits on the second multiple integral 
of the right- hand side of (72), These upper limits fol
low from the time ordering in (52). Using (63) yields 

294 J. Math. Phys., Vol. 16, No.2, February 1975 

for the first multiple integral of the right-hand side of 
(72) the identity 

f .fl f2 f3(A"'''1(t1)A''1''2(t2)A''2''3(t3)A''3a(t4)dt4dt3dtzdtl 

_ (t (11 (12 [t3{ - - - -
-)0)0 ·t '0 (A"'''1(ll)A''1''Z(t2)(A''Z''3(1 3)A''3a(t4) 

+ (A",,, 1 (t1)A" Z"3 (t3)(A" 1" 2 (t2)A"3a (t4) 

+ (A",,, 1 (tl)A"3a(t4)(A" 1"2 (tz)A" 2" 3 ( 3) }dt4dl 3dtzdt l' 

(73) 

The second multiple integral of the right-hand side of 
(72) may be simplified also by noting the identity 

'f f1 (1 t 3 g(t1t2t3t4)dt4dI3dt2dt1 o 0 '0 . 0 

= t t1 t2 t 3 g(t1t2t3t4)dt4dt3dtzdt1 
o 0 0 0 

I
t It1 {t1 (t3 ( ) + 0 0 ..lJ ..u g t1t2t3t4 dt4dt3dt2dt1 

= f f1 f2 t
3 

g(t1t2t3t4)dt4dt3dtzdtl 
o 0 0 0 

I t ftl j t 3 [13 + g(tltZt3t4)dt4dt2dt3dtl 
o 0 0 '0 

.£
1111 (t2 [13 = g(t1tZt3t4)dt4dt3dt2dtl 

, 0 '0 '0 

[
I (II (13 (t2 + '0 ..u ..lJ ..lJ g(t1t213t4)dt4dt2dt3dtl 

+ 11 CI t 31t3 g(t1t2t3t4)d t4dt2dt3dtl o '0 . 0 0 

(74) 

The first and third equalities follow from: f = f.oY + rX . o 'y 

The second and fourth equalities follow from interchange 
of the order of integration: Jot r dt'ds =: t r' dsdt'. The 

s Q 0 
last equality follows from a renaming of time variable 
indices. The arbitrary function g(tltZt3t4) respects the 
order of the occurrence of the different indices on the 
time variables which are its arguments. Applying (74) 
to the case at hand gives 

(t (tl {tl (t3 _ _ _ _ 
- • .\J )0 .kJ )0 (A""l (t1)A"1"2(t2)(A"2U (t3)A"3a(t4) 

~ 

X dt4dt3dt2dt1 

= - r tl t2 f3{(A""I(tI)A"IU2(t2)(A"2u3(t3)Au3S(t4) 
o 0 0 0 

+ (A"" 1 (f1)A"l" 2 (t 3)(A" z"3 (t2)A" 3a(t 4) 

+ (A"" (l1)A" " (t4)(A" "3(t2)Au a(t3)}dt4dt3dt2dt1 • 
~l ~1~Z Z 3 

(75) 

Putting (73) and (75) into (72) gives 
ttl t - - - -

[ (I ( Z J 3 (A",,, (f1)A"I" (tz)A" " (t3)A" a (t4) cdt4dtgdt2dtl 
• 0 '0 . 0 0 1 2 2 3 3 

= f f1 f2 f3{(A"'''I(t1)Auzu/t3)(A'' I'' 2(t2)A''3S(t4) 

- (A",,, 1 (ll)A"l" 2(t3)(A" 2" 3 (t2)A" 3S(t4) 
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+ (.4."'IL 1 (tl).4.ILSB(t4)(.4.1L11L 2(t2).4.IL2ILS (tS) 

- (.4.",,, (t1).4. IL " (t4)(.4." IL (t2).4." B(ts)}dt4dtsdt2dt1• 
1 12 2S S 

(76) 

Only the leading terms in each of (73) and (75) cancel 
out in general. Therefore, Kubo's specification that the 
fourth order cumulant vanish for a "generalized" 
Gaussian, stochastic, matrix process cannot, in general, 
occur. However, the situation is not too bad, after all, 
for the following reasons. 

If the time dependence for the second moments of A(t) 
is the delta function o(t - s), then (76) does indeed 
vanish, as do all higher order cumulants. 8 ,15 This is 
seen for (76) because the time integrals become 

t tl t2 t 3 O(tl - t s) 0(t2 - t4)dt4dtsdt2dtl = 0 
o 0 0 0 

and 

t fl f2 fS O(tl - t4) 0(t2 - t3)dt4dt3dt2dtl = O. (77) 

If instead the time dependence is as in (71), the in
tegrals become 

[t 1tl f2[3 exp (_ tl ~ t3) exp ( ... t2~ t4) dt4dt3dt2dt1 

=tt1 +T~exp(-:JJ +2
TJ [exp (-:J-IJ 

+t-[exp (-~) -lJ 
I t 1tl[t2[t3 (tl - t4) (t2 - ts) = exp --- exp ---

o 0 0 Te Te 

Indeed, (78) can be used to prove (77) if it is noticed 
that 

(78) 

lim (l/T ) exp(- I T I /T ) = ~O(T). (79) 
l' c" o C c 

For t» T e' (78) becomes ~tT~o By using all of (71) the 
entire fourth cumulant becomes in this case 
tttt- - - -

ro r 1 r 2 r 3 (A"'IL (tl)A IL IL (t2)AIL IL (t3)AIL B(t4) dt4dt3dt2dt1 J0v\Jv\Jv\J 112233 a 

~ 4(Q"'IL1IL2"3QIL1IL2IL3B - Q"'IL1"lIL2Q"2IL3"3B 
e 

+ Q"'IL1IL3BQIL1IL2IL 2IL3 - Q"'IL1IL1IL2QIL2ILS"3B)~tT~. (80) 

Clearly, for a nonmatrix process there would be no in
dices and there would be a cancellation. The second 
cumulant in the case of (71) is 

~ t Itl - -(A"'IL (t1)AIL B(t2) dt2dt1 - 2Q"' IL 11L BtT 
G 1 1 a t>YTa 1 e 

(81) 

Both (80) and (81) are linear in t. However, suppose Q 

is proportional to a relaxation time T R, taken to the 
minus two power: 

(82) 

This is dimensionally correct, and it suggests that (80) 
and (81) have the forms 

2Q"'IL11L1StTe - 2NtTa/T~ 

and 

4(Q"'IL 1IL 2IL 3 QIL1IL 2IL 3B + Q"'IL1 IL 3BQIL 11L 2IL 21"3 (83) 

- 2QQljL11L1" 8"2" 3" sB)~tT~ - 2~tT~/~, 

295 J. Math. Phys., Vol. 16, No.2, February 1975 

where N is the approximate number of terms in the sum 
Q"'ILILB which are large and of order Ti. This means 
that the ratio of the fourth order cumulant and the 
second order cumulant is ~T~/T~. Now, suppose there 
are N" states labeled by the indices a, 13, IJ., 1/, etc. If 
N is comparable to N' then the effective relaxation time 
is T R/N', which for large enough N' will surely be less 
than Te' Moreover, ~T~/T~ will then be greater than 1, 
and the fourth cumulant becomes more important than 
the second. On the other hand, if N» N' because not all 
pairs of states are coupled by equally strong stochastic 
matrix elements, then the effective relaxation time TR/N 
can still be longer than Tao In thf~ situation the fol.lrth 
order cumulant becomes unimportant compared with 
the second cumulant when t > Ta' This situation would 
imply that the (a", (t)' s relax more slowly than do the 
fluctuation correlations. In physical applications, it is 
this situation which is of most interest, and for it the 
second cumulant provides the dominant effects when 
t > T e' Thus, two conditions are required: 

t>Ta and NT/TR <l (84) 

if the dynamics is to be dominated by the second 
cumulant only. This is, of course, essentially equiva
lent to the delta function theoryl, as was indicated by 
(79). 

In summary, it may be claimed that Kubo's "general
ized" Gaussian, stochastic, matrix process only ob
tains for a delta function correlation, for otherwise a 
truly Gaussian process will involve fourth and higher 
order cumulants. If, however, condition (84) holds, 
then the asymptotic behavior is dominated by the second 
cumulant after all. The fully rigorous justification of 
these remarks requires analysis of the higher order 
cumulants in special cases such as the ones studied 
here. It is perhaps ironic that the general theory 
presented here using cumulants, actually justifies the 
earlier, more simple, delta function theory\ rather 
than superseding it, if (84) is satisfied. It should also 
be noted that dominance by the second cumulant in this 
situation requires t> Te but t need not be very very much 
greater than Ta since t'" 10 - 100Te already reduces the 
higher order corrections to very small effects. 

4. THE DENSITY MATRIX 

The mathematical results developed in the preceding 
sections will be applied now to the treatment of the 
stochastic SchrOdinger equation2 ,3 

(85) 

in which M",,,,,=M~,,,, and M~""(t)=M~,,,,(t). M",,,,,(t) cor
responds to a stochastic Hamiltonian which is 
Hermitian. Suppose that a change of basis states is 
made so that l\{."" becomes diagonal. Suppose further 
that there are N states corresponding with the degener
ate eigenvalue A. If consideration is restricted to these 
N degenerate eigenstates of M, then (85) becomes 

(86) 

where a and a' range over 1, 2, .. ··, N. The stochastic 
Hamiltonian M",,,,,(t) will not couple eigenstates of M 
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which belong to different degeneracy classes. This re
quirement is imposed in order to insure that the de
scription given by (86) leads to a microcanonical equi
librium density matrix and not to the uniform density 
matrix. The reader is especially urged to see Ref. 3 
for more details concerning this point. For convenience, 
the primes in (86) will be dropped in the following, and 
confusion with (85) should be avoided. 

The moments for M",,,, .(t) are given by 

(M",,,,.(t» = 0, 

(M",,,,, (t)M6a' (s» = 2Q",,,, 'w(t - s). 

(87) 

(88) 

In (88), the time dependence of Q"'''''aa.(t- s) can change 
as the values of the indices change, in general. The 
specific case in which the time dependence for all values 
of the indices is a delta function has been extensively 
treated in earlier publications. 1-3,16,17 

Although, in general it is unnecessary to do so, the 
imposition that M",,,, .(t) be also Gaussian can be made 
and leads to 

(1\1"lVl (t1) , •• iI"2n_1V2n)t2n-l» = 0, 

(M"lvl (tl) ., .M"2nV2n(t2n» 

1 L) n -
=2nn1 E H

1
(il-tp (2i_UVP(2i_U (tp (2J-U) 

• P san), 

XM"P{2jlVp{2j) (tp( 2j ») 

(89) 

-~ 6 IT 
- n! pES 2n j=l Q" P{2j _Uv P(2j -1)" p( 2j)" p(2n (tp{2j -U - tp( 2n)· 

(90) 

The density matrix P",a(t) will be defined by1
8 

P",a(t) '" C~(t)C8(t), (91) 

and it satisfies the equation 

d -
dt P",a(t) =- iL",8",·8·(t)P",·a·(t), (92) 

where L"'8""a.(t) is defined by 

L"'8""8.(t) '" 0",,,,.M88 .(t) - Oa8.M~",.(t). (93) 

Equation (92) is a special case of (4) when the Min (4) 
is zero, Of course, one must think of P",s(t) as a doubly 
indexed vector, and L",a""8.(t) as a quadruply indexed 
matrix to see the connection between (4) and (92). 
Therefore, the average of (92) is a special case of (55) 
in which the Min (55) is zero. This gives 

(94) 

wherein R~~~'8.(t) is defined by 

f ~(n)(S)ds = ~ 6 (_ l)P-l(p _ 1) !r{ii 1 / tfO(l)(S)dS\m/}, 
Jo !;/=l/m/=n l=l~}"J 

where p '" '2:;'..1 1111 and n;" 2. For n = 1, R(l) = O. The 
O(!)(s) in (95) is defined by 

O{tI)(s) '" (i)" f f2 ••• fn-2 fn-l (L(s)L(t2) ••• 
_ 0 Q. 0 0 

(95) 

x L(tn"l) L(tn»dtn ••• dt2 • (96) 

Equations (95) and (96) are special cases of (52) and (15) 
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respectively, when M is zero in (52) and (15). The con
dition, R(l) = 0, follows from (87) and (67). 

The explicit expression for R~2i""8.(t) is 

(2) () - it (- ( ) - ( R",8""S' t - - L"'8"V t L"v", '8' s»ds 
o t 

= -1 {0",,,,,,QaW8·(t - S) + °sa·Q" "'''''" (t - s) o 
- QW""/JI (t - S) - Q""",a8.(t - s)}ds 0 (97) 

If it is further assumed that the stochastic Hamiltonian 
is stationary, then Q",a""a.(t - s) = Q""8'",a(S - t) = Q""8'",a(t 
- s). This is equivalent with microscopic reversibility. 19 

Using (89) and (90) in (96) and (95) provides explicit ex
pressions for R(n)(t) for n> 2 in the Gaussian case. 

In general, the microcanonical density matrix 

(98) 

is a solution to Eq. (94) regardless of any special as
sumptions about M(t), such as Gaussianness. This is 
seen from (95) and (96) as fcillows. It is necessary to 
show that 

(99) 

for each n. By using (97), this is clearly true for n = 2. 
The second equality in (97) leads to 

t - J {0",,,,·Q8vva·(t - s) + 088·Q"",,,,·,, (t - s) - Qw",'''' (t - s) 
o 

- Q""",S8.(t- s)}ds (l/N) 0""8' 

= - f {Q8vv",(t- s) + Q""'8" (t - s) - Q(l80",(t - s) 
o 

- Qo",ao(t - s)}(l/N)ds '" O. (100) 

Alternatively, the first equality in (97) may be used to 
obtain the same result: 

t -- J (L",a"v(t)LjJ.v",·8·(t))ds(1/N)o,,·a· 
o t - -

= - J (L",a"v(t)LI>v",·a·(t)(1/N)o",·a·)ds '" 0 (101) 
o 

because .1"ve e(t) = 0 as follows from (93) and the hermit
icity of M(t), It is the proof of (99) for n = 2 given by 
(101) which readily generalizes to arbitrary n. Equation 
(95) shows that the computation of R~Il""a.(t)(l/N)o""a' in
volves a sum over partitions of n in which each sum
mand involves a sum of time ordered products of 
f~ O{I )(s)ds;'s. Each such time ordered product, accord
ing to (96), ends with some O(l)(s) which ends with 
L""""8.(t,.) in its integrand. Consequently, as in (101), 
11;:;""8' (t)(l/.N)o""a' ultimately reduces to an expression 
containing L"v""a.(t,.)(l/N)o""a''''O. This completes the 
proof of (99). 

It is also the case in general that the time dependent 
solution to (94) satisfies 

(102) 

To see this, It is sufficient to note that 

R~nd""a.(t) = 0 (103) 

for each n. The proof of (103) is very similar to the 
proof of (99) and depends upon L"''''''''a.(t) '" 0 as follows 
from (93) and the hermiticity of M(t). 

Whether or not the microcanonical density matrix is 
approached asymptotically in time starting from an 
arbitrary initial density matrix depends upon the struc-
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ture of ~;"lR~'}l"'B.(t). In the special case previously con
sidered by the author in which the correlation in (88) is 
a delta function in time and M(t) is also Gaussian, it 
was shown that the approach to the microcanonical den
sity matrix was in fact monotone because an H theorem 
was provable. 2 In the present, more general setting, 
a greater variety of behaviors is possible, including 
non monotonic approach to the microcanonical density 
matrix. 

In the special case in which 

Q""'BB'(t- s) "'Q"a'BB' exp(- It- s liTe), (104) 

the presence of a finite correlation time T e does not 
necessarily destroy monotonicity. To see this, note 
that (104) implies 

(N("".(t)MBB.(S» = (M"a.(t)MBB.(t» exp(- It - s I IT). (105) 

Therefore, if X"B is an arbitrary hermitian matrix, 
then 

X~BR~~)a'B,Xa'B' 

=- / (X~BL"B"v(t)L"va·B·(S)Xa'B·)ds 
°t - -

= - f «L"vaB(t)X"B)* (L"va'B·(t)X,,·B·» exp(-I t-sllTC>ds 
0_ _ 

= - «(.4vaB(t)X"B)* (L"Va'B·(t)X"'B·»T Jl- exp(- tiT c>] 
'" o. (106) 

The first equality in (106) follows from (97), the second 
follows from (105) and LaB"v(t) = L!v"B(t) which follows 
from (93), and the inequality follows from the form of 
the third equality. Therefore, the tetratic R~~~'B.(t), 
has nonpositi,ve eigenvalues for its "eigenmatrices. " As 
shown in (99), it also has a zero eigenvalue for the 
"eigenmatrix" (l/N)o".B'" If it has no other zero eigen
values, and this depends upon the details of Q""'BB' in 
(104), then R~2;1a'BI(t) already shows an approach to equi
librium. It is also of interest to analyze the higher order 
terms in 'Z:.lR~71"'B.(t), but it has already been argued that 
that R~~'B.(t) will dominate the asymptotic behavior of 
(94) provided that M(t) is Gaussian and that conditions 
analogous to (84) are satisfied. These results should be 
compared with the delta function theory. 1,2 

5. CONCLUDING REMARKS 

The paper has addressed the following points: 

(1) The rules for the construction of the nth order 
cumulant in the case of time dependent, stochastic, 
matrices or operators, as given by van Kampen have 
been derived. The derivation generaliZes di Bruno's 
formula to the noncommutative Situation, and makes use 
of the time ordered logarithm. 

(2) Kubo's concept of a generalized GaUSSian, 
stochastic, matrix or operator is criticized and shown 
to be valid only asymptotically, if certain conditions 
are met. 
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(3) The conditions which lead to asymptotic validity 
of Kubo's concept of a generalized Gaussian process 
also justify the delta function theory presented earlier 
by the author. 

(4) A generalized density matrix equation is given. A 
discussion of the monotonicity of approach to the micro
canonical density matrix follows the equation. 

Remaining is the problem of discussing the details of 
how to describe the approach to canonical equilibrium 
of a subsystem in contact with a thermal reservoir. 
This is a special case of the microcanonical problem 
discussed here, and its presentation will be deferred. 3 
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The unitary irreducible representations of the universal covering group, S L (3,R), of the S L (3,R ) 
group are analyzed by means of the methods developed by Harish-Chandra and Kihlberg. We have 
found a single closed expression for the matrix elements of the noncom pact generators for an 
arbttrary unitary representation of the S L (3,R) group. The irreducibility of the representations is 
achieved by using the little group technique and the' scalar product for each irreducible Hilbert space 
is explicitly given. Contraction (in the Inonii and Wigner sense) of the S L (3,R) unitary irreducible 
representations to the corresponding representations of the T 5 @s U (2) group is discussed. 

1. INTRODUCTION 

The conventional approach in applications of group 
theory to particle physics is to postulate that the parti
cles form a multiplet wlJ.ich furnishes a unitary irreduc
ible representation of a symmetry group G which is an 
invariance group of the interaction Hamiltonian H. In 
this case the group generators Xa commute with the 
Hamiltonian. 

If the number of states in the energy spectrum of the 
physical system is not finite one is naturally led to the 
use of noncompact symmetry groups. Their unitary 
irreducible representations are necessarily infinite
dimensional and could account for all states of the sys
tem. Thus, we See that a symmetry group may be use
ful even if its generators do not leave the Hamiltonian 
invariant. 1,2 

The states of hadronic spectrum exhibit an approxi
mate symmetry (Regge trajectories) of particles with 
the same internal quantum numbers grouped together. 
Particles on the same trajectory have different spin 
values and possess the property that t.J = 2. The higher 
spins could be excited by making use of the angular 
momentum3 L = J - S, which is, loosely speaking, an 
internal orbital angular momentum. One can adjoin to 
L the five Hermitian components of a noncompact quad
rupole operator T so that Land T generate the algebra 
of the SL(3,R) group. 4 Thus the orbital excitations are 
due to the quadrupole operator T and the meson and 
baryon states of higher J differ now from the lower ones 
in their L value. An algebraic model which exhibits 
both the t.J = 2 rule for the orbital angular excitations 
together with a daughter-like spectrum has been con
structed. 5 This model makes use of the relativistic ex
tension of SL(3,R). 

The SL(3,R) group has been recently successfully 
applied in studying the nuclear rotational motion. 6 In 
this application to nuclear phYSics the assumption was 
made that the states of a rotational nucleus form a basis 
for an irreducible representation of SL(3,R) which is 
generated by the angular transition E2 operators. Also 
the set of admissible physical states associated with 
strong quantum gravitational fieldS for the Dirac 
Hamiltonian theory for general relativity exhibit approx
imate symmetry with respect to the unitary SL (3, R) 
transformations. 7 

Our analysis is accomplished here by obtaining the 
irreducible Hermitian representations for the Lie alge-
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bra of SL(3,R). Due to a result of Nelson8 these Lie 
algebra representations can be exponentiated to the 
corresponding continuous unitary irreducible represen
tations of the SL(3, R) group. The necessary and suffi
cient condition for this procedure to go through is the 
hermiticity of Nelson's operator t., which is the sum 
of the squares of the group generators. 

2. FOCUS ON SL (3, R) 

SL(3, R) is the group of linear unimodular transforma
tions in a three-dimensional real vector space. The 
group is simple and noncompact Lie group. The group 
multiplication law is given as a product of transforma
tions. If the group elements are given as 3 X3 matrices 
then the product is matrix multiplication. The space of 
the group parameters is not simply connected and 
therefore the group is not Simply connected. The maxi
mal compact subgroup of SL(3,R) is SO(3). The univer
sal covering group of SL(3,R) we denote by SL(3,R). 
This group has the same Lie algebra as SL(3,R). It is 
a simply connected group and its maximal compact sub
group is SU(2), the covering group of SO(3). The center 
of SL(3,R) is a two element group, i.e., Z2' and the 
factor group of SL(3,R) with respect to Z2 is isomorphic 
to SL(3,R). ExpliCitly, we write 

SL(3, R)/Z2"" SL(3,R). (2.1) 

In the following we will always consider SL(3, R) as a 
group of matrices. 

Let sl(3,R) be the Lie algebra of the SL(3,R) group. 
It is an algebra of real 3 x3 traceless matrices. The 
Cartan decomposition9 of s l(3, R) is K 8.l P, i. e., [K, K j 
CK, [K,P]cP, and [P,PjCK is the decomposition of a 
traceless real matrix into the sum of an antisymmetric 
matrix and a symmetric one, which belong to K and P, 
respectively. The antisymmetric matrices form an 
so(3) algebra and they are the generators of SO(3). The 
action of the adjoint algebra of so(3), i. e., ad(so(3», 
on P [ in the Cartan decomposition of sl(3, R) J is irre
ducible. The decomposition of matrices from SL(3,R), 
which corresponds to the Cartan decomposition of the 
sl(3,R) algebra, is the decomposition of a real unimodu
lar matrix into the product of an orthogonal matrix and 
a symmetric one. 

Let us denote by J i the generators of the maximal 
compact subgroup SO(3) of SL(3,R). They constitute the 
angular momentum part of sl(3,R). The infinitesimal 
generators which belong to the P part of the Cartan 
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decomposition of SL(3, R) are the symmetric traceless 
matrices TIj (i,j=l, 2, 3) whose matrix elements are 
given by (TIJ )"",= 6 ",.l'>'n -i6 j A"". The Lie algebra of 
SL(3,R) is now given by the following commutation 
relations: 

[Jj , J j 1 = ieljkJU 

[J j, Tjkl = iE/j", T mk + iEjk"T,,,, 

[TIj, TuJ = - i(6 jkEj / m + 6//Ejkm + 6jkE//", + 6j /E jk",)Jm• 

It is convenient to write the SL(3,R) generators in a 
sperical basis. Instead of J j and TIj we consider the 
generators whose matrix representations are given by 

J"~J·~G -i :) J.~J.±iJ,~( ~ o '1) o 0 , o -i , 
o 0 ±1 i 0 

T"~-i1fG ° ~} T" ~(~ 
0 ") 1 0 1 , 

0 -2 ~i 1 0 

(2.2) 

The minimal set of the commutation relations in the 
spherical basis is 

and 

[Jo, J,l = ±J., 

(J., J-l=2Jo, 

[Jo,T"l=IJ.T" (IJ.=O, ±1, ±2), 

[J., T" 1 = [6 - IJ.(IJ. ± 1)11/2T ,,'I 

(2.3) 

(2.4) 

The last commutation relation is known as the SL(3, R) 
condition. The remaining commutation relations can be 
obtained by means of the Jacobi identity. From the 
aforementioned relations between the J's and T's it is 
clear that T" (IJ. = 0, ± 1, ± 2) is a second rank irreduc
ible tensor operator with respect to the S0(3) subgroup 
of SL(3, R). The commutation relations of SL(3, R) in 
the spherical basis are invariant under substitution of 
- T" for T". 

3. REPRESENTATIONS 

A covenient way to parametrize any noncompact semi
simple Lie group is given by means of the Iwasawa de
composition. 9 The Iwasawa decomposition tells us that 
any semisimple noncompact group G can be written as 
a product 

G=NAK 

where N, A, and K are subgroups of G, L e., every 
element gE G can be written as a product g=nak, where 
n E N, a E A, and k E K. N is a nilpotent subgroup of G 
and its elements are upper triangular matrices. A is an 
Abelian subgroup of G and can be given as the group of 
diagonal matrices (with positive elements) and K is the 
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maximal compact subgroup of G. For G=SL(3,R) the 
elements of nilpotent subgroup N are 

and the elements of the Abelian subgroup A are 

a= (~A ~,,~ \, i\, IJ. ER. 
o 0 e-A

-") 

The maximal compact subgroup K of SL(3,R), Le., K 
=SO(3), will be parametrized in terms of three Euler 
angles QI, (3, and y. Every element k E K is then of the 
form 

k = R~( QI)R y ( (3)R~( y), 

where, for instance, R~(QI) is a rotation in the three
dimenSional vector space for the angle QI around the z 
axis. In the following we will use two properties of the 
Iwasawa decomposition, namely, (1) the Iwasawa de
composition G=NAK, i.e., g=nak, gEG, nEN, aEA, 
and k E K is unique9 and (2) the product of some element 
k E K and an arbitrary element g EGis in general an 
arbitrary element of G which can be uniquely written as 

kg=na(k,g)k· g, (3.1) 

where nEN, a(k,g)EA, and k·gEK. The elements k·g 
and a(k, g) satisfy 

k'(glg2)=(k'gl)'g2 (3.2) 

and 

(3.3) 

for every gl> g2 E G. These relations follow immediately 
from the associativity of the group multiplication law, 
L e., k(gl g2) = (kg1)g2' Namely, 

and 

k(glg2) =na(k,glg2)k· (glg2)' 

(kg1)g2 = (n1a(k, gl)k • gl)g2 

=n1a(k,gl)n2a(k· gl,g2) (k· gJ. g2' 

Since N is an invariant subgroup in NA one has a(k, gJn2 

= n;P(k, g), n~EN, and writing nln~=n, one obtains 

The uniqueness of decomposition provides us with the 
above -stated relations. When a(k, g) is written as 
exp[h(k,g)l the second relation reads 

h(k, gl g2) = h(k, gl) + h(k ' gl> g2l. (3.4) 

It is well known that all unitary irreducible represen
tations of compact groups are finite -dimensional. For 
noncompact groups, however, every nontrivial unitary 
representation is necessarily infinite-dimensional and 
this partly accounts for the additional complexity which 
occurs when one deals with their unitary representa
tions. The class of real semi simple Lie groups is 
especially complex, and most of the progress in this 
direction has been made by Harish-Chandra. 10 

From the point of view of quantum mechanics one is 

Djordje Sijaeki 299 



                                                                                                                                    

interested not only in single-valued group representa
tions but also in projective or ray representations. This 
is due to the fact that central extensions of symmetry 
groups are physically significant. In this respect, it is 
sufficient to consider only the single-valued representa
tions of the corresponding covering group, which in our 
case is SL(3,R). From the work of Bargmannll it fol
lows that there is one-to-one correspondence between 
ray representations of a group and the single-valued 
representations of its universal covering group. 

Owing to the Iwasawa decomposition every element 
gE SL(3,R) can be uniquely written as 

(3.5) 

The Abelian subgroup of SL(3.R) has two generators Al 
and A2 and if A and Il are the corresponding group 
parameters, respectively, one has 

h=AAI +1.LA2· 

Let 0' be a linear, in general complex, function such 
that 

Q1(h) = AQI(A1) + IlQl(..42)' 

and let us denote 0'(..41) and 0'(..42) by a and b, respective
ly. Existence of the mapping 0' is guaranteed by the one
dimensionality of the irreducible representations of the 
Abelian subgroup. One usually takes for exp[Q1(h)] the 
characters of the corresponding irreducible representa
tions of the Abelian subgr01ip A. The mapping 0' can be 
extended in a natural way to a mapping from the group 
NA into the complex numbers since N is an invariant 
subgroup in NA. 

The set of cosets of SL(3,R) with respect to the sub
group NA, Le., SL(3.R)/NA is in one-to-one corre
spondence with the group K = SU(2) and can be para
metrized by the elements of K. In the coset space 
SL(3,R)/NA one has as well a measure, which we 
choose to be the invariant measure dk on K. Let H 
= L2(K) be the (separable) Hilbert space of functions on 
K which are square integrable with respect to the in
variant measure on K, i. e. , 

H = {j(k) IkE K}, such that! dk!*(k)j(k) <00, and let 
!dk=1. 

Harish-Chandra now defines a representation U(g) of 
G = SL(3, R) on H in the following way. 

U(g) is a homomorphic continuous mapping from G 
into the set of linear transformations on H given by 

U(g)j(k) = exp[ Q1(h(k, g)) If(k· g), (3.6) 

where gEG, jEH, kEK, ehEA and where U(g)j(k) de
notes the value of U(g)j at the point k. 

That U(g) is a representation of G is straightforward: 

U(gI)U(g2)j(k) = exp[ Q1(h(k, gl))] U(g2}f(k • gl) 

= exp[ Q1(h(k, gl)) 1 exp[ Q1(h(k . gu g2)) If((k· gl) . g2) 

= exp[Q1(h(k,glg2)) If(k' (gd2))' 

The last step is due to the properties of the Iwasawa 
decomposition. Thus, U(gl) U(g2) = U(glg2)' 

In Dirac bra-ket notation j(k) = (k I j), U(g)j(k) 
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= (k I U(g) I j) and the representation defined above reads 

(k I U(g) I j) = (k I j') = exp[ Q1(h(k, g)) (k . g I j). 

This is one reason why we have chosen the Iwasawa 
decomposition in the form NAK, and we multiply an 
element k E K by an element g E G on the right. Owing 
to the fact that for the group SL(3,R) 

Q1(h)=Aa+llb, (3.7) 

we write U(g) more explicitly as 

Ua,b(g)j(k) =exp[A(k,g)a + Il(k,g)b ]j(k· g). (3.8) 

Harish-Chandral2 now defines the concept of infini
tesimal equivalence of two representations in the follow
ing manner: Two representations are infinitesimally 
equivalent if there exists a similarity transformation 
of one representation into the other, with a nonsingular, 
not necessarily unitary, operator. In the case of equiva
lence there exists a unitary operator by means of which 
the transformation between the two representations is 
carried out. If both of two infinitesimally equivalent 
representations are unitary, then they are equivalent. 
Unitarity of either of these infinitesimally equivalent 
representations does not necessarily mean unitarity of 
the other. Suppose now that U(g) is a representation of 
a group G on a Hilbert space H. Suppose further that 
HI and H2 are the two closed invariant subspaces of H, 
such that H2 CHI cH, and H1"* H2. Then U(g) induces a 
representation U'(g) on the quotient Hilbert space Hl/H2 
in a natural way. The representation U'(g) is said to be 
deducible from the representation U(g). If U(g) is uni
tary, this means that U'(g) is obtainable from U(g) by 
decomposition. 

Harish-Chandra 12 has proved that every unitary irre
ducible representation is infinitesimally equivalent to 
some irreducible representation deducible from some 
representation U(g) of the form (3.6). Thus it is always 
possible to construct a bilinear form (1, g) in some 
quotient space H1/H2, where land gEH,/H2. One can 
extend the domain of this bilinear form to all HI unique
ly by defining (, ) to vanish on H 2, L e. , 

{f,j)=O, jEH2, 

{f,jhO, jEHI 8H2· 

Unitarity now means that 

(U(g)j, U(g)j) =(f, j), JEHu gE G, (3.9) 

and the additional conditions that the bilinear form is a 
scalar product are hermiticity and positive definiteness 

(f,g)=(g,j)*, j,gEHu (3.10) 

(3.11) 

It is convenient to extend the domain of the scalar pro
duct to the whole space H. 

In the general case the scalar product (f, g) can be 
written in the form 13 

(f, g) = f f dkl dkd*(kJ p(k u k2) g(k2), j, gE H, 
(3.12) 

where p(k" k2 ) is a kernel and the integration is over K 
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(the covering group of the maximal compact subgroup 
of G) and dk is an invariant measure. 

In order to find the infinitesimal operators for the 
representation Ua,b(g), we consider the group elements 
{g{e)}. Here the set of elements {g{e)} form a one
dimensional subgroup of G with e as a parameter. Let 
us denote by X/·b the infinitesimal operator for Harish
Chandra's representation Ua.b(g) which corresponds to 
an arbitrary group parameter e of SL(3,R). We define 
X,a.b by 

with g{O) being the unit element of SL(3,R). Thus, 

X:· b f(k) = i.E... f(k· gee»~ I de ,.0 

(3.13) 

+i
d
d 

(A(k,g(e»a + IL(k,g(e)b» I f(k). 
€ £ .. 0 

Now for the infinitesimal value of parameter e we have 

f(k. g{e» "" f(k) +e
rfda

) 1.... +(df3) 1.... 
L\de ,.0 0 a de ,.0 0 f3 

+(dd'Y) 00 ]f(k). 
e ,.0 'Y 

The reason that only parameters from K occur on the 
right-hand side of this equation is that k· g(e ) is an 
element from K [K being SU(2) when Gis rr(3,R)] and 
therefore depends only on group parameters from K, 
i. e., a, (3, and y. Substituting this expression for 
f(k· g(e» into the previous expression for X,a,b t(k), we 
arrive at the expression 

X a.b f(k) _/fda\ ~ +fd f3\ 1.... +fdY) 1.... 
, ~ L\de} ,.0 oa \de} ,=0 0 f3 \de 'so oy 

idA) a +fdlL) b1 f(k). (3.14) 
'de 'so \de 'so J 

This expression was obtained by Kihlberg13 using an 
alternative method. 

If we extend our underlying space from SL(3,R)/NA 
to SL(3,R)/N, i. e., to the space of functions 
exp(Aa + JJ.b)t(k), then X/,b, is a differential operator in 
the space of functions belonging to H =L 2 (SL(3, R)/N), 
and has the form 

(
di\\ 0 (d JJ..\ a ] 

+ de),so aA + ~,.o ap' . (3.15) 

It is interesting to point out, at this stage, that X,a. b is 
not a differential operator in the group parameters 
corresponding to the nilpotent subgroup N. This holds 
for all generators of the SL(3, R) algebra since E could 
be the parameter of anyone-dimensional subgroup in 
SL(3,R). 

In Appendix A we explicitly evaluate the §L(3,R) 
generators. They are 

J 
,0 

=1-' o ay 
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J =exp('fiY)(-.i..1.... 'f..E... +ictg 1....), 
• sf3 oa 0(3 oy 

T = JI(~)1/2 (3c 2as2(3 -1) l.... + (%)1/2 (3s 2a s2 (3 _1)..i... 
o ,3 OA Op. 

+ V6 s acas
2 

(3 oOa -.f6 s {3c (3 0
0
(3)' 

T' 1 =exp('fi'Y) (- 2sacas(3'f2ic2as{3c{3) o~ 

+ (2sacas{3'f 2is2as(3c(3) OOlL 

'( 2 2) 0 (3 a ) ±z c {3-s (3 0(3 +ctg 0'1' , 

T±2 = exp('f 2iY)(± 2sacac f3 +i(c2ac2{3 - s2a» v~ 

+('f2sacac(3 +i(s2ac2{3_ c2a» oap' 

(3.16) 

+ ('f2c2 ac(3+isaca(1 +c2(3» oOa +is(3C(3a°(3 ± o~)· 

Besides the generators Jo and J. of the maximal com
pact subgroup of SL(3,R), it is possible to introduce 
generators Ko and K. of another SU(2) group by exchang
ing the parameters a and y in the expressions for J o 
and J., respectively. Explicitly, 

K =i..i..., 
o va 

K ( . )(. Q a a i a) .=exp 'fla ICtg fJ - 'f - --- . 
oa 0{3 s{3oy 

(3. 17) 

The operators J and K mutually commute. Also, the 
corresponding invariant operators are equal, i. e. , 
J 2=K2. The Significance of the operator K o, as it will 
be seen later, is in characterizing the degeneracy of 
the SU(2) multiplets in the unitary irreducible repre
sentations of SL(3, R). 

4. MATRIX ELEMENTS 

In order to analyse the representations of SL(3, R) it 
is convenient to have the matrix elements of the group 
generators. Also, in this case the task of determining 
the scalar products of the unitary representations is 
considerably Simplified. The Hilbert space H in which 
some representation of SL(3,R) is defined, is a 
symmetric homogeneous space over the group SU(2), 
i. e., the set L2(SU(2» of square-integrable functions 
over SU(2) with respect to the invariant measure over 
SU(2). An Arbitrary function f(k), k E SU(2) can be writ
ten as 

f(k) = L fIMDiM(k), k E SU(2), (4.1) 
JKM 

where fIM E C, and Df(}ik) are the matrix elements of the 
unitary irreducible representations of SU(2). Thus, it is 
sufficient to know the matrix elements of the group gen
erators in the I iN> basis, where 

\k I~)= (2J + 1)1/2 DfM(k) 
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and 

(~"M' I~M)= 0J'JOK'KOM'M' 

Since SU(2) is the maximal compact subgroup of 
SL(3,R), the label J can take both integer and half
integer values. Confining J to integer values only, one 
obtains results valid for the SL(3, R) group. 

The differential operators 

. a 
J =1-o ily 

and 

J ( .)(-iil il ·t ail ) =exp'Fly --'F-+1CgtJ-
• s{3 iJa a{3 iJy 

of the SU(2) subgroup are well-known ones, and their 
matrix elements are 

(::M'IJol~M)=MOJ'JOK'KOM'M' 
JJ' I IJ ) (4.2) 
\K'M'I J • KM = (J(J +1) -M(M ± 1)]1/2 0J'J0K'KOM'MW 

Furthermore, the generators of the compact subgroup 
are Hermitian, and therefore the representations of 
SL(3, R) when restricted to the maximal compact sub
group are unitary. 

The coefficients in the differential form for To can be 
expressed in terms of DkM functions (cf. Appendix B) in 
the follOwing form 

To = - i !f(a + b)D~o +i(D~_J+ + D~l JJ 
+ i(2 + a - b )(D~o + D:20) + i(D~o - D:20)Ko, (4.3) 

where a and b are the eigenvalues of the operators il/il\ 
and il/iljJ., respectively. 

Making use of the orthogonality relations for DkM 
functions, we obtain (cf. Appendix B) 

\~'M'ITOI~M) 
= (_)J'-K'( _ V-M'[(2J' + 1)(2J + 1) ]1/2 j( J' 2 J) 

-M' 0 M 

x -i!f(a+b) +i(2+K+a-b) t ( J' 2 J) ( J' 2 

-K' 0 K -K' 2 

(

J' 2 

+ i(2 - K + a - b) 
... K' -2 ~)}{:, ::) 

-: M:,) 
: M~,)J~ ( 

J' 
+ (J(J + 1) - M(M _1)1/2 

-M' 

The recurrence relation14 
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forj1=J',j2=2,j3=J, m 1=-K, m 2 =0, andm 1 -m2 

= -K' now becomes 

( 

J' 

(J(J+1)_M(M+1)]1/2 -M' 

( J' 2 J) +(J(J +1)_M(M_1)]1/2 

-M'1M-1 

=(J'(J'+1)_J(J+1) -v'6\( J' 2 J). 

16 l) -M' 0 M 

Substituting this relation into the form for the matrix 
elements of To, we obtain 

~'M' I To I ;M)~(-)"-'C, : ~)(~,IIT II;) (4.4) 

the reduced matrix elements <f: IiTllf> being given by 

\~,IIrII~)= (-V-K'(2J' + 1)(2J + 1)]1/2 

x ti 0.+'"- J'(J' +~-~J+1») C. : ~) 
( J' 

2 

:) +i(2 +K + 0) 
-K' 2 

+i(2 -K + 0) C' -: ~)l (4.5) 
-K' 

In this expression we have introduced (J = a + band ° 
= a - b. Note the selection rule: M = 0, ± 2. 

Having this expression we can immediately write the 
matrix elements for an arbitrary component of the 
quadrupole tensor operator T", jJ. = 0, ± 1, ± 2 as 

/ J' I I J ) ( )'" _M'( J' 
\K'M' TIL KM = - -M' 

(4.6) 

the reduced matrix elements being given by (4.5). 

5, UNITARITY 
In the previous part of this work we have evaluated 
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expressions for the group generators as differential 
operators and we have obtained the explicit form of 
their matrix elements in the basis {1~A()} of vectors 
which span the space L2(SU(2». Both the differential 
forms and the matrix elements of the quadrupole 
operator are functions of two parameters C1=a +b and 
Ii = a - b. In general the quadrupole operator T" is not 
Hermitian and therefore the corresponding representa
tions of SL(3,R) are not unitary. From the requirement 
that the matrix elements of T" obey the hermiticity 
condition we will obtain the constraints on f1 and 5, 
which are the unitary constraints of the representations 
of the SL(3,R) group. 

Let us first consider the Hilbert space LZ(SU{2» with 
the basis {I iM)}' The hermiticity condition on the TIL 
operator, i. e. , 

T: = (-) "T -IL' 

yields 

(5.1) 

(5.2) 

USing the explicit form for <i: IITlli> and the symmetry 
properties of the 3-j symbols, we extract, from the 
hermiticity condition, the equations 

17+ 17* = - 6 for K' =K 

and 

5+5*=-2 forK'=K±2. 

For a=C1o +iC12 and Ii = 50 +i52 it follows immediately 
C10 =-3, 50 =-1, C12,02E:R. 

We now proceed to the general case. The unitarity of 
the representations (i. e., the hermiticity of the genera
tors) is a property of the representations which depends 
on the scalar product of the Hilbert space in which each 
representation is defined. If f(k) and g(k) are any two 
functions, the most general scalar product is given by 

(5.3) 

p(k u k 2 ) being the kernel of the scalar product while dk1 
and dk2 are invariant measures over SU(2). The Hilbert 
space with this scalar product we denote by H 
=L 2(SU(2),p). Obviously, when p(kl>k2 )=o(k1k 2-1), the 
Dirac o-function, we recover the usual product (f,g) 

= f dkf*(k) g(k). The problem of finding the unitary 
representations is now reduced to that of finding all 
possible scalar products, or, in other wordS, to the 
problem of finding all possible kernels. 

For an arbitrary element k E: SU(2) the unitarity of the 
representation means that 

(U(k)j, U(k)g) = (f,g), 

and from the definition of the representations (3.8) we 
have that 

(U(k)j, U(k)g) = f f dk1 d k d*(k1 • k) p(ku k 2) g(k2• k). 

Since dk is an invariant measure, we obtain the follow
ing constraint on the form of the kernel: 

(5.4) 

In te rms of the complete set of functions {(2J + 1 )1/2 Di A(} 
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over SU(2) one writes 

f(k) = 6 (2J + 1)1/2 fJ KMDJ KM(k). 
JKA( 

obtaining 

(j,g) = 

= z:; fi:JI,*g'fA( [(2J' + 1)(2J + 1) J1
/

2 

JKM 
J'K'M' 

Since dk is an invariant measure and 

we find that 

(j,g) = JHc (2J }1)1/2(~ff'ZgfA() (~'K[ pi o~), (5.5) 

where 

(:'KI pi 0~)=(2J + 1)1/2 f dkDi'!;,(k) p(k). (5.6) 

In general, an arbitrary generator X of SL(3, R) has 
matrix elements (f, Xg) given by 

x f f dk1 dk2D'fZ, (k1) p(k1k 2-1)X(kz) DiM(k2 ). 

Making use of the additivity relations for the Dill func
tions and the fact that dk is an invariant measure, we 
obtain 

(t, Xg) = L;ft';gfM (2J' +\)1/2 (~'NI pi ~o)(~~,1 xl~M)' 
(5.7) 

The hermiticity condition (i. e., the unitarity of the 
representation) 

(f, Xg) = (g, X f)* (5.8) 

. now reads 

(2J+1)1/2~ (~'Nllplo~) (~~M,lx I~M) 

=(2J'+1)1/z ~(:NJplo~)* (~zMlxl~'M,)* . (5.9) 

At this stage we confine ourselves to solutions of the 
form 

(~K' I pi o~) = p(J;K)5KK,· (5.10) 

If X is any of the compact generators Po, J., JJ, the 
hermiticity condition becomes 

If p were a direct sum of the tensor operators pi with 
respect to the SU(2) subgroup of SL(3,R) and if ;omplex 
conjugation at most changed the absolute value of the 
magnetic quantum number m (i. e., m - ± m), then using 
the Wigner-Eckart theorem for each irreducible sub
space we would obtain 
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<_)H(:, ±m :) ~llp'llg)~<_)H 

xC: : :)(~'llp'II~) 
The result K' = ±K now follows from the properties of 
the 3 -j symbols and we can write 

(5.11) 

Although the second term in this expression is of im
portance in the analysis of the irreducibility of the rep
resentations, it is sufficient here to take into account 
only the first term. The reason for this is that we rely 
solely on the little group technique in determining the 
irreducibility of the representations. From (5.11) it 
follOWS that p(J; K) is a real function. 

In the baSis {I iM>} of the Hilbert space L2(SU(2» , 
unitarity of the representations requires the parameters 
(J and ° to be - 3 + i(J2 and - 1 + iOa, respectively. We 
are now dealing with the Hilbert space L 2(SU(2), p) with 
a more complex scalar product and that allows us to 
analytically continue the parameters (J and ° to arbitrary 
complex numbers, i. e. , 

(J= - 3 +(J1 +ia2, 

° = - 1 + °1 + iOz, (5.12) 

where at> az, 0u °2 E R. Thus the reduced matrix ele
ments (4.5), of the quadrupole operator, are now given 
by 

(~:IIT II~)~ (_V'-K' [(2J' + 1)(2J + 1) ]',. r(o, -to,) 

. ( J' 2 J) +~ [J'(J'+I)-J(J+l)l +i(I+K+o
1

+i02) 
vB -K' ° K 

( 

J' 2 

-K' 2 
(5.13) 

Since To does not change the M quantum number and 
since (Ki, I p I go> =0 p(J; K) 0K'K' the hermiticity condition 
(5.9) reads 

(-V' (2J + 1)1/2 p(J'; K') (~,)H)~) 

=0 (_)J (2J' + 1)1/2 p(J; K)(~IITII~:)* , 
(5.14) 

p(J; K) being an arbitrary real function of J and K. Sub
stituting into this equation the expression for the re
duced matrix elements with the analytically continued 
parameters a and 0, we obtain, for K' =K, 

(2J + 1 )1/2 {2(T2 - 2iu 1 + i[J'(J' + 1) -J(J + 1)]} p(J'; K) 

=(2J' + 1)1/2{2az +2iu1 +i[J'(J' +1) -J(J +l)]}p(J;K), 

(5.15) 
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while, for K' =K +2, we obtain 

(K +1 +(\ +ioz) p(J;K +2)=(K +1- 01 +i(
2
)p(J;K). 

(5.16) 

Since p(J; K) is a real function from the first of the 
above equations it follows that a1 = 0, 0"2 is an arbitrary 
real number and (2J + 1)1/2 p(J';K) = (2J' + 1)1/2 p(J; K). 

From the second equation it follows either that 01 =0 0, 
°2 is an arbitrary real number and p(J; K + 2) = p(J; K), 
or that °1 is an arbitrary real numbe r, O2 == 0 and 
(K + 1 + 0l)P(J; K + 2) = (K + 1 - 0l)P(J; K). Thus there are 
two general cases allowed by unitarity: 

Casel. a=-3+ia2 , 0==-I+i02, U2,02 ER , 

(2J + 1)1/2 p(J'; K) = (2J' + 1)1/2 p(J; K), Ko;, 0, 

p(J;K +2) = p(J;K). (5.17) 

Casel!. u=-3+iuz, 15=-1+01> u 2 ,15 1 ER, K'?O, 

(2J + 1)1/2 p(J';K) = (2J' + 1)1/2 p(J; K), 

(K+l +(1)p(J;K+2)=(K+I-15
1
)p(J;K). (5.18) 

Case I in our analysis (which in terms of the parame
ters a and b is given by a = - 2 +ia2 and b = -1 +ib

2
) has 

been treated USing the theory of the induced 
representations. 6 

Due to the constraint K2 =J 2 only those values of K 
and J which satisfy the constraint I K I.; J are allowed so 
that, for fixed K, only those components of D~M for 
which Jo;, IKI contribute. From now on we shall write 
K for IKI. 

Now Case II provides us with scalar products which 
are characterized by an arbitrary minimal K value, 
i.e., K can be K ml ., Kmln +2, K ml • +4, .... These solu
tions are characterized by p(J; Kmln ) * ° and p(J; K ml • - 2) 
= 0. Thus from 

we obtain 

151 = 1 -Kmi ., 

and for the matrix elements of kernel 

( 
2J + 1 )1/2 

p(J; K) = 2J + 1 
min 

r(~(K +Km1n» 
X rCt(K-K

mln
) + 1) r(K

ml
.) p(J min; K min ) 

where K=Kmi • (mod 2) and Ko;, Kmin • 

(5.19) 

(5.20) 

(5.21) 

In the special case K ml • = 0, from p(J; 0) * ° it follows 
that, for every Kf.O, p(J;K) =0, and therefore for a 
given J there is not any degeneracy besides the 2J + 1 
degeneracy in the quantum number M. These represen
tations are so-called "multiplicity free," "most 
degenerate," or "ladder representations." 

The representations in Case IT obtained above are 
characterized by a continuous parameter u2 and a dis
crete valued parameter 15

1
, 

Up to now we have not used the constraint due to the 
positive definiteness (3.11) of the scalar product (5.5). 
For f = g and (K'~ I p I go> = p(J; K) 0K'K it follows that 
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(j'/)=HM (2J+\)1!ZlffAtr p(J;K). (5.22) 

The positive definiteness of the scalar product yields 

p(J;K)~ 0, (5.23) 

for every J and K. By inspection, one sees immediately 
that the previously obtained representations in Case I 
as well as in Case II satisfy the condition p(J; K) ~ 0. In 
case II the positive definiteness condition, i. e., p(J; K) 
> ° and p(J; K + 2) > 0, implies 

(5.24) 

Therefore, when K + 1 - iiI > ° and K + 1 + iiI > 0, it fol
lows that Ilill < I K + 11 for every K. Thus we obtain the 
representations characterized by two continuous 
parameters: 

(5.25) 

with Ilill <1 for K integer and Ilill < i for K half-inte
ger. When K + 1 -iiI <0 and K + 1 + iiI <0, it follows 
11i11 > I K + 11, for every K. This cannot be satisfied and 
there are no additional solutions. For this case (iiI being 
continuous) the matrix elements p(J; K) are given by 

( 
2J+1 )1/2 

p(J;K) = 2J + 1 
min 

qi(K + 1) -ilil) r(i(KmIQ + 1) +iIi1) 

X rct(K + 1) + tli l) rct(l\nln + 1) - t iiI) 

(5.26) 

where K=Kmln (mod 2), and Jm1n and Km1n are either ° 
1 

or 2' 

The classes of the representations obtained in this 
analysis are in agreement with those obtained by 
Gel'fand and Graev15 and by Hulthen. 16 

6. INVARIANTS 
Since SL(3,R) is a semisimple Lie group of rank two, 

there are two generators in the center of the universal 
enveloping algebra. These are the group invariants l z 
and 13 , The expressions for these invariants may be 
obtained from those of SU(3) by a simple modification of 
the structure constants since SL(3, R) and S U(3) both 
are real forms of the same complex Lie group A z• 

Convenient expressions for the invariants of SU(3) in 
the spherical basis have been given by Racah. 17 With the 
necessary modifications we can obtain the invariants of 
SL(3,R) in the follOwing form 

and 

l z = J.- (J 2 _iTZ) 
12 

(6.1) 

Substituting in these expressions the explicit differential 
forms for the SL(3,R) generators, we arrive at 

(6.2) 
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X [2(a +2)3 + 2(b + 1)3 - 3(a + 2)Z (b + 1) - 3(a + 2)(b + 1)2]. 

These expressions are, up to a multiplicative factor, 
identical with those obtained by Hulthen. 16,18 

From the form of the SU(3) invariants, in terms of 
the labels [p, q, 0], 

1~U(3) ={(pZ +q2 _pq +3p) 

and 

I~U(3) = 1~2 (p -2q)(2p -q +3)(p +q +3), 

it is easy to see that they are identical to those of 
S L(3, R) by means of the substitution a = p and b = q. 
Therefore, we can characterize the unitary irreducible 
representations of the SL(3, R) group by the (generalized) 
Young pattern labels [a, b, 0], a::oo - 2 +t(Ul + li l ) + 
+h(u2 - <\) and b::oo -1 +~(Ul - iiI) +h(U2 -liz). 

For Case I we have 

u::oo-3 +i(]2' 1i=-1 +iliz, 

l z = - 3
1
6 (u~ + 31i~ + 12), 

and 

(6.3) 

For Case JI we have 

(] = - 3 + iu2 , Ii = - 1 + 1i1> 

and 

13= 4 x 1162 (7i(7~+91i~). (6.4) 

The invariants 12 and 13 (the generators of the center 
of the universal enveloping algebra) are constants for 
the Harish-Chandra representations Ua,b analysed pre
viously so that they give no decomposition of the Hilbert 
space LZ(SU(2),p). 

We also, for the representations of Cases I and II, 
point out that the values of the second- and the third
rank invariant, i. e., 12 and 13 , are real and pure 
imaginary respectively. This is an alternative proof for 
the unitarity of the representations. 

The Nelson operator for SL(3,R) is 

(6.5) 

Since both J2 and 12 are Hermitian operators the above 
representations of the Lie algebra sl(3,R) can be ex
ponentiated to give continuous unitary irreducible rep
resentations8 of the simply connected group SL(3,R). 
Also, since SL(3,R) is a semisimple Lie group, the 
analytic vectors of the maximal compact subgroup, 
which in this case is SU(2), are also analytic vectors 
for the whole group. 12 

7. IRREDUCIBILITY 

As we have already seen, the invariant operators 12 
and 13 have constant values for given values of the 
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parameters C1 and ° so that they do not require any de
composition of the Hilbert space L 2(SU(2), p) in which 
the representation U a

, beg), g E SL(3, R) is defined. 

Although it is necessary for the irreducibility, in the 
case of noncompact groups, that the invariants take on 
the constant values on the corresponding Hilbert space, 
it is not in general sufficient. Besides the invariant 
Casimir operators it is usually necessary to find addi
tional labels (quantum numbers) which account for the 
further decomposition of the space in which the repre
sentation is defined. 

On the one hand, a unitary representation of a semi
simple Lie group is always completely reducible so that 
the unitary representations of SL(3, R) are completely 
reducible. On the other hand, not much is known con
cerning the concrete methods for determining the irre
ducible unitary representations of these groups. 

The most effective technique for obtaining the addition
al labels for the representations, besides invariant 
operators, as well as for imposing the constraints on 
the vectors belonging to an irreducible subspace, is 
the method of using little groups. 19 

For SL(3, R) we proceed in the follOwing way. First 
we note that it is sufficient to take into account only the 
operator To. The reason for this is that the operator J o 
is diagonal, the operators J. and J_ change only the M 
value and they are responsible for the usual 2J + 1 de
gene racy in M. Since T±l and T'2 are related to To 
through the commutation relations of To and J., they do 
not contribute to any additional degeneracy in M. 

Let w be the group parameter corresponding to the 
one -dimensional subgroup of SL(3, R) generated by To' 
The elements of this subgroup are diagonal matrices of 
the form 

wER. 

Now the little group is the set of elements from SU(2) 
subgroup which leaves the one parameter subgroup 
{g{w)} unchanged. Obviously the form of the little group 
depends on whether a*-b or a=b. For the Case I repre
sentations, a = - 2 +h(u2 + 02) and b = -1 +h(u2 - 02) so 
that a*- b, while for the Case II representations, a = 
- 2 +to1 +hu2 and b = -1 -to1 +hu2 giving a*- b unless 
01 = 1 (corresponding to Km1n = 0). We will concentrate 
now on the case a*- b. The special case a = b (°1 = 1) will 
be treated separately. 

When a*- b it is easy to see that elements from the 
SU(2) subgroup which leave the one-dimensional sub
group {g{w)} unchanged belong to the centralizer of the 
subgroup {g{w)} in SU(2). The elements in the centralizer 
consist of the identity, a rotation about any axis through 
21T [minus the identity in SU(2)] and rotations ± 1T about 
each coordinate axiS; these transformations form the 
quaternion group Q2' with elements given by 

_ { (1 0) (0 i) (0 -1), ± (i O)} 
Q2 - ± ° 1 ,± i ° ,± 1 ° 0 - i . 

(7.1) 
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The group Q2 is a subgroup of SU(2) and its elements, 
as listed above, can be obtained from the D1/2 matrix 
upon substitution of the appropriate Euler angles. 

The next step is to find the irreducible representations 
of the Q2 group in order to obtain additional labels for 
the unitary irreduc"ible representations of SL(3,R). The 
irreducible representations of Qa are well known. There 
are five of them and four of them are one-dimensional 
being labeled by V".e·, E, E' = ± 1. These four represen
tations have the property that in an irreducible repre
sentation of SU(2) labeled by J, (_)2J =1. The fifth one 
is two-dimensional and we call it yo5. Using the repre
sentations of the Q2 group one now can obtain the con
straints on the basis vectors due to the little group. 20 

From the equation 

j(kk') = V(k')j(k), k E SU(2), k' E Qa, 

where V(k') is one of the irreducible representations of 
the quaternion group Q2' one obtains the constraints on 
the coefficients in the expansion for j(k) in the D~M 
basis. For the four one-dimensional irreducible repre
sentations one has 

Here E' is the eigenvalue under R/1T), € corresponds to 
the eigenvalue of f under R.( 1T). For € = + 1 K is an even 
number and for € = - 1 K is an odd number. 

We now introduce a new basis 

I:~~ ).~:M)H'H'{:J). K>O, (7.2) 

and the corresponding Hilbert space we denote by 
It;···) =L 2(SU(2), P;E,E'). It is not difficult to show that 

min 
the new basis vectors are orthonormal 

(~'M,I ~M) =onoK'K°II'M (7.3) 

and that 

(7.4) 

i. e., the Hilbert space H(e ,e') with the basis {I ~M)} is 
invariant under the action of the SL(3,R) generators. 
The hermiticity condition in this basiS turns out to be 

(2J + 1)1/2 (:~I pi ~o) (N;;I To I;, M,) 

= (2J' + 1)1/2 ( JI 1°)* ( JI T IJ' )* KN P 00 NM 0 K'M' • 
(7.5) 

Thus, since the equations which follow from this her
miticity condition are the same as (5. 15) and (5, 16) all 
the results we have obtained previously hold for the 
Hilbert space me•e·). 

Kmin 

The fifth representation yo5 of the quaternion group 
Q

2 
is two-dimensional and leads to half-integral J val

ues. The group generators are now 

and 

(7.6) 
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12 being the two-dimensional unit matrix. We denote by 
HirS

) = L 2(SU(2), Pi5) the irreducible subspace of the 
min 

whole Hilbert space L 2(SU(2), p), which corresponds to 
the representation VS of the little group Q2' The arbi
trary function in this space is now of the form20 

f(k) = L; f;1I " k E SU(2). 
( 

Di/2-2N lI(k) ) 

IN II .0(.1-1/2) D J (k) 
e -1/2+2N,1I 

Due to the label K all the irreducible representations 
discussed here possess, besides the 2J + 1 degeneracy 
in M, an additional degeneracy. In other words, if we 
decompose some irreducible representation of the 
SL(3,R) group with respect to the maximal compact sub
group, the irreducible representations with the same J 
value will, in general, appear several times. The sim
plest way to determine the additional degeneracy for a 
given J is to denumerate the possible K values of the 
vectors belonging to some invariant subspace. Now, 
excluding the M degeneracy we obtain the following re
sult in terms of (E, E') = (±, ±). 

Case I: When the Hilbert space is H(E, E') 

= L 2(SU(2)i E, E'), the J content is given by 

{J"}={O, 22, 3, 43, 52, 64
, ••• }, 

for (E, E') =( +, +), and by 

{J"}={1, 2, 32
, 42

, 53, 6\ ... }, 

(7.7) 

(7.8) 

for (E,E')=(+,-), (-,+), and (-,-). In the Hilbert space 
H(S) = L 2(SU(2)i5), corresponding to the fifth irreducible 
representation V s, the J content is given by 

(7.9) 

Case II: In the Hilbert space H(E,E') =L2(S[}(2) P'E E') 
Kmin ' " 

the angular momentum content is 

{J"}={Km1n , K m1n + 1, (Km1n +2)2, (Km1n +3)2, 

(Kmln +4)\· .. }, 

where Kmln "* 0, whereas in the Hilbert space HiS). 
=L2(SU(2), Pi 5), the angular momentum contenti'~ 

(7.10) 

{J"}={Kmln,(Kmln +1)2, (Kmin +2)3, (Km1n +3)\ ... }. 

(7.11) 

8. MULTIPLICITY FREE REPRESENTATIONS 

We will discuss now in more detail Case II when ° = O. 
The parameters of the unitary representations are (] 
= - 3 + i(] 2, ° = - 1 + (1) and the parameters a and bare 
given in terms of (] and ° by a = - 2 +t01 +ti(]2' b =-1 
-t01 +ti(]2' Furthermore, from (5.19) it follows when 
K = 0 and 01 = 1 that P(JiO)"* 0 implies P(Ji2) = P(Ji - 2) 
= O. Thus we obtain the multipliCity free representa
tions, with the matrix elements of the group generators 
given by 

(0:';' IJo I ~M)=MOJ'JOII'M' 

\o~; IJ.I~M)= [J(J + 1) - M(M ± 1)]1/2 0J'J0M',MH> 

and 
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(8.1) 

0'2 being an arbitrary real number. The 3 -j symbol 
(t' ~ ~') is nonzero only if J + J' is an even integer and 
this provides us with the U=2 rule, L e., the J con
tent for this representation is4 ,21 

{J}={O, 2,4,,, .}, (8.2) 

or 

(8.3) 

The explicit forms for the reduced matrix elements of 
T", are 

/JIIIIJ) (J(J+l)(2J +1))1/2 
\0 T 0 =-2¥1(]2 (2J-1)(2J+3) , 

and 

(8.4) 

They were first evaluated by the means of analytical 
continuation in the SU(3) labels. 22 It is easy to see from 
the general expressions for the SI(3, R) generators as 
differential operators that, in this case, they are sim
ply given by23 

Jo=ia~' J.=exp(:FiY)('fiJ~ +ictgf3a~)' 
and 

i (2 ) r;; a To=..f6 3c f3-1 (]2 - V 6 sf3 cf3aj3' (8.5) 

The above explicit forms (8.4) for the reduced matrix 
elements of To are obtained under the assumption that 
J is an integer. If one continues these forms in J to 
half-integer values, then they satisfy the Si(3,R) con
dition (2.4) only if Jm1n=t and (]2=0. Thus there is a 
multipliCity free representation of the Si(3, R) group 
with U=2, Jmln=t, and (]2=0 (Refs. 24, 25), Le., 

{J}={t, ~, t,·· .}. (8.6) 

Using the general expressions for the SL(3,R) invari
ants, Case II with 01 = 1 yields 

and 

(8.7) 

Note that 13 is proportional to [2' L e., 13 = - (i/18)(]2[2' 

9. SUMMARY 

In this work we have parameterized the unitary 
irreducible representations of the SL(3, R) group in 
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terms of two parameters (]= - 3 + (]1 +i(]2 and 0= -1 + 01 
+i02 where (]=a +b and ° =a - b. The main results for 
the unitary irreducible representations are: The matrix 
elements for the group generators are given by Eqs. 
(4.2) and (4.6). The general scalar product is given by 
Eq. (5.7), and the basis vectors in the irreducible sub
spaces are given by (7.2). There are three series of 
representations. 

Principal series: (1 = - 3 + i(]2' 0= -1 + i02, (12,°2 E R. 
The matrix elements of the kernel are p(J; K) 
=(2J+1)1/2, the invariants are given by (6.3), and the 
irreducible Hilbert spaces are H("") and H(S) with the 
J contents given by (7.8) and (7.9), respectively. 

Supplementary series: (a) (1 = - 3 + i(12' 0= -1 + 01> 
(12ER, 1011 <1 for Jintegerand 1011 <t for Jhalf
integer. The invariants are given by (6.4) and the ma
trix elements of the kernel p are given by (5.26). The 
irreducible Hilbert spaces are H(" €') and H(S) with the 
Jcontents given by (7.8) and (7.9), respectively. 

(b) (1=-3 +i(12' 0=-1 +01> (12ER, 01=1-Kmin 

(Kmin =0, t, 1, t," .). The matrix elements of the 
Kernel p are given by (5.21) and the invariants by (6.4). 
The irreducible Hilbert spaces are H~';.:~) and H~s~in with 
J contents given by (7.10) and (7.11), respectively. 

Multiplicity free representations: (1 = - 3 + i(12' 0=0, 
(]2 E R, 01 = 1. The matrix elements of the quadrupole 
operator are given by (8.1) and the invariants are given 
by (8.7). The matrix elements of the kernel are p(J; K) 
= (2J + 1)1/2, K = 0 and the J content for these represen
tations is given by (8.2) and (8.3). For (12 = 0, J can 
also be half-integer and the J content is given by (8.6). 

We have argued that the matrix elements of the kernel 
p can be taken in the form p(J; K)o KK' and the whole 
analysis is done under this assumption. This indicates 
that a complete set of unitary irreducible representa
tions is obtained, but we are not aware of a rigorous 
proof. 

10. CONTRACTION TO Ts@SU(2) 

Let G be a noncompact, connected semisimple Lie 
group with finite center and let K be its maximal com
pact subgroup. The Cartan decomposition of the algebra 
G of the group Gis G=Kffi P, where K is the Lie alge
bra of the maximal compact subgroup K of the group G 
and [K, P] c P, [p, P] c K. Contraction in the sense of 
Inanu and Wigner26 is a limiting process. K - K, P - EP, 
where E - O. Thus, in this manner one arrives at the new 
algebra G'=KffiP', with [K,P'lcp', (P',P'j=O. The 
corresponding group G' is a semidirect product of its 
subgroups K and P', i. e., G =P' ®K, P' being the in
variant subgroup in G. 

In our case G is SL(3,R), and it is obvious that the 
corresponding contracted group, with respect to SU(2), 
is Ts 6lSU(2). If we denote the generators of the con
tracted group by Q", i. e. , 

Q" = limET" , ,- a 
(10.1) 

then the new commutation relations are 

[Ja,J.l = ±J., 
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and 

[J.,JJ=2Ja, 

[Jo, Q,,]= J,J.Q", 

[J., Q"l = [2 - J,J.(J,J. ± 1)]1/2 Q"w 

[Q",Qvl=O (J,J.,v=O, ±1, ±2). (10.2) 

The invariants I~ and I~ of the T s @SU(2) group are re
lated to those of SL(3,R) in the following way: 

(10.3) 

In order to relate the unitary irreducible representa
tion of SL(3, R) to those of T s @SU(2) (Refs. 20, 27) we 
present the summary of the unitary irreducible repre
sentations of Ts 6l SU(2). In terms of the parameters a 
and b in this work, the so-called Cl!, {3, and y irreducible 
representations20 of the group T s @SU(2) are given by 

(10.4) 

with invariants 

(10.5) 

{3K bands :(~:IIQII~)= (_V'-K' [(2J' + 1)(2J + 1) )1/2 

( 
J' 2 J) Xv'1(12 . 

-K' 0 K 
(10.6) 

with invariants 

(10.7) 

(10.8) 
with invariants 

12 =-Ha~ + b~ - a2b2), 

13 = 1 ~2 (2a~ + 2b~ - 3a~b2 - 3a2b~). 
(10.9) 

Now, it is straightforward to see that in the Inonii
Wigner contraction limit of the unitary irreducible rep
resentations of the SL (3, R) group to those of the 
Ts®SU(2) group one has the following situation. 

Case I: For (12 and 02 kept fixed we arrive at the Cl!J 

bands (J=O, to 1, ... ), for E(12 and 02 kept fixed we 
arrive at the 13K bands (K=O, t, 1," .), and finally for 
E(12 and E0 2 kept fixed we obtain the corresponding y 
bands characterized by (E,E')=(±, ±). 

Case II: The irreducible representations of the 
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SL(3,R) group are defined on the Hilbert spaces HJ/'e') 
2 ( min 

=L (SU(2),p;E,E') and Hrt~ln =L2(SU(2),p; 5). Now, since 
01 is a finite discrete number and EOI - 0, we obtain for 
0'2 kept fixed the 01." bands (J=Kmln, Km1n + 1, Km1n 
+2, ... ) and for E0'2 kept fixed the {3K bands (Jmln=Kmln' 
Km1n +1, Kmln +2, ... ). The multiplicity free represen
tation (61 =1 and AJ=2) characterized by Jmln=~ in the 
contraction process goes into the 01." bands (J =t , 
t, ... ). The other two classes of the multiplicity free 
representations, characterized by J mln = ° or 1 and 0'2 

arbitrary real number, in the contraction process with 
0'2 kept fixed go into the 01." bands (J=O, 2, 4, "', or 
J = 1, 3, 5, ... ) and for €(J' 2 kept fixed into the f30 bands 
(Jm1n=0 or J min =l). 
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APPENDIX A 

In the Iwasawa decomposition of SL(3,R) the nilpotent 
subgroup N is the set of 3 x3 upper triangular matrices 
with the group parameters Vl> V 2 , and va, the Abelian 
subgroup A is the set of diagonal matrices 
diag(e~, e", e-~-IJ.), and the maximal compact subgroup 
SO(3) can be given in terms of Euler angles 01., f3, and I' 
through the relation k(OI., f3,y) =R.(OI.)R y (f3}R.(y), where 
for example R.(OI.) is a rotation through an angle 01. about 
the Z axis. Explicitly, 

(

COI.C{3cY_SOI.SY -COI.c{3sy-SOI.cy COI.Sf3) 

k(OI., f3,y) = SOI.c{3cy +COI.sy -SOI.c{3sy +COI.cy sOI.sf3 , 

- S {3cy c{3sy cf3 

where, for example, SOl. and COl. stand for sinOl. and COSOl., 
respectively. An arbitrary group element of SL(3, R) is 
given by g=nak={gij}, i,j=l, 2, 3, where 

and 

gu = e~(cOl.c {3cy - SOlSI') + vae"(s OlC {3cy + C OI.S 1') 

+v2e-~-lJ.s{3cy, 

g12 = eA
( - cOI.c{3sy - sOI.cy) + v3e"( - SOI.c{3sy + COley) 

- v2e-~-"(s /3sy), 

g13=e~(cOI.s/3) +v3e"(sOI.s/3) - v2e-~-"cf3, 

g2I = e"(sOI.cf3cy + cOI.sy) + vie-A
-" (- S f3cy), 

g22 = e"( -sOI.cf3sy + cOI.cy) + vie-H
' S /3sy, 

g2a = e"(sOI.sf3) +vIe-'\-" cf3, 

g31 = e-~-"( - S f3cy), 

g32=e-~-" s/3sy, 

g33 = e -~-,. C /3. 

The differential ope rator X:, b corresponding to an 
arbitrary group parameter E is given by (3.15), i. e. , 

r. b =(dX) ~ +(djJ.) ~ +(dOl.) a 
, dE ,.0 a A dE ,.0 a jJ. dE ,.0 a 01. 
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+(~),.o a~ + (::)..0 a~ . 

In order to evaluate explicitly the coefficients of this 
differential operator we proceed in the following man
ner: Let X, be the 3 X3 matrix form for the generator 
corresponding to the parameter E and consider an infini
tesimal SL(3,R) transformationg(E)=l +EX,. For an 
arbitrary elementg(vl>v2 , V 3, A, jJ.,0I., 13, Y)ESL(3,R) 
one has 

(AI) 

where g' E SL(3,R) has new values of the group parame
ters; i.e., g'=g(v{, v~, v~, A', jJ.', 01.', f3', 1"), where the 
old and new values for the group parameters differ 
infinitesimally. The matrix equation (AI) provides us 
with nine equations, which if we differentiate with 
respect to E and set E = 0, lead to a set of algebraic equa
tions in (dA/dE),:o, ... , (dy/dE),.o' 

For the case when E corresponds to any of the S0(3) 
subgroup parameters we obtain the familiar differential 
forms for the generators J i • In the spherical basis the 
explicit forms for these operators are 

J 
. a 

o=lay' 

(A2) 

For the infinitesimal transformations of the one
dimenSional subgroup of SL(3, R) generated by Al + A 2 , 

Al and A2 being the infinitesimal generators correspond
ing to the parameters A and jJ., respectively, g(E) is 
given by diag(l +E, 1 +E, 1-2E). Now equation (AI) pro
vides us with5 

( dOl.\ = -3sOI.cOI.s2f3, (d f3 ) =3s{3cf3, 
d€),:o dE ,=0 

and 

( dY) =0 
dE '=0 • 

Since the zeroth component To of the quadrupole opera
tor T" is related to generator Al +A2 by To=-iv'1"(A1 
+A 2 ), we obtain 3 

To = i(!T(3c201.S 2f3 -1) -aa +!T(3S20ls2f3-1) ~ 
A ajJ. 

+/6SOI.COI.s2f3~ -V6Sf3Cf3~)' aa af3 
(A3) 

The Simplest way to obtain the remaining components 
T±l and T' 2 of the quadrupole operator is by means of 
the commutation relations 

and 

T±2 =HJ., TuJ =2~ [J., [J., To]]. 

The result is5 

Djordje SijaCki 309 



                                                                                                                                    

T±l = exp('f iY)( - 2s acas 13'1' 2ic2as t3ct3> o~ 

+ (2s acas 13'1' 2is 2as t3c t3> O°IJ. + [(c2a - s2a)s 13 - C 13 ctgt3 

and 

'f2iSQlCQlSt3ct3]00a ±i(c2t3-S2Mo~ +ctgt3o~) 

T'2 = exp('f 2iy) ([ ± 2s Qlcac 13 + i(c2ac2 13 - s2a)] o~ 

+ ['I' 2sQlcQlct3 +i(s2ac2 13 - c2a) 1 ~ 
OIJ. 

+ ['I' 2c2act3 +isaca(1 + c2 13)] ~ +is t3ct3-;' ± ~\. 
uQl 0", oy} 

(A4) 
From the explicit form of the operators Jo, To, Tw and 
T'2 it is obvious that [J 0' T" ] = J..L T" (J..L = 0, ± 1, ± 2). In 
order to make sure that the generators we have obtained 
actually generate the SL(3,R) algebra we must verify 
that the SL(3,R) condition, [T2 , T_2 ]=-4Jo, is satisfied. 
An explicit calculation shows that this is indeed the 
case. 

We know that the differential forms given for the 
SL(3,R) group generators are also valid for SL(3,R) 
since, in so far as these differential operators are con
cerned, the only difference between SL(3,R) and SL(3,R) 
lies in the range of the maximal compact subgroup 
parameters. 

APPENDIX B 

The elements of the SU(2) group can be parametrized 
in terms of the three Auler angles a, 13, and y by 

k(at3y) = exp( - iaJz ) exp( - it3Jy ) exp( - iyJz )' 

The unitary irreducible representations of this group 
are labeled by the value J of the Casimir operator J2, 
and their matrix elements are DiM-functions 

DiM( ai3y) = (JK I k(a t3y) I JM), 

where J=O, t, 1, i,"', -J~K, M~J, and {IJM)} 
span the basis of the representation. Since Jz is diago
nal in the {I JM) } basis one has 

DiM( ai3y) = exp( - iaK) diM(!3) exp( - iyM) , (B1) 

where 

(B2) 

The latter functions are given explicitly by 

J r(J+K)!(J-K)!]l/2 ( J+M)(J-M) 
dKM(!3>=l(J+M)!(J_M)! ~ J-K-N \ N 

( 
{3 )2N+K+M ( t3)2J-2N-K-M 

X(_y+M+N c- -s- , 
2 2 

and they are subject to the following symmetry 
propert~es 

310 

diM(i3)* =diM({3), 

diM({3) = (_)K-M d:K-M(i3) , 

diM({3) =(_)K-M d~K(i3). 
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(B3) 

The coefficients of the operator 

To = i (V1(3c2 as2t3 - l)a + V1 (3s 2Q1S2 13 -1)b 

o 0 ) +v'6SQlCQlS2t3oa -v'6 S t3 c t3aj3 , 

can be expressed in terms of the DiM functions. Making 
use of 

d~o( 13 ) = V1 S 13 c 13, 

d~o(i3) = ~ s2t3, (B4) 

and the symmetry properties of diM functions, one 
obtains 

V1(3c2as2t3- 1) = -v'1D~ +D~ +D~20' 

and 

/6 S acas2 13 = i(D~o - D~20)' (B5) 

From the expressions 

J.=exp('fiY)(-is~ oOa'f :13 +ictgt3o~). 
one obtains 

-.fTJ s i3ct3 0 ~ = V1 s t3ct3 [exp(iy) J+ - exp( - iy) J.], 

and this can be written as 

f7> 0 2 2 
- v 6 saci3aj3 = DOl J_ + D O_l J+. (B6) 

In the expression for To the operator Ko = io /0 a 
actually acts on the left. However, making use of the 
relation 

[Ko,DiM] =KDiM' 

one has 

Ko(D~o - D~20) = 2(D~o + D~20) + (D~o - D~20) K o, 

so that we finally obtain 

(B7) 

(BB) 

We work in the basis of the orthonormal vectors I K~)' 
i. e. , 

~,:;, I~M)= 0J'JOK'KOM'M' 

which are related to the DiM functions by 

By making use of the relation 
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x( J' J" J) ( J' 

-K' K" K -M' 
(B9) 

J" 

M" 

it is now straightforward to evaluate the matrix ele
ments of To in the {I: M ) } basis; we obtain 

j( J' 2 J) t ( J' 2 J) 
X - i!I(a +b) 

-M' 0 M -K' 0 K 

: ~) ( 

J' 
+i(2 +K +a - b) 

-K' 

(
J' 2 J)~ +i(2 -K +a -b) 
K' -2 K 

( 

J' 
+i 

-K' 
: :) X~J(J+l)-M(M+l)J'I' 

x ( J' 2 J \ 

-M' -1 M+l) 

(

J' 
+ [J(J +1) -M(M -1)] 

M' 

(BI0) 
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Representation theory of the universal covering of the 
Euclidean conformal group and conformal invariant Green's 
functions 
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We present a special realization for the universal covering of the Euclidean conformal group. This 
group can be defined as a transformation group on the Euclidean version of compactified Minkowski 
space such that the action on this space coincides with the usual one of the Euclidean conformal 
group. We construct the representations of the principal and complementary series and derive the 
intertwining kernels for the equivalent representations. The connection between representation theory 
and conformal invariant quantum field theory is studied. To this end we also give the reduction of 
the tensor product of two representations of the supplementary series. 

The group SU*(4) (Ref. 1) is the universal covering 
of the Euclidean conformal group SOo(5, 1). The unitary 
irreducible representations of this group are complete
ly known on the pure Lie algebra level of representation 
theory. 2-5 It is the main goal of this paper to develop 
the global representation theory. 

The investigation is motivated by the recent interest 
in conformal invariant Euclidean quantum field theo-
ry, 6-8 the underlying symmetry group being the twofold 
covering of SOo(5, 1). It is generally accepted that such 
a theory becomes relevant if interpreted as a Gell-Mann 
Low limit9 of a renormalizable field theory. 10 

As is well known, the two- and three-point functions 
of a conformal invariant quantum field theory are, up to 
a multiplicative constant, uniquely determined. 11,12 For 
the four-point function a conformal invariant partial 
wave decomposition has been given, which contains only 
products of two- and three-point functions. 13 With this 
knowledge the system of coupled integral equations the 
n-point functions are known to obey14 becomes tractable. 
This has been shown by Mack. 6 Furthermore, he has 
drawn attention to the fact that the two- and three-point 
functions have a pure group theoretical meaning. A 
thorough investigation of this point will be given in this 
paper. 

We present a special realization G of SU*(4) (Sec. 1), 
which will be useful in exhibiting the relation between 
representation theory and conformal invariant quantum 
field theory. A factorization of this group can be derived 
(Sec. 2) such that the Euclidean version of compactified 
Minkowski space is obtained as the factor space GIG', 
where G' is the inducing subgroup for the unitary irre
ducible representations of G. Our choice of the univer
sal covering group proves to be Significant because the 
action of G on GIG' coincides with the usual one of the 
conformal group (Sec. 3). Thus, the representations of 
the principal (Sec. 4) and supplementary series (Sec. 5) 
of G act on fields over Euclidean space and they yield a 
transformation law, which is adapted to the conformal 
group. The two-point functions appear in this context as 
kernels for the scalar product of the supplementary 
series or as intertwining kernels for equivalent repre
sentations (Sec. 6), and the three-point functions as 
Clebsch-Gordan kernels for the tensor product of two 
representations of the supplementary series (Sec. 7). 
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After completion of this work we have received a pre
print by Koller, 15 in which a similar program is carried 
out for the groups SOo(n, 1). He gives an independent 
derivation of the intertwining kernels by means of the 
nontrivial element of the Weyl group. 

1. THE UNIVERSAL CONVERING GROUP OF SOo (5,1) 

We use the following realization of the universal 
covering group of SOo(5, 1): G consists of the elements g 
of SL(4, C) which obey the condition 

gE=Eg* 

where 

_(-€ 0\ 
E - 0 H) with =( 0 +1\ 

€ -1 0) 

and * means complex conjugation. 

If g is split into 2 x2 matrices such that 

the condition (1. 1) reads 

gl1€ = +€gtl' g12€ = - €ii2' 

g21€= -€g:" g22€ = + Eg:2· 

(1.1) 

(1. 2) 

(1. 3) 

(1. 4) 

It is readily verified that G is isomorphic to SU *( 4) 
(Ref. 1) by virtue of a suitable real, orthogonal trans
formation. Furthermore, it can be shown that there 
exists a homomorphism of G onto SOo(5, 1) which has 
kernel Z2={+e, -e}, this yielding the well-known 
isomorphism 

(1. 5) 

2. FACTORIZATION OF G 

The set of conditions (1,4) on g is now used to obtain 
a parametrization for G, which will be valid for all ele
ments of G with the exception of a lower dimensional 
manifold. 

The elements g of G with subdeterminant I gul "* 0 can 
uniquely be factorized into 
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g=glg2g3g4' (2.1) 

each factor constituting a subgroup G a (a = 1, 2, 3, 4) of 
G. They are explicitly given by: 

(1) gl=(! n· 
The 2 x2 matrix A is built up by a 4-vector a 
== (a\ a2, a3, a4

) according to 

Gl is an Abelian, four-dimensional subgroup of G. 

(
'A' 0 ) 

(2) g2= , 
o A"* 

with A', A"ESU(2). 

(2.2) 

(2.3) 

(2.4) 

Because G2 is simply SU(2)® SU(2), we use the notation 
A=(A', A"). 

(e-~/2 1 

(3) g3=\0 

with A E (R). 

(2.5) 

This subgroup is isomorphic to the multiplicative group 
of the positive real numbers. 

(2.6) 

The matrix C has the same form as has been given in 
(2.3), the 4-vector a replaced by c. 

3. THE CONNECTION WITH THE EUCLIDEAN 
CONFORMAL GROUP 

Obviously, the elements of Gl • G2 form a subgroup of 
G isomorphic to the twofold covering group of the 
Euclidean Poincare group. This suggests examining the 
action of G on the translational part G l of G, the ele
ments of which we now write as 

(3.1) 

According to the results of Sec. 2 we can uniquely fac
torize g gx for I (g g)ul "* 0 into 

ggx=gx,g' 

where g' E G' = G2G3G4 • Hence, we obtain 

X'=g2l +g22 XIgu +g12 X , 

(3.2) 

(3.3) 

The computation of (3.3) for the various subgroups Ga 
(a = 1, 2, 3, 4) is facilitated by means of the identity 

(3.4) 

the right-hand side being the usual scalar product over 
Euclidean space M; the result is: 

(1) x'=x+a, 

(2)x'=Ax, 
(3.5) 
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(3) x' = e~x, 

(4) x'=x-x2c/l-2x· c +X2
C

2. 

In deriving Eq. (2) of (3.5) we have used the covering 
map 'IT of SU(2)® SU(2) onto the Euclidean Lorentz group 
L o=SO(4) given by 

A" =1. tr {CJ"A' (j A lIt} 
II 2 "., (3.6) 

where CJ=(u", -il)kol.2.3 and <1=(u", +il)k_l,2,3' 

From (3.5) we see that the elements of G with I gul f. 0 
act on gxG' in exactly the same way as the Euclidean 
conformal group on elements x of M. Thus we can iden
tify the factors occurring in (2. 1) as translations, 
Lorentz transformations, dilatations, and special con
formal transformations. For that reason we shall use 
the notation 

g=(a,Ald,c) (3.7) 

for the elements with I gnl "* O. 

4. THE PRINCIPAL SERIES OF REPRESENTATIONS 
OFG 

In this section we will construct the representations 
of the principal series. To do this we must know the 
Iwasawa decomposition G =K A N of G with K being the 
maximal compact, A an Abelian and N a nilpotent sub
group. 1 In our specific case, K is the unitary subgroup 
of G 

K={gE Glgt g= e}. (4.1) 

It is easy to prove that K is isomorphic to Sp(2). The 
remaining factors occurred already, A = G3 and N = G4 • 

The representations of the principal series are ob
tained as induced representations on the homogeneous 
space GIG', where G' =K' A Nand K' being the central
izer of A in K.la We have K' = G2, so that 

The factor space GIG' is diffeomorphic to KIK'. How
ever, we want to use the compactified M as homoge
neous space, this leading to the decomposition (2.1). 

According to the general theory, the representations 
are induced by the unitary and irredUCible representa
tions of G' which are trivial on N. The complete system 
of representations of G2G3 , which is just SU(2) ® SU(2) 
® :JR+, can immediately be written down 

(4.3) 

where p is real and D(/1,12)(A)=D 0 1)(A')®D 0 2)(A") is 
a unitary and irreducible representation of SU(2) ® SU(2) 
on the tensor product C2Il+l®C212+l with 1 1 =0 !. 1 
3 U 2 ,2, , 

2, ••.. 

The representation space H consists of the functions 

(4.4) 

infinitely differentiable on M including infinity. Finally, 
we may define the representations of the principal serie~ 

l

ax' 11/2 U(g) ¢(x) = ax D(g') ¢(x') (4.5) 
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with 

(4.6) 

and where we have to exclude the point at infinity. The 
representation is unitary relative to the scalar product 

(¢1> ¢2) = J ¢i(x) ¢2(X) crx (4.7) 

and known to be irreducible, toO. 16
,17 

To get a more explicit form of the transformation law 
(4.5), we use the decomposition (2.1); the factors ga 
(a=l, 2, 3, 4) yield: 

(1) UX(a) ¢(x) = ¢(x-a), 

(2) uX(A) ¢(x) =D°l' 12) (A) ¢(A-I x), 

(3) UX(d) ¢(x) = (e~)-~¢(e-~ x), (4.8) 

(4) UX (c) ¢(x) = (1 + 2x . e + re2t~ DUI' 12 )(A(x, c» 

x ¢(x + x2e/1 +2x· e + re2
). 

In the last equation the SU(2)0 SU(2) element 

A(x, c)=(A'(x, c), A"(X, c» 

is given by 

A'(x, c) =(1 +xtC)/(1 +2x· e +re2)1/2 

A"(X, c) = (1 +X C t )* /(1 +2x· e + re2)1/2. 

(4.9) 

(4.10) 

Furthermore, we have defined ~ = 2 + i p and more 
accurately written UX with X being an abbreviation for 
the labels of the representation of G' 

(4.11) 

After all, there remains to be shown that the integral 
(4.7) is actually convergent for ¢ E HX. This will be 
proved by the aid of the element 

);~ = (+ ~E -~E) (4.12) 

of the maximal compact subgroup of G, which maps x 
into 

(4.13) 

With (4.8) we come into contact with conformal quan
tum field theory: If we continue x4 to imaginary values, 
that is, define ix4 =:xf' such that SO(4) gets SOo(3,1), we 
obtain the integrated form of the representation of the 
conformal Lie algebra acting on fields over Monkowski 
space. 18 

5. THE SUPPLEMENTARY SERIES OF 
REPRESENTATIONS OF G 

We proceed in analogy to the analysis for the univer
sal covering of 500 (3,1) (Refs. 19, 20) and try to gener
alize ~ in (4.8) to arbitrary complex values I) and the 
scalar product (4.7) to 

(¢1' ¢2) = J ¢Uxl ) K(xl> x2) ¢2(X2) d4xI d4x2 (5.1) 

such that the resulting representation is unitary and 
irreducible. Thus, UX must leave invariant the bilinear 
form (5.1), which will serve to fix the dependence of 
the kernel K(xl> x2) on (Xl> x2). Furthermore, the inte
gral (5.1) must exist and be positive definite, which will 
yield the admissible range of 6. 

At first, we analyze the invariance condition on the 
kernel: 

(1) K(xl-a, x2-a)=K(xl> x2), 

(2) DOI" 2)(A)K(A-I xl> A-I x2)D(lt. 12)(A)t =K(xl> x2), 

(3) (e~t<4-6*) K(e-~ xl> e-~ x2)(e~)-<4-6)=K(xl> x2), 

(4) (X,2/,r,t<4-6*)D(I!·/2)(A At,)K(x' x')D(lJ, 12) 
1 1 Xl Xl U 2 

x(A At ,)t(X'2/X2)-<4-Q) =K(x x). (5.2) 
X 2 x2 2 2 H 2 

Choosing a= -X2 in Eq. (1) of (5.2), we see the K(xl> x2) 
is a function of XI - x2 only: 

K(xu x2) =K(xi - x2, 0) ==: K(xi - x2). 

We take x2 = 0, XI = X and define 

K(x) = [1/(x")4-6 *jK(x) 

to simplify Eq. (4) of (5.2), this yielding 

(2') D (11. / 2) (A)K(KI x) D(/i. 12) (A)t =K(X) 

(5.3) 

(5.4) 

where AT is the time inversion. Obviously, this element (3') (e~)6 -6* K(e-~ x) =K(x) (5.5) 

is appropriate for studying the behavior of ¢ for large (4') D(lI,/2) (A,YK(x') =D U I,12)(A'yK(x) 
x. To compute the action of UX(g~) on ¢, we observe 
that A(x, c) can be cast into the form where x' == x + x2 e/1 +2x· e + x2 c2. 

A(x,C)==A:A~. (4.14) Equation (4') of (5.5) requires 

where x' == x + x2e/1 +2x· e + x2e2 and A x == (A;, A;) with K(x) ==D(lI,/ 2 ) (A .)Ko (5.6) 

A,t i X A "* 
'x == (X2)1!2 == x • 

(4.15) 

Then the final result is 

UX(g~) ¢(x) == (X2)-~ D (11. / 2) (A.) D U I,/ 2)(A') ¢(l\.T x/ x2) 

(4.16) 

with A, = (- E, +E). From (4.16) we may derive the 
asymptotic behavior 

(4. 17) 

which yields the convergence of the integral (4.7) for 
arbitrary p in R. 
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with Ko being a constant, invertible matrix. To see 
whether Eq. (2') of (5.5) is satisfied by (5.6), we use 

(A 't.x, /I''t.'> == (/I', /I")(A;, /I ;)(/I"t*, A,t*) (5.7) 

to transform (2') into 

KoD(/I) (/I') 0 D(/2) (A") ==D(lI) (A") 0 D ( 2) (A')Ko 

(5.8) 

where we have set 

Ko ==D(/I,12) (A,)Ko' (5.9) 

The condition (5.8) requires II == l2 and Ko is determined 
to be 
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K ili2 =k15 i 1 15 i2 . o k1k2 k2 k1 
(5.10) 

Finally, Eq. (3') of (5.5) shows that 15 must be real. 

Collecting the results, we get 

1 
K(x) = (x2)4-0 DOI,'2) (A .)D °1,'2) (A .)Ko, 

K i1i2 -k15 iI 15 i2 i k I +1 o k1 k 2 - k2 kI' U 1=- U···' U (5.11) 

i 2, k2= -12"", +12 

with 15 = 15* and 11 =12, 

At this stage, it is convenient to use another realiza
tion of D°lo'2)(A) with 11=12, This representation is 
equivalent to the I-fold tensor product ~ A with 11 = 12 
= 1/2 acting on the completely symmetric, traceless 
tensors of rank lover M. 21 We denote these representa
tions by D(l)(A). 

To determine the analogue of (5.11) in this realiza
tion, we must know 

1T(A(x, c) = A(X, c). (5.12) 

This is done with the help of (3. 6); the result is 

A(x, c) =g(x) g(x + x 2c /1 +2x· c + x2 c2
), (5.13) 

where 

(5.14) 

We remark that g(x) is not contained in Lo, 1T(A.) is the 
product of g(x) and the reflection with respect to the 
second axis. However, the representation Dln(A) of Lo 
can be extended to a representation of the complete 
Lorentz group. This property of D(l)(A) will be used in 
the sequel. 

Repeating the arguments used to derive (5.11), we get 

- 1 1 
KX(x)" 1'" ", VI' "V, = k(x) ( _.2)4-6 I I: {g(x)"lv

r(I)'" 

x 7. rEs, 

X g(X)"2V
.(I) - traces}, (5.15) 

where S, with elements rr is the permutation group of I 
objects. We Slightly changed the notation in (5.15) in 
writing more specifically KX for K because of the in
variance property 

UX(g) 0 UX(g) KX(xu x 2)=KX(x
U

x
2

) 

with X = (i; 5) being defined by 

[=1, 15=4-15. 

(5.16) 

(5. 17) 

The last requirement we have to fulfill is that the in
variant bilinear form 

(5.18) 

be finite and positive. For this integral to be convergent, 
it is obviously necessary that 15 > 2. To give a sufficient 
answer, we use Fourier transformation because 
KX(xu x 2 ) is a function of Xl - x2 only. The Fourier 
transform 

$(p)=j d 4 xexp(-ipx)1>(x) (5.19) 

of 1>(x) exists Owing to 15 > 2 and the asymptotic behavior 
(4.17). The computation of 
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(5.20) 

will be reduced to22 

(_..2)-6 (4rr)2 r(2 - 15) J ~P (.)( 2)-2+6 (5 21) 
x = ~ r(15) (21T)4 exp ipx P ,. 

which in turn may be used to show that 

j(x (p) _C(p2)2-0 for p2 _ 0 (5.22) 

and leads to the restriction 15 <4. Hence, 15 must lie in 
the interval 2 <15 <4. 

If (5.18) is expressed in terms of the Fourier trans
forms, we get 

(5.23) 

Thus, the positivity condition amounts to the require
ment that 

AX( )"1'"'' V"'V ( ) Z"'I,,,,,, K P 11 IZ V1 ''' VI >0 5,24 

for a nonzero, completely symmetric, and traceless 
tensor Z of rank 1. This condition is trivially fulfilled 
for 1 = 0, if the constant k(O, 4 - 15) appearing in (5.15) is 
chosen to be real and positive. For 1 = 1 it yields be
cause of 

K(l,4-5)(p)=k(1 4-15) (4rr)2 r(15-2) (p2)2-0 
, 22(4-6) r(5 - 15) 

X (3 - 15)g"v +(0 -2)2 P'j;fv) (5.25) 

that 0" 3 and k(1, 4 - 15) > O. This condition is equally 
valid for 1 = 2, as can be shown by a somewhat lengthy 
computation, and is indeed known to hold true for all 
1* 0. 4 

We state the final results: If 15 is restricted to the 
interval 

2<0<4 forl=O, 

2 <15 <3 for It-O, 
(5.26) 

the representation (4.8) with X=(I;15) and 11=1 2 =1/2 is 
unitary with respect to the scalar product (5.18), where 
the kernel is given by (5.15). These representations are 
said to belong to the supplementary series. We assert, 
but do not prove that they are irreducible. At the integer 
pOints X = (1;15 = 3) the exceptional series occurs. 

The kernel KX (xu x2 ) is the inverse dressed propagator 
of conformal invariant Euclidean quantum field theory. 
The two-point function for a field with half-integer spin 
can be obtained by taking an appropriate direct sum of 
representations (4.3). But these representations are not 
irreducible. 

6. EQUIVALENCE OF REPRESENTATIONS OF G 

The series of representations derived in Sees. 4 and 
5 are known to exhaust the irreducible and unitary rep
resentations of G. 4 These representations are, how
ever, not all inequivalent. 

To study this question, we look for a bounded opera
tor K of H X into HX' such that K intertwines the action 
of UX(g) and UX' (g) for arbitrary g in G: 
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UX' (g)K =KUX(g). 

The kernel K(x, x') of K with 

¢ '(x') = (K ¢ )(x) = f K(x', x) ¢(x) d4x 

thus has to satisfy 

UX' (g) ¢'(x') = f K(x', x) UX(g) ¢(x)d4x. 

(6.1) 

(6.2) 

(6.3) 

The computation proceeds along the lines of Sec. 5. 
We only state the results: An intertwining operator for 
the representations UX and UX' exists if X' = X with 

(lUl2)=(l2,ll)' A=4-~. (6.4) 

The kernel K(x', x) =K(x' - x) has the form 

K(x) = (X2~4-Ll. D (II' 12)(A x)D(ll,12)(A.) K o, (6.5) 

where 

K 1112 -ko i1 Oi2 i k l +l o k1k2 - k2 k1' I> 2 = - I>"" 11 

i 2,k1= -l2,·'" +l2' 

We note that, if necessary, the kernel has to be appro
priately regularized. 22 

The operator K is invertible, thus yielding that the 
following representations are equivalent: 

UX(g)~UX(g), 

X=(llll2;~)' X=(Z2,ll;4-~). 
(6.6) 

However, we do not give the proof that K is invertible 
and will treat in some detail only the case of the princi
pal and supplementary series with II = l2 = l/2. As has 
been explained in Sec, 5, we may change to an equiva
lent representation acting on completely symmetric, 
traceless tensors over M such that the kernel takes the 
form 

KX(x)U1"'U1 v 1,,,v1 =k(X) ( 21)4-6. J, z:; 
x l. 'ES 1 

X {g(X)"lV.(1) ••• g(X)"1 v.(l) - traces}. (6.7) 

Making the substitution 0 - ~ in (5.15), we observe that 
the resulting expression is identical with (6.7). Thus 
the kernel (6.7) plays a twofold role for the representa
tions of the supplementary series as intertwining kernel 
and as kernel for the scalar product (5.18). The kernel 
for the principal series of representations may be ob
tained from the kernel of the supplementary series by 
analytic continuation in O. 

As can immediately be shown, K X and KX must obey 
the relation 

(6.8) 

which imposes a restriction on the constant k(X) in 
(6.7). The value of this constant may be guessed by 
treating the low-dimensional cases, e. g., for l = 2 one 
must use 

K(2,Ll.)(X)"1"2V1V2=k(2,~) (x~)Ll. ~{g(X)"lV1g(X)"2"2 

+ g(x)" 1"2 g(x)" 2"1 _ tg" 1"2 g"1"2}. (6.9) 

A possible chOice, which is compatible with the results 
of Sec. 5, is 
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- 1 I'(4 - 0 + Z) 
k(X)= rr I'(-2 +0) {(0-1)0(0+1) ... (0+l-2n-1

• 

(6.10) 

Thus, for X in the principal series the representa
tions with X=(Z;2 +ip) and X=(Z;2 -ip) are equivalent. 
For X in the supplementary series we get new repre
sentations, because () takes the values 0 < '6 < 2 for 1 == 0 
and 1 < 6" < 2 for U O. Hence, the admissible range of 
o for the supplementary series is 

o < 0 < 4 for l = 0 l 
(0 * 2). 

1 < 0 < 3 for l * 0 
(6.11) 

If 0 < 2 the kernel (6.7) must be regularized such that 
the integral (5.18) is convergent. 

7. CLEBSCH-GORDAN COEFFICIENTS FOR THE 
TENSOR PRODUCT OF REPRESENTATIONS OF 
THE SjJPPLEMENTARY SERIES 

In this concluding section we make some qualitative 
remarks about Clebsch-Gordan kernels of two repre
sentations of the supplementary series, which play the 
role of three-point functions in conformal invariant 
Euclidean quantum field theory. 

The problem we want to solve is the decomposition of 
the tensor product U1(g) 0 U2(g) acting on ¢12(X1l x2 ) into 
irreducible components. We will restrict ourselves to 
the spinless case, X1=(0;01) and X2=(0;02); the general 
case can be dealt with in an analogous way. The decom
position of the Kronecker product is implemented by a 
kernel eX(xu x2 ; x3 ) such that 

¢12(XllX2)=fdXei(xu x2; X3)¢X(X3)~X3 (7.1) 

where dX means summation over (lll l2) and integration 
over ~. 

We have to specify which series of representations of 
G contribute to the integral (7. 1): From the analogous 
problem for the universal covering group of SOo(3, 1) we 
know that only representations of the principal series 
occur. 23 We shall assume this to hold true in our case. 

The decomposition (7.1) must accomplish 

U1(g) 0 U2(g) ¢12(x1, x2) =idX f eX (XI> x 2 ; X3)UX(g) ¢X(X3) d4X3' 

(7.2) 

which serves to determine the explicit form of the 
kernel: 

(1) eX(x1-a,x2-a;x3-a)=eX(XUX2;X3)' 

(2) eX (K1XU K 1x2; A-1X3) = eX(xlI x 2 ; x3 )D(l1' 12 ) (A), 

(3) (e,)-6 1 (e~r6 2 eX (e-' XI> e-'x2; e-'x) 

X D(ll,12) (A(x
3

, e») (~/X~2)4-Ll. 

where x;=xi+x~e/1 +2x1'e+xk2, i=l, 2,3. 

We use Eq. (1) to define 

e X(X1 - X2, x2 - "3): = e X(x1 - x3 , x2 - x 3 ; 0) 
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and, furthermore, set 

e X( ) ( 2)-01( 2)-62 eAX( ) Xl>X2 = Xl X2 Xl>X2 , (7.5) 

so that the remaining Equations of (7.3) take the simple 
form 

(2 ') eX(A- I xl> A- I x2 ) = eX(Xl> x2)D(lh 12) (A), 

(3 ') (e~r-4+A+O 1+02 eX (e-~ Xl> e-~ X2) = eX (Xl> x 2), 

(4') eX(x~,x;)=eX(Xl>X2)' 

(7.6) 

Equation (4') requires ex (Xl> x2) to be invariant with 
respect to special conformal transformations. Because 

(7.7) 

and 

(7.8) 

are the only invariant expressions which can be formed 
out of Xl and X 2 , we get 

(7.9) 

The dependence of eX on XI/ X1
2 

- x2/ X 2 
2 must be used to 

build up the tensor character of the kernel. 

Now we investigate Eq. (2') of (7.6): Obviously, the 
sum l, + l2 must be an integer. For these representations 
it is known how to construct the representation space 
with the help of tensor products of M. 21 Thus, only those 
representations of the principal series contribute to 
(7.1) which satisfy II = l2' because on l-fold tensor prod
uct of XI /XI

2 
- X2/X2

2 is already symmetric so that the 
antisymmetrization with respect to two indices yields 
zero. 

Hence, we obtain that e X(Xl>X2) looks as follows: 

X --L _...l. ••• ....!. _~ -traces. {(X X~"I (X Xj"l } 
xf x~ x~ x~ 

(7.10) 

The determination of the scalar factor in (7.10) is easily 
done with the remaining Eq. (3') of (7.6): 

eX «XI - X2)2/ XI
2 x2 ~ = c(X) [X/X2

2 /(X1 - X2)2t2+I+iP+61+0 2)/2. 

(7.11) 

To write down the final result it is convenient to intro
duce the abbreviation 

Xj"=Xj-X,, (i,k=1, 2, 3), x=X13/X~3-X23/~3' (7.12) 

so that 
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(7.13) 

This kernel has the following invariance property: 

U1(g) 0 U2(g) 0 ux (g) eX (Xl> x2; x3) = eX(Xl' x2; x3). 

(7.14) 
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Novel identities for simple n -j symbols* 
B. I. Dunlap and B. R. Judd 

Physics Department, The Johns Hopkins University, Baltimore, Maryland 21218 
(Received II September 1974) 

A number of identities involving 3-j. 6-j. and 9-j symbols in combinations not commonly 
encountered in angular-momentum theory are established and briefly discussed. 

In the course of extending Shibuya and Wulfman's 
analysis of the hydrogen molecular ion, 1 we have found 
that certain sums over products of n-j symbols yield 
surprisingly simple results. By pursuing the implica
tions of the analysis, we have been able to uncover a 
number of identities that the n-j symbols satisfy and 
that lie outside the normal scope of angular-momentum 
theory. 2 The use of the n-j symbols is so widespread 
in physics that we cannot be sure that some of the iden
tities (particularly special cases of them) are not al
ready known. However, they are sufficiently novel and 
striking to warrant, in our opinion, a brief listing. A 
common feature is the absence of the characteristic 
weighting factor 2x + 1 in sums over x. 

We begin with 

~( 1)a+C+~-M( a k a\( c k c) 
m - -m 0 m) m-M 0 M-m 

{
a C L} =L (_1)L+a+c+k 

L C a k 
(1 ) 

1 (2a -k)!(2c +k +1)! )1/2 
= 2k +1 (2c -k)!(2a +k +1)! ,(2) 

where a - c ~ I MI. Equation (1) can be proved by sum
ming the diagonal matrix elements of the scalar product 
of two spherical tensors of rank k, these matrix ele
ments being calculated in two alternative bases: that 
formed from the coupled states I (ac )LM), and that 
formed from the uncoupled states I am, c M - m). Equa
tion (2) is not so easy to derive. Although it has a very 
simple structure, we had to rely on a detailed combina
torial analysis similar to that described by Racah3 in 
order to obtain a proof. The only complication in a 
straightforward though rather long analysis lies in the 
occasional need to restrict sums over running indices 
to smaller ranges than those implied in the various 
factorial functions. A Similar approach can be used to 
obtain 

)(_1)L+k+2c{aa c L} 1 
L c k = 2k +1 

(c E; a). (3) 

An analog to Eq. (1) is provided by 

{
a c L} 

L;( _1)2k 
Lac k 

=~( a k C)2 
m,. -m q M-m 

(a -c~ IMI), (4) 

which can be proved by considering exchange rather than 
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direct matrix elements of the scalar product of two 
spherical tensors, The sums of Eq. (4) do not appear to 
have a Simple analytic form. When a=c, Eqs. (2) and 
(3) collapse to a common form for which an elementary 
proof can be given,4 since the sum over the 3-j symbols 
in Eq. (1) can now be readily carried out. 

The identities above can be used in conjunction with 
well-established ones to derive further results. 
Multiplication of both Sides of Eq. (3) by 

c 

a 

and summation over k yields 

L (_1)2C-S'{C 
L a c 

a a 

c 

from which we can deduce 

a 
(cE;a,2c-Sodd). (5) 

c 

In a Similar way, products of n-j symbols can be used 
with Eq. (3) to obtain (for cE; a) 

(6) 

and 

L(_1)L{a 
L b 

d c 

d c 

a Cl 
d f . 

e b 

(7) 

These equations can be extended by making the inter
changes a-b, c-d (for b~d) or a-d, c-b 
(for d ~ b). All the results of this paragraph can be 
paralleled by taking Eq. (2) rather than Eq. (3) as the 
starting point. 

Recursion relations and inductive methods can be used 
to introduce a variety of weighting factors in the sums. 
Thus, Eq. (22) of Biedenharn, Blatt, and Rose5 can be 
combined with Eq. (2) to derive 

:0 (_ 1 )L+a+C+k 1 {a 
L L(L+1) c 

c 
a ~} 
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1 (2a-k)I(2C+k+1)!)1/2 
= a(a+1)-c(c+1) (2c-k)I(2a+k+1)1 

(a >c). (8) 

It is interesting to notice that such equations as this are 
invariant with respect to the transformation k - - k - 1 
provided the interchange a- c is also made. [See Eq. 
(22.19) of Jucys and Bandzaitis. 6] 

It is well known that 9 -j symbols for which one of the 
arguments is unity can be frequently reduced to a sim
pler form. If we use Eq. (25.37) of Jucys and 
Bandzaitis,6 together with Eq. (8), we find 
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( 
2L +1 )1/2 

~ L(L +1) 
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( 
(2a-k-1)1(2c+k+1)1(4k+4) )1/2 

= ,(2c -k)!(2a +k +2)!(2k +1)(2k +3) 

(a >c) (9 ) 

(10) 

It was the empirical discovery of Eq. (10) that led us to 
uncover the existence of the other unusual identities 
described in this article. 
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A correction to the Sen and Dunn gravitational field equations 
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It is shown that the gravitational field equations proposed by Sen and Dunn do not follow from 
their variational principle and that in the vacuum case the correct field equations are related to 
Einstein's field equations by a conformal mapping. 

Sen and Dunnl proposed a new scalar-tensor theory 
of gravitation based on a Lyra manifold rather than a 
Riemannian manifold. We show in this note that this new 
theory is related to Einstein's theory of gravitation in a 
manner similar to the way in which the conformally 
mapped set of Einstein's equations are related to the 
Einstein equations. 

Since the publication of Einstein's theory of gravita
tion, attempts have been made at unified field theories. 
It was clear that such a theory would require a generali
zation of the usual Riemannian space time. The first at
tempt was by Wey12; however, the theory was unaccepta
ble due to the feature of nonintegrability of length trans
fer contained in the theory. 

Lyra3 put forward another modification of the 
Riemannian manifold and a summary of field theories 
based on the Lyra manifold has been given by Sen. 4 In 
this paper we are only interested in the gravitational 
theory based on the Lyra manifold. 

Details of the basis of the Lyra manifold can be found 
in the paper by Sen and Dunn, 1 in the references given 
there and in a later paper by Sen and Vanstone. 5 We 
give here only an outline of the main features of a Lyra 
manifold. The displacement vector PP' between two 
neighboring points p(x") and P' (x" + dx") has compo
nents ~"=;fJdx", where ;fJ(x") is a nonzero gauge func
tion. The coordinate system x" together with ;fJ form a 
reference system (;fJ; x"). Tensors are characterized 
by the way components transform under a general trans
formation of reference system. The metric is the ab
solute invariant (that is, invariant under change of 
reference system) 

ds2 = g,," ;fJ dx" ;fJ dx" • 

The components of the affine connection are no longer 
symmetric in the lower indices and cannot be identified 
with the Christoffel symbols as is the case in 
Riemannian geometry. In Lyra geometry the compo
nents of the affine connection contain not only the 
Christoffel symbols, but also a function CPa' which 
arises as a consequence of the introduction of a gauge 
function. The Lyra curvature tensor K~a8 can be ob
tained in a similar manner to the Riemannian case to
gether with the contracted curvature tensor K."" and the 
curvature scalar K. 
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Adopting the conventions in the Sen and Dunnl paper, 
the field equations are derived from the variational 
principle 

o f (K r-g + Lm V-g);fJ dxl ••• ;fJ f1x4 = 0, (1) 

where the curvature scalar K is given by 

K = R/ (;fJ)2 + (3/;fJ) CP~a + %CPa cpa + %~acpa, 

where R is the Riemannian curvature scalar and 1>a is 
defined by 

The matter Lagrangian Lm is chosen such that under 
change of gauge XO - ;fJ' , 

(4) 

The variation in (1) is to be carried out with respect to 
g,," and CPO!' Variation with respect to g,," gives 

f [(;fJ)2(R,," - tg,,"R) 

( O)3( 0 0\ 3 (;fJ)4( 0 0 1 0 0 ) + x cp,,;" - g"v ncpl +"2 CP" CPv - "2g,,"CPacpa 

+ 8rrGT "V (;fJ)4 J V-gO g"" d 4x= O. 

Variation with respect to CP" gives 

f 3 (;fJ)4 (cp" - ~,,) 0 CP" r-g d 4x = 0, 

which immediately gives 

cp" =~". 

(5) 

(6) 

(7) 

Equation (7), together with (3), enables us to write the 
field equation resulting from (5) as 

R "V - tg"v R + x"(cp,,;v - g"v L'CP) 

- ~g"v(x")2cpO!cpa = - 8rr G(x")2T "V' (8a) 

while Eqs. (7) and (3) give the relation 

(8b) 

Equation (5) differs from the corresponding relation in 
the Sen and Dunn paperl due to the fact that Sen and 
Dunn have neglected the contribution from the term 
.f (x")3(cp,,;v - g"v ncp) 00 g"" d 4 x. This terms arises 
from the presence of the gauge function in the term 
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f (x")20 (R ..J - g ) d 4x in an analogous way to the corre
sponding term in the theory proposed by Brans and 
Dicke. 6 The relation (7) also differs from the corre
sponding result by Sen and Dunn because Sen and Dunn 
appear to have neglected the contribution from the term 
3 f (x")3 0«..J- g CP"g"-v),v) d 4x when carrying out the vari
ation with respect to cp". The condition (7) ensures that 
autoparallels in Lyra geometry can be identified with the 
geodesics of Lyra geometry. The field equations pro
posed by Sen and Dunn are not invariant under change of 
gauge x" - x"', whereas Eqs. (8) proposed here are in
variant under such gauge transformations. 7 

The Similarity between the field equations proposed 
here and the conformally mapped Einstein equations 
can be seen by writing the equation obtained from (5) 
in the form 

R"v - ig"v R + (2/ x")~" iv - g"v ox") - [4/ (x")2J(x':"x':v 

- tg"vx':",x"'''') = - 81TG(x")2T "V' (9) 

where (3) has been used to rewrite terms in ¢ in terms 
of x", and then substituting (x")2 = cP so that (9) gives 

R"v - ig"v R + cp-l(CP"iV - g"v ocp) 
- tcp-2(cp" CPv - ig"v CP",CP"') = - 81TGcpT "v. (10) 

In the vacuum case, Eq. (10) is algebraically identical 
to the conformally mapped Einstein equations, which 
can be obtained by applying the mapping 
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g"v - cPg"v 

to the Einstein equations. Thus the field equations (9) 
can be conformally mapped in the vacuum case to 

R"v=O, 

which are the Einstein vacuum field equations. 

In the nonvacuum case Eq. (10) differs from the con
formally mapped Einstein equations because in the con
formally mapped Einstein equations the term involving 
the stress-energy tensor has the form (- 81TG/ cp) T "V' 
where in both cases the components T "V are indepen
dent of cpo 

In conclusion we should point out that the original 
field equations proposed by Sen and Dunn may still 
prove to be heuristically useful even though they are 
not derivable from the usual variational principle. 

lD.K. Sen and K.A.Dunn, J. Math. Phys. 12, 578 (1971). 
2H. Weyl, S. -B. Preuss, Akad. Wiss., Berlin, 465 (1918). 
3a. Lyra, Math. Z. 54, 52 (1951); E. Scheibe, Math. Z. 57, 
65 (1952). 

4D. K. Sen, Fields and/or Particles (Academic, London, 
1968). 
5D.K. SenandJ.R. Vanstone, J. Math. Phys. 13, 990 (1972). 
Be. Brans and R.H. Dicke, Phys. Rev. 124, 925 (1961). 
7The authors are grateful to Professor R. Kerr for pointing 
out that the field equations of Sen and Dunn are not invariant 
under gauge change. 
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We show that the generators of the Weyl tensor for asymptotically flat, static, Einstein-Maxwell 
space--times are electric type to asymptotic order r - 7 and that for space--times which are stable 
under static perturbations the generators of the electromagnetic field tensor are electric type to order 
,-5. We also argue that the Weyl tensor, the Ricci tensor, and the electromagnetic field tensor may 
fail to be electric type in general for asymptotically flat, static, Einstein-Maxwell space--times but 
that the generators of the Weyl tensor and the electromagnetic field tensor may still be electric type 
in general. The variable , is an affine parameter along null geodesics. 

I. INTRODUCTION 

Stationary space-times, space-times possessing 
a timelike Killing vector field, are certainly of current 
interest in general relativity. A subset of these station
ary space-times, the static space-times, may be dis
tinguished by the additional requirement that the Killing 
field be hypersurface orthogonal. These geometrical 
conditions can be used to pick a preferred coordinate 
system for static space-times in which the metric 
takes an especially simple form. 

In general relativity the gravitational field is em
bodied in the Riemannian curvature of the space-time 
expressed in terms of the Riemann tensor. The Rie
mann tensor, which is in principle directly accessible 
to physical measurement, is canonically decomposable 
into two other tensors, the Weyl and Ricci tensors. The 
Ricci tensor is nonzero only in the presence of matter 
fields. In a formalism developed by Newman and Pen
rose! these two tensors playa preponderant role. Using 
an asymptotic form of this formalism which was devel
oped by Newman and Unti,2 Newman and Penrose were 
able to write the conditions for a vacuum space-time to 
be stationary as conditions on the Weyl tensor. 3 This 
was later extended to Einstein-Maxwell space-times in 
a paper by Exton, Newman, and Penrose in which con
ditions for a space-time to be stationary were elucidat
ed for both the Weyl tensor and the electromagnetic 
field tensor. 4 Although it is clear that the region of 
space-time near the earth is not stationary, it is still 
satisfying to see that the conditions for stationarity can 
be interpreted as conditions on directly physically ob
servable quantities. 

The words stationary and static are regularly applied 
in the context of electromagnetism in flat space-time 
to denote certain conditions holding on the fields and 
their sources. To be stationary there must be a co
ordinate system in which the fields and their sources 
are time independent; to be static they must satisfy the 
additional requirement that there be an isometry under 
time reversal in this coordinate system. In particular, 
if we consider the fields to be generated only by the 
motion of structureless charge distributions (ignoring 
the spin and other higher intrinsic moments of the 
charged particles making up the distribution), then we 
find that to be stationary the fields must be time inde
pendent in some coordinate system and to be static 
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there must be a coordinate system in which only time 
independent electric fields are present. The Newman
Penrose formalism may be applied in flat space-time 
to the electromagnetic field. It can be shown that using 
the differential operator edth (the symbol for which is 
(5) defined by Newman and Penrose, 5 the electromag
netic field components can be characterized as electric 
type in a given coordinate system if and only if there is 
no magnetic field present in the coordinate system, with 
a similar statement holding for magnetic type fields. 
Therefore, in flat space-time the electromagnetic field 
for structureless charge distributions is static if and 
only if there is a coordinate system in which the 
Newman-Penrose components of the field are time in
dependent and electric type. 

As the analogy between electromagnetism and gravi
tation is made very clear by the use of the Newman
Penrose formalism, it was hoped that a distinction 
similar to that holding for electromagnetic fields would 
be found to hold for stationary and static gravitational 
fields. In an earlier paper by the authorS this type of 
distinction was found to hold to a certain asymptotic 
order for vacuum space-times. This result was in 
agreement with the long standing assumption that the 
Weyl tensor must be electric type for any asymptotical
ly flat, static, vacuum space-time. It is natural to ask 
whether a similar result will hold in the presence of 
matter fields, in particular, in the presence of elec
tromagnetic fields. In this case we might ask whether, 
in addition to the Weyl tensor, the Ricci tensor and the 
electromagnetic field tensor are asymptotically electric 
type. It would certainly be nice if we could find such a 
characterization of static space-times since then both 
stationary and static space-times would be charac
terizable in terms of their physical fields rather than in 
terms of integrals of those fields. Furthermore, it 
would make the characterization of stationary and static 
space-times easier in the Newman-Penrose formalism 
since the metric tensor plays only a subsidiary role in 
this formalism. In this paper we attempt to answer the 
above questions. 

As the results of this paper depend on the Newman
Penrose formalism, we review in Sec. II the conditions 
for an asymptotically flat Einstein-Maxwell space
time to be stationary, restricting the investigation to 
space-times having an asymptotically timelike Killing 
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vector. 1 In Sec. ill we impose the conditions for the 
space-time to be static in the Newman-Penrose for
malism and find that these conditions are interpretable 
as conditions on the Weyl tensor and the electromagnetic 
field tensor. In Sec. IV we present our conclusions. In 
an appendix we include some properties of spin-weighted 
functions which are useful in deriving the results of this 
paper. 

II. STATIONARY CONDITIONS 

In the Newman-Penrose formalism we can express 
the Weyl tensor components in terms of five complex 
functions zP A (A", 0, ... ,4), the electromagnetic field 
components in terms of three complex functions 1>a 
(a = 0,1,2), and the Ricci tensor components as <1>"b 
= 1>a¢b' where we have set the coupling constant equal to 
one. In a Newman-Penrose null coordinate system the 
metric tensor components take the form2 

gOIL = Or, glk =xk _ (~kW + ~kW) 

(1) 
gl1 = 2(U _ ww), gkl = _ (~k~l + ~k~l), 

where k, l = (2, 3) and (XO, xl) = (u, r) in which u labels out
going null hypersurfaces and r is an affine parameter 
along null geodesics on the hypersurfaces. For a sta
tionary space-time in Newman-Penrose formalism we 
can choose our null coordinate system such that the 
Killing vector is given by a/au. Then in this coordinate 
system all physical fields are independent of u (u is 
essentially the retarded time). We can further special
ize the coordinate system3,4 so that if we assume that8 

ZPo = zp~r-5 + ZPJr-ll + O(r-1) 

and 

1>0 = 1>~r-3 + 1>5r-4 + O(r-5), 

then the Weyl tensor, the metric tensor functions, the 
electromagnetic field tensor and certain components of 
the Ricci tensor can be written5 
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I/Jl = ifJ¥r-4 + ifJfr-5 + ifJrr-G + o (r-1) , 

zpl=5ifJ~+31>~¢1, zpr=t(tsZP5+41>5¢~+31>~(5¢~), (2a) 

ZP2 = ~r-3 + ifJ~r-4 + ~r-5 + ifJ~r-6 + O(r-7), 

~ =5ZP¥ + 21>¥¢L 

~=Mtsl/Jl +¢"fB"1>& +2(1)¥¢1+if)¥1>f)], 

zP~ = t( - 21/fi."iJ!¥ +tszpr + 31>~¢~ + ;;bits 1> & + ¢¥51>~ 

+ 2(;;b~1>r + ¢r1>~ + 1>1;;bj)], 

ZP3 = 1fsr-4 + zp~r-5 + zp~r-6 + O(r-7), 

Iifs = £zpL <p~ '" t[3wozp~ +ts~ + 3¢¥1>~ + 2¢g1>¥]. 
,/,4 1( - 1 - ° - 3 -0 2 -1 2 '1'3=4 4woifJ2+3w1ifJ2+(5ZP2- 1>0(51)2+31>11>2 

(2b) 

+ 4if)~ 1>~ + 2;;b81>1 + 2¢61>¥ + 2ifJ~¢~1>n (2c) 

ifJ4 = 1/J1r-5 + 1/J1r-6 + O(r-1), 

zpi = t(5ZP~ + ¢¥~1>~), 

zP~ = i(ts<Ps + 4woZP~ - tfo~ + 3¢g1>~ + ¢¥~¢~ + ¢151>~), (2d) 

U =: - 1 + U1r-1 + U2r-2 + U3r-3 + U4r-4 + O(r-5), 

U1 = - zP~, U2 = - t (ZP~ + ~~ + 21>¥;;b~), 
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Us = - -h (~+ ~ + 2(1)¥¢1 + ¢~1>f)], 
U .1.(,/.3 -:7,3 - 0-2 -0 2 1-1 ] 4=- 20 'I'2+'1'2+ 12wowo +2(1)11>1 + 1>11>1+1>11>1) , 

w = wor-2 + Wlr-s + W2r -4 + o (r-5), 

Wo=-t1/fi., Wl=-t(5I/Jg+41>~¢n, 

w2 = - f4 (ts1/J6 + 61>6;;b~ + 51>~(5;;bg), 

~ =X~r-3 +xtr -4 +~r-5 + O(r-6), 

X~ = - t(WO~Ok + Wo ~Ok), X1 = - t(Wl~Ok + WI ~Ok), 

(3a) 

(3b) 

k 3 -
X2=-5(W2~Ok+W2~Ok), (3c) 

~k = ~Okr-l + tzpg~okr-4 + -h(ZP~~Ok + ¢&¢g~Ok)r-5 + O(r-6), (3d) 

1>1 = 1>¥r-2 + 1>lr-3 + 1>ir-4 + O(r-5), 

1>1 =ts1>&, ¢i '" £1>6, 

1>2 =1>~r-3 + ¢~r-4 + O(r-5), 

1>~=£¢j, ¢~=t(51)i-1>¥~), 

<1>01 = ¢8¢~r-5 + (¢~¢l + ¢¥¢6)r-6 + O(r-7), 

<1>02 = 1>&¢~r-6 + (1)&;;b~ + 1>~;;b~)r-7 + O(r-S) , 

<1>12 '" 1>¥;;b~r-5 + (1)¥¢~ + 1>1¢~)r-6 + O(r-7), 

(4a) 

(4b) 

(5a) 

(5b) 

(5c) 

with ~02 = - i~03 = P and P = t(l + I:t), where I: = _ x 2 +ix3 

and limr_=r2~1 =- 2p20kl. We may then write the 
metric components as gOIL = Or, gil> = 15~, 

gl1 = 2U _ 2wowor-4 + O(r-5), 

glk =Xk _ r-l(~Okw + ~OkW) + O(r-6), 

gkl = _ 2p21jklr -2 _ t(l/Jf~Ok~OI + ~~ ~Ok ~01)r-5 

_ #<p~~Ok~OI + 'iP5~Ok ~Ol + 2p2¢8;PW1)r-6 + O(r-7), 

goo =2 - 2U1r-1- 2U2r-2 - 2U3r-3 

(6a) 

(6b) 

(6c) 

- (2U4 - 2wowo +g~g)XOk)r-4 + O(r-5), (7a) 

gOk = - p-2(t(WO~Ok + wo~Ok)r-l + t (WI ~Ok + Wl~Ok)r-2 

+ t (W2~Ok + W2~Ok)r-3] + O(r-4), (7b) 

gkl = - tp-20k1 r 2 + i4 p-4(zp~~Ok~OI + ~~~Ok ~Ol)r-t 

+ fa P-4(1/J6~Ok~OI + ~6~Ok ~Ol + 2p21>8if)8 0kl)r-2 + O(r-3), 

(7c) 

where g~2) is the coefficient of the r- t term in gOk' 
We now find that the remaining conditions on the Weyl 
tensor and the electromagnetic field components im
posed by the field equations and the condition that the 
space-time be stationary are given by3,4 

1 

zP~ = 'iPg = const, zp1 = 6 am1 Y tm , 
m=-t 

2 3 

zP~ = 6 bm 2Y2m, 
m=-2 I/JJ = m~3 em 2Y 3m + f[(l/Jn2 

- iI/J81/J~] 

- ;;b~(51)L 
1 

1>¥ = const, 1>8 = 6 dm 1 Y 1m, 
m=-l 

2 

(8) 

1>5 = m~2 em 1 Y2m +{1>M - i<p~1>n, (9) 

where am, bm, em, d m, and em are constants. Notice that 
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there is no requirement that <p~ = ¢~. The quantities in 
square brackets are the Weyl conserved quantities and 
those in curly brackets are the Maxwell conserved 
quantities. 4 

III. STATIC CONDITIONS 

In our coordinate system we may write the condition 
for the metric to be static ass 

gOO.lg02 - g02.1g00 - gOO.2 = 0, 

gOO.lg03 - g03,1g00 - goo, 3 = 0, 

goo, 2g03 - goo, 3g02 + (g02. 3 - g03. 2)goo = 0, 

g03.1g02 - g02,1g03 + g02, 3 - go 3. 2 = 0, 

(lOa) 

(lOb) 

(10c) 

(10d) 

where only three of these equations are actually in
dependent. We use Eqs. (7) to expand Eqs. (10), asymp
totically equating the coefficient of each power of r-1 

separately to zero. Equation (10d) is the easiest to 
write out. The coefficients of the r-1, r-2 , r-3 terms of 
this equation yield the following new information about 
the Weyl and electromagnetic fields: 

Bl/fl =~~~, Z52l/>~ =~2~g, Z52 l/!6 =~2~5, (11) 

Z5 (<P~;P~) = ~ (;P~<P~), Z5 (<P6;P~) = t5( ;P6<P~). (12) 

For the Weyl field Eqs. (11) are just the conditions that 
zf!L zf!~, and zf!~ be electric type. 5 For the electromagnetic 
field, from Eqs. (12) we find that <p~;P~ and 1J6;P~ are 
electric type. We may only infer from Eqs. (12) that 
1J~ a~d 1J6 are electric type if 1J~ = ;p~ oF O. Physically, 
<p~ = 1J1 * 0 implies that an electric monopole is present 
but that no magnetic monopole is present. (The condi
tions on the Weyl field hold independently of any condi
tion on <p1. ) After a tedious calculation we find that the 
r-4 part of Eqs. (lOa, b) yield the equation 

2;P~<P~ + (~;P~)(Z52<p~) = 0, (13) 

and its complex conjugate. If <p1 oF 0, then we can multi
ply Eq. (13) by 1J~;P~ and apply Eqs. (9) and (12) to the 
resulting expression to yield an identity, but if 1J~ =' 0, 
then this is the only nontrivial static condition imposed 
on the electromagnetic field to the order we have in
vestigated in r-1• Using Eq. (9) for 1J~ we find that Eq. 
(13) imposes the following conditions on the coefficients 
in the expansion of 1Jg: 

d_1d_1 = d;d1 

and 

dod_1 = - dido. 

We may express the conditions that <p~ be electric type 
as 

d1 = - d_1 and do =do, 

so that the conditions imposed on <p~ by Eq. (13) are 
weaker than the condition that <p~ be electric type. 

If we apply the above conditions to the coefficient of 
each power of the asymptotic expansion of the Weyl ten
sor in Eqs. (2) and employ some of the results from the 
Appendix, we then find that the Weyl tensor is electric 
type to order r-7 in the asymptotic expanSion. 

We know that static space-times possess the discrete 
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symmetry of time reversal invariance. We extend this 
symmetry to!) (null infinity) by requiring that the Max
well constants and the Weyl constants defined on!)- be 
equal to their counterparts defined on!) +. The Maxwell 
constants and the Weyl constants are given on!)
respectively by: 

and 

1.( 2".0)2 1 ,1,0 4-:1.0 
4 ~ '1'1 - 16 'f'2t5 '1'0, 

as can be seen to follow from Eqs. (2) and (4) with a 
little work. Using the conditions imposed above on zf!~ 
and zf!L we can see immediately that the Weyl constants 
are equal on!) - and!)., but although for the Maxwell 
constants accidental equality may be possible for a 
particular space-time, this quality will be stable under 
static perturbations only !:! 1J~ = ¢~ and t52;P~ = - 21J~ 
which implies here that t5<P~ ="8<P~. Therefore, we see 
that the static time reversal isometry together with 
the additional condition of static stability implies that 
<p~ and <p~ must be electric type. We may then return to 
the Eq. (12) for 1J~ and use these conditions to infer 
that <p~ is electric. Applying these conditions to Eqs. (4) 
for the electromagnetic field, we find that the elec
tromagnetic field will be electric type to order r-5 in 
the asymptotic expansion. 

Finally, we apply our conditions, including the condi
tion of static stability, to the Ricci tensor components. 
The components <1>00, <1>11' and <1>22 clearly must be elec
tric type because they are spin weight zero, real 
functions. Thus we only need to look at Eqs. (5) for the 
components <1>01, <1>02, and <1>12' With a little calculation 
we find that the coefficient of the r-7 terms in <1>02 will 
not in general be electric type unless further conditions 
on the variables ariSing at higher order in Eqs. (10) 
than we have investigated here suitably restrict them. 
Notice that each of these terms is essentially the prod
uct of two electric terms of spin weight one, but that 
(5<P6 oF 0 in general so that it does not satisfy the criteria 
of Statement A4. A situation for which these terms 
would not be electric can be found by considering for 
example 1J8 not to be axially symmetric and 1J6 to be 
axially symmetric but such that ~<P6 * O. The Ricci ten
sor will be electric type to the order investigated if tP6 
contains no quadrupole part, because then (5<P5 = 0, or if 
both 1J~ and 1J5 are axially symmetric. Other conditions 
may also be possible for which <1>02 will be electric type 
to the order r-8• 

Although we have found that the Weyl tensor is elec
tric type to the order r-7, the result on the Ricci tensor 
tended to make us less optimistic about an exact result 
holding even for vacuum space-times. If we inspect the 
way in which the asymptotic terms entered the Weyl 
tensor, we find that terms of the type occurring in the 
equation for <1>02 can be present only at higher asymptotic 
orders in the Weyl tensor than we investigated here. 

The author has recently seen a paper by T. W. J. Unti9 

in which a computer program was used to write out the 
Weyl tensor components for vacuum space-times to a 
higher order than was done here. In particular, the r-7 
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coefficient for 1J!1 was written out eXjllicitly. This term 
contains an expression of the form 1J!~ 1J!~ which will not 
in general be electric type unless l/!i = lfIt or 1J!~ = O. Al
though it is possible to make 1J!~ = ft by a translation of 
the spatial coordinates, this reduces the remaining co
ordinate freedom to the rotation group; therefore simi
lar expressions occurring at higher asymptotic order 
could not be made electric type. Thus it is plausible to 
infer that the Weyl tensor will not in general be electric 
type for vacuum or Einstein-Maxwell space-times. 

IV. CONCLUSIONS 

To recapitulate the major results which were present
ed in the body of the paper, we have seen that the condi
tion that an asymptotically flat, Einstein-Maxwell 
space-time be static imposes the asymptotic conditions 
in the Newman-Penrose formalism that 1J!~, 1J!L 1J!8, 1J!~ 
and ;P¥<f>~, ;P¥<f>~ be time independent and electric type. 
If no further conditions are added to this, then we may 
not assert that <f>8 and <f>~ are electric type unless we 
happen to have <f>~ = ;p~ "* O. If <f>¥ = 0, then we find that <f>8 
is constrained only by a weaker condition than that it 
be electric type and that no static conditions are im
posed on <f>~ to the asymptotic order investigated here. 
If, however, we add the condition that our space-time 
be stable under static perturbation, we find that the 
equality of the electromagnetic Newman-Penrose con
stants onj+ andj- which is required by the time re
versal isometry which is always defined for static 
space-times implies that we must have <f>¥ = Cii¥ and that 
<f>8 and <f>~ must be electric type. 

We have further found that, although the electromag
netic field tensor is electric type to the order investi
gated here, the Ricci tensor and the Weyl tensor are 
not expected to be electric type in general. In fact, 
the terms which cause the Ricci tensor and Weyl tensor 
to be nonelectric type arise from the nonlinearity of the 
theory, although at a relatively high asymptotic order; 
therefore, it might also be expected that a sufficiently 
large asymptotic expansion of the electromagnetic field 
tensor would expose terms which would make it, too, 
manifestly nonelectric type. 

It thus appears that the physical fields will not in 
general be electric type in static, Einstein-Maxwell 
space-times. However, there is a weaker characteri
zation which can still be conjectured to hold generally. 
Our physical fields are generated for asymptotically 
flat, stationary, Einstein-Maxwell space-times by the 
Newman-Penrose functions ~, IJ!¥, 1J!0 for the Weyl 
tensor and <f>¥, <f>o for the electromagnetic field tensor, 
and to the asymptotic order investigated here these are 
electric type. Therefore, we might hope that the follow
ing statement may be true: In any asymptotically flat, 
static, Einstein-Maxwell space-time there is a co
ordinate system in which the generators of the physical 
fields are time independent and electric type. 
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APPENDIX 

Statement A1: For any function Q(l:,1) of spin weight 
zero tftiso: =515s

Q for all s'" O. 
This statement is easily proved by induction. 

State ment A2: If 11 is a spin weight s '" 0 function of 
l: and 1, then 11 will be electric type if and only if 5 s11 
='i5s7j. 

The proof of this statement uses only elementary 
properties of the operator edth and the result of state
ment AI. The statement can be extended to negative 
spin weight functions by considering them to be the 
complex conjugates of positive spin weight functions. 
This shows in particular that if 11 is electric type so is 
1j which may also be seen to follow directly from the 
definition. 5 

Statement A3: If 11 is electric, then 'i511 and 511 are 
electric. 

This is easily proved using the commutation proper
ties of edth and its complex conjugate. 

Statement A4: If 11 and p are two nonnegative spin 
weighffunctions which are electric type and if 'i511 ='i5p 
= 0, then 11P is electric. 

Proof: From the assumptions we may write 11 ='i5 sQ 
and P ='i5 t j3 where s, t", 0 and Q and j3 are real, spin 
weight zero quantities. Using Statement A2 we need to 
show that 5s+t('i5sQ'i5tj3) = 'i5s+t(5s0:5tj3). But we have 

iSs+t('i5 so:'i5 t j3) = [1/( s ; t)]5S+1ss+ t( o:j3), using 'i511 ='i5p = 0, 

= [1/ (s: t)}S+1SS+t(Qj3), using A1, 

A similar result holds if 11 and p are both of negative 
spin weight. However, if their spin weights are of op
posite sign, then 11P will not be electric type in general. 

IE. T. Newman and R. Penrose, J. Math. Phys. 3, 566 
(1962); Erratum, J. Math. Phys. 4, 998 (1963). 

2E.T. NewmanandT.W.J. Unti, J. Math. Phys. 3, 891 
(1962) . 

3E . T. Newman and R. Penrose, Proc. Roy. Soc. (London) 
A 305, 175 (1968). 

4A. Exton, E. T. Newman, and R. Penrose, J. Math. Phys. 
10, 1566 (1969). 

5We make extensive use of the operator edth in this paper. _ 
The sY'm are spin weighted eigenfunctions of the operator'i5'i5. 
For details see E. T. Newman and R. Penrose, J. Math. 
Phys. 7, 863 (1966) and J.N. Goldberg et al., J. Math. 
Phys. 8, 2155 (1967). 

6W. Hallidy, J. Math. Phys. 15, 413 (1974). 
7Some would say that this is no restriction at all but rather 
what is meant when one says that an asymptotically flat 
space-time is stationary. However, we would like to make it 
explicit here that we are not considering certain types of 
asymptotically flat space-times which might occur. For in
stance, the Kerr metric has a time like Killing vector in the 
region between the ergo sphere and the event horizon, but it 
is asymptotically space like and therefore is not the same as 
the asymptotically time like Killing vector which also exists 
for that space-time. Space-times possessing only the for
mer type of time like Killing vector are not considered in this 
paper. 

8We also assume that the functions satisfy certain differentia
bility conditions analogous to the asymptotic smoothness con
ditions of Ref. 2. 

9T. W.J. Unti, General Relativity Gravitation 3, 43 (1972). 

William HaJlidy 325 



                                                                                                                                    

Explicit representations of a single parabose operator 
D. A. Gray and C. A. Hurst 

Department of Mathematical Physics. University of Adelaide. Adelaide. South Australia 
(Received 7 May 1974; revised manuscript received 26 August 1974) 

Representations for a single parabose operator are found as operators over a Bargmann and over a 
Schriidinger or harmonic oscillator space. The equivalence of the two representations is proved by the 
construction of a unitary integral transform connecting them. 

1. INTRODUCTION 

Three well-known representations of the Bose com
mutation relations are (a) the matrix representation l of 
the operators, (b) the Bargmann representation2 in 
terms of complex variables, and (c) the familiar quan
tum mechanical harmonic oscillator representation. 3 

It is of interest, especially in view of their association 
with representations of the symplectic group, 4 to find 
the corresponding irreducible representations of para
bose operators. 

Irreducible representations of a Single parabose os
cillator were discussed by Jordan, Mukunda, and 
Pepper,5 who classified them and found matrix rep
resentations. They showed that in this case the algebra 
generated by a single parabose operator and its adjoint 
contained the Lie algebra sP(2, R) as a subalgebra, and 
a unitary representation of the parabose algebra was the 
direct sum of two irreducible representations of sP(2, R) 
with Casimir labels g and g+ i only, where g is a posi
tive real number. If g is a positive integer or half-inte
ger, the representations of sP(2,R) are integrable to 
unitary representations of the group sp(2, R), whereas 
for the other values of g the representations are in
tegrable to unitary representations of the covering group 
of SP(2,R).6 The other unitary representations of 
Sp(2, R) for which g is complex do not lead to representa
tions of Sp(2, R) which are contained in unitary repre
sentations of the parabose algebra. 

In this paper we start by constructing representations 
of sP(2, R) by using a pair of boson operators and then 
by integration obtain irreducible representations of the 
para bose algebra in a complex space which is a gen
eralization of the Bargmann space. In this way repre
sentations for g integral or half-integral are found. 
Then, by changing the metric in the two-dimensional 
complex variable space and integrating, representations 
for the remaining values of g are found. An alternative 
way of obtaining the same representations more directly 
is also given. By a standard procedure the same rep
resentations are also constructed in a harmonic os
cillator space. As these two representations are equi
valent, there must exist a unitary mapping between them, 
and this mapping is given explicitly. 

Some detailed calculations are given in the Appendix. 

2. BARGMANN SPACE OF A SINGLE PARABOSE 
OPERATOR 

As the three 2 x 2 matrices - iiu2, iiul , iU3 from a 
two-dimensional irreducible nonunitary representation 
sp(2, R) the operators 

HI = - iia+u2w= i(ata: + al~)' 

H2 = iia+u1w= ii( - ata: + al~)' 

H3 = ia+u3Ea = i(atal + ~a:), 

(1) 

(2) 

are a set of hermitian operators which form a unitary 
representation of sp(2, R) and hence satisfy the com
mutation relations 

[H1 ,H2 ]=-iH3 , [H2,H31=iHl' [H3 , Ht ] =iH2• (3) 

a1 and ~ are boson operators which satisfy the usual 
commutation relations. 7 The standard representation of 
these operators is in a Bargmann space of entire func
tions f(Zl' Z2), where Zl' Z2 are two complex variables. 
The scalar product is given by 

(f ,g) =7f-
2 J J dz 1dz2 exp(- ZlZl - Z2Z2) 

X f(Zl' Z2) g(zv Z2)' 

and we choose as mutually adjoint operators 

a 
a =--, 

j (lZi 

In terms of the operators (5) the representations (1) 
become 

and 

The operator 

H = ta+Ea = t(atal - a2at) 

(4) 

(5) 

(6) 

= !.. Iz _a __ Z _a __ 1\ (7) 
2\laz1 2az2 L) 

commutes with all the operators in (6). The Casimir 
operator 

C =H; + H; - H~ = - H(H + 1) (8) 

obviously also commutes with all the operators (6). The 
simultaneous normalized eigenstates of H3 and Hare 
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(9) 

where -g= - (gl +!) is the eigenvalue of Hand h=hl +! 
of H

3
• The operators H* raise and lower hI by 1 respec

tively, and as Ha can have only positive eigenvalues, 
there must be a lower cutoff value of hI which can be 
seen to be Igt I. The two values ± Ig11 do not give dif
ferent representations because the interchange Zl - Z2 
leaves HI and hence C invariant while carrying 
H - - (H + 1) and consequently taking gt - - gl" As 
hI ± gl must both be integers because f gl'h

l 
is entire, 

this means that hI and gi are simultaneously integers or 
half-integers as already asserted. If we denote by Bn the 
closed space spanned by the states (9) with gl =n, the 
same representation of sp(2, R) is obtained with states 
(9) for which gl = - n. Similarly the spaces B1I+1/2 for 
gl = n + ! and gl = - (n +~) give equivalent representa
tions. The whole space B can then be broken into the 
direct sum 

~ ~ 

B=Bo EEl2 ( L; EEl B n)Ef\2( L; $ B n+1/ 2)· 
n = 1 ,,::: 0 

(10) 

The integral and half-integral values of g (and h) can be 
distinguished by the eigenvalues of an operator P corre
sponding to the transformation ZI - ZI exp(i7T), 
Z2 - Z2 exp(i7T). Under this transformation 
f~ h - exp(27TihI)f~ h and so P= exp[27Ti(H3 -!) has the 

"1'1 01'1 
eigenvalues ± 1 for hI (and gl) integral and half-integral 
respectively. 

In order to construct parabose operators A and A *, 
we require operators which change gl and hI by ±!. The 
following expressions have the required property: 

A = - - (l=FP) + - (I ± P) , 1 (a a) 
12 aZ2 aZ l 

(11) 

A* = ~ [ZI(J:t:P) + z2(I ± P)]. 
12 

The upper sign, which carries Bn~ Bn+1/2' is chosen for 
Ig1 I integral, while the lower sign, which carries 

B,..1/2 -::. B n, is chosen for Ig1 1 half-integral. Since we 
are only interested in the variety of representations 
which are contained in B, we shall restrict ou.'''elves 
from now on to the case gl ~ O. It can be verified that 
both expressions (11) satisfy the parabose commutation 
relations: 

[![A,A*J., A1 =2[H3 ,AL=-A, 

[~[A,A*J.,A *1 = 2[H,A*L =A*, 

[A 2
, A* J_ = 2[H_, A * J_ = 2A, 

[A*2,AL=2[H+,AL=- 2A*, 

(12) 

and the remaining trivial relations. Also A and A * are 
mutually adjoint. It is interesting to note that (11) is a 
representation of the parabose algebra which uses only 
two bose operators together with the operator P. From 
the results of Jordan, Mukunda, and Pepper we know 
that (11) will give irreducible representations of the 
parabose algebra when confined to the subspaces 
BntflBn+l/2 and Bn_1/ 2 EElB n respectively, and these are all 
the irreducible unitary representations which contain 
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integrable representations of sP(2, R) with only a finite 
multiplicity. Although it is possible to construct unitary 
representations of sP(2,R) using only a single bose 
operator, this, of course, will give only the representa
tions of a bose operator. It is necessary to use a mini
mum of two bose operators, to construct parabose 
operators of arbitrary order, although more can be 
used as in, for example, the Green ansatz. 

Also it can be verified that 

(13) 

with 

Afg g =0 for gl~O. 
I' 1 

so that if we put p = 4gI + 2, these are the representa
tions of the parabose algebra of even order, excluding 
p=O. 

Now if we make the change of variables 

(14) 

(6) becomes 

HI = [- !2 (w a~ r + 4~ a~ + ~ :;2 + ~ z~, 

H=.!(Z~+I) H=w~-.! 
3 2 az ' aw 2 ' 

and the metric in (4) is now 

~ I; 12 exp t i Iz 12 (Iw 1 + I! 11 ]. (16) 

A state I/Jg (Zv Z2) for fixed gi is of the form w-gi I/Jg (z) 
whE're ?Jig tz) is a power series in z which contains1only 
powers ;i 2g1, of even order for gl integral and odd order 
for gl half-integral. As operators on the states I/J,/Z) , 
(15) becomes 

H _.! (~+ .! ~ + Z2 4g/) 
1 - 4 \dz2 Z dz - Z2 , 

The metric in z-space is given by 

_1-/ dwlzl 2 ex (-IZI 2(lwl +1/lwl)\ 
47T I w 12 '1 +2 p\" 2 ) 

(15') 

(17) 

In order to construct representations of parabose 
operators, we must form the direct sum BII EEl B, +1/2 

with B /{l containing even functions of z for gi integ~al and 
odd functions for gl half-integral. If P now denotes the 
operator corresponding to the transformation Z - - z, 
the operators (11) in the z representation can be written 

D. A. Gray and C. A. Hurst 327 



                                                                                                                                    

d 2g 1 
A = - 'f _1 P + - (I 'f P) A * = z. 

dz z 2z ' 
(18) 

These operators can be written in the matrix form: 

A 
__ (0 d/dz + (2g1 + 1)/Z), 

gl integral, 
d/dz - 2g1/z 0 

d/dz -02g/Z) , 
gl half-integral, 

(19) 

where the first row and column corresponds to even 
functions and the second row to odd functions. The 
operators (15') will be diagonal in this matrix represen
tation with the appropriate values of gl inserted. The 
inverse powers of z which appear in (15') and (19) cause 
no difficulty because they are always multiplied with 
functions which contain sufficiently high powers of z. 

As already pointed out, only the representations for 
even p?- 2 have been found, and in order to obtain the 
remaining representations it is necessary to change the 
Bargmann space B and the operators Hi' H, A, and A *. 
First of all the metric 11-

2 exp( - ZIZI - Z2Z2) in (4) is re
placed by the metric 11-

2
1 Z214r exp( - ZIZI - Z2Z2)' with 

- i < g' < 0, and the operators Hi and H are replaced by 

g' a 
H-H+--, 

1 1 Z2 aZ
I 

ig' 0 
H -H +--, 

2 2 Z2 OZI 

H-H-g'. (6' ) 

These operators are formally symmetric in the new 
metric. The class of functions f(zl' Z2) to be considered 
are still entire functions, but now, with 

and then, by following the same method as Bergmann, 
it can be easily shown that 

I f(z Z )1 2 "" exp(lz l I
2
)lF1(1,2g'+1; IZ212) IIfllg , 

. l' 2 r(2g' +1) 

where IFI is the confluent hypergeometric function. For 
I Z2 I large this gives: 

which has the same exponential dominance as before. 
However, because of the additional factor 1 Z2 1-41' the 
class of functions f(zl' Z2) allowed will be different. It 
is clear that H3 and H are now not only symmetric but 
also self-adjoint. The operators HI and Hg will be de-
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fined if we restrict ourselves to the subspace of func
tions f(zl' Z2) for which m 2 ?- mp This corresponds, as 
we shall see, to choosing gl ?- 0, which gives no loss of 
generality as we are interested only in constructing new 
representations. In order to consider (if desired) the 
case gl < 0, the factor 1 zg l46' should be replaced by 
IzI 146' with consequent changes in (6'). With the restric
tion to the subspace corresponding to gl ?- 0, HI and H2 
will be self-adjoint. Furthermore, because of the change 
in metric, although ZI and o/OZI have the same prop
erties as before, Z2 and 0/OZ2 will no longer be mutually 
adjoint, although they are still closed operators with 
dense domains (for example, the set of polynomials in 
Zl and Z2)' It can be shown that now 

z:= _0_ + 2g1 
dZ2 Z2 

when m2 ?- 1 and z: == 0 when m2 == O. 

If (11) is replaced by 

A -A + /2 g' (I'fP), A*-A*, 
Z2 

it can be verified that they are mutually adjoint densely 
defined closed operators, satisfying the parabose com
mutation relations. The functions (9) are still eigenstates 
of H 3 and H {with a new normalization factor 
[r(hi + gi + 2g' + 1)]1/2 instead of [(hI + gl)! ]-1/2} and new 
eigenvalues h + g' == hI + g' + i and - (g + g') 
== - (gj + g' + i) respectively, and the eigenvalue of AA * 
when applied to f, . is now 4(gl + g') + 2. If we choose 

'1"1 
gl = 0 and g' == - t, we should regain the ordinary bose 
operators, while for gl '" 0 we have parabose statistics 
for odd p. After making the change of variables (14) and 
integrating over w-space, the metric in z-space is given 
by 

I Z 14K' +2 K ( I Z 12) 
2(g+!" ) (20) 

and for the boson case this is 

ff:Ti iz IKl/2(l z I2)=exp(-i z i2
), 

which is the usual metric. The functions fez) will be 
entire functions of z with the lowest power Z2!'1 as before, 
and the operators (11') have the matrix representation 
(for g' =- t) 

A*=z, (21) 

with the upper and lower signs for gl integral and half
integral respectively. For gl '" 0 or - t we obtain other 
representations of the parabose operators, but these do 
not correspond to integral values of p and so do not have 
a direct particle interpretation. 

The above approach may appear rather indirect, and 
so it is interesting to see whether it is possible to con
struct parabose representation by generalizing the sim
ple correspondence A - d/dz, A * - z of the boson calcu
lus. The expressions: 

d T 
A==-+-P A*==z, 

dz z' 
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where T is a parameter to be suitably chosen and P is 
the reflection operator, satisfy the parabose commuta
tion relations formally. If these operators are to act on 
suitable entire functions, an appropriate metric must be 
found. In order to do this we decompose I(z) according 
to the eigenvalues of P so that 

(

le(Z») 
I(z) == , 

lo(z) 
(22) 

corresponding to the eigenvalues P == ± 1 respectively. 
The condition on the ground state, jD(z), for a parabose 
system of order p, namely, 

(23) 

leads to the expression 

jD(z) == C(Z) z<P-l) /2 (24) 

where C(z) satisfies 

C(Z} [(p - 1)/2] Z<P-1) /2 + T C (_ z) (_ z)<P-l) /2 = O. (25) 

The solution of (25) is 

T=(-I)"'·\ C(,z) = 1 forpodd, p=2a+l, 

=(-I)",·l(a+i), C(Z}=(Z)1/2 forpeven, p=2a+2. 

(26) 

The case p odd is quite straightforward, but p even is 
rather paradoxical because from (24) IO(Z)=(Z)1/2 Z1/2Z"', 
and it is neither entire nor analytic. The resolution of 
this undesirable conclusion will be given after completing 
the determination of the metric for p odd. In order to 
obtain this metric, we put 

p(z, z) = 

\

PU 

P21 
(27) 

(we write 1 and 2 as suffixes instead of e and 0 for con
venience) and require that 

(f,Ag) = (A* I, g), (28) 

where I and g are suitably convergent at infinity. If we 
substitute for (211 ) and (27) in (28), we obtain the 
following system of differential equations for Pjj: 

dp T -r -z P 12=-ZPw 

~ T -
dz + Z P21 = - Z P12 , 

(29) 

~ !:. --
dz + Z Pu - - Z P22 , 

~-!:. ---dz z P22 - Z pU' 

The solution of these equations subject to the require-
ment that P - 0 as 1 z 1 - 00 is 

Pu( Iz 12) = 1 z 1 KTd/2 (Iz 12
), 

P22( Iz 12)= 1 zl K T _1/ 2 (Iz 1
2), 

(30) 

which is the same as (20) for g' = - t. The off-diagonal 
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elements are zero if the unitarity condition 

(PI, Pg)=(f,g) (31) 

is imposed. So we have recovered the results already 
obtained for p odd, as would be expected from a com
parison of the assumption (21') with the result (21). 

The complications for p even arise from the discre
pancy between (21') and (19) and the second equation in 
(26) has to be interpreted in that light. If we neverthe
less assume the expressions (27) for p(z, Z) and sub
stitute in (28), making use of (21') and (26), equations 
similar to (29) are obtained, but their solution is now 

pu ( Iz 1
2 )==KH1 / 2 ( 1 z 1

2), 

P22( 1 z 12) ==KT-l/2( 1 z 1

2
). (30 ,) 

If we write I(z) = I z 1 g(z), where g(z) is an entire func
tion with lowest power of z '" a, then it can be easily 
seen that 

1I/1I=llglI' 

where II II' is obtained by multiplying P / j by 1 Z 1
2

, and 
this is just (17), If, furthermore, the factor 1 z 1 is 
pulled through (21'), the expression (19) is obtained, and 
the correspondence is complete. So the factor (ZZ)1/2 
must be interpreted as I z I, i. e., the determinations of 
the two square roots are always chosen so as to give a 
pOSitive real number for their product. The operators 
d/ dz and P in (21') are then defined by their effect on 
g(z). With this understanding, in the rest of this paper 
we will use (21'). 

From the definition 11/11 = (f, f)1/2 and the decom
pOSition of the space into even and odd functions, it 
follows that 

II/W = 11012 + II/oW, 
where for p odd from the expression 

I'(z) = z'" I e(z) == I: a2m z",·2m 
m 

it can be shown that 

m 

with 

2 ... 2111 

[2111 = v:rr r(m + a + i) r(m + 1), 

and from 

IJz)=z"lo(z)=~ a2m.1z2 ....... 1, 
III 

that 

with 

2o:+2m+l 

[2m.1 = ..fir r(m + a + t) r(m + 1). 

In evaluating the expressions the result 

D. A. Gray and C.A. Hurst 

(32) 

(33) 

329 



                                                                                                                                    

has been used. 8 

By Schwarz's inequality 

If,(z)12 "{I,(lzI2)} 11t,,1\2, (34) 

where 

1+(lzI2)=~ Iz<>+2mI2/12m (35) 
m 

and 

I.( 1 Z 12) = 2:) 1 Z,,+2m+112 /12m•1 • 
m 

For p even the same inequalities are obtained except for 
the inclusion of an additional factor 1 z 12 on the right
hand side of (34). So in all cases we have an inequality 
of the form 

11(z) 1 .,w(z) IIfli. 

The usefulness of a relation of this form, apart from 
showing the equivalence of strong and pointwise con
vergence as discussed by Bargmann2 is that it enables a 
set of principal vectors to be defined. w(z) can be in
terpreted as "the reproducing kernel" as will be shown 
now, for the case of p odd and I.. The other cases can 
be treated Similarly. The "reproducing kernel" 1+ is 
defined by 

f.(w) = J I+(w, z) 1'(z) dp(zZ) , 

and is denoted by <,,(z) , a "principal vector. " It is the 
representation of the unit operator and in terms of any 
complete orthonormal system v~: 

(36) 

Using the orthonormal system (9), we have 

n (wv),,+2n 
I.(wv) = 2:) I ' 

n =0 2n 

(
Wv)", 00 1 1 (wv)2n 

=fi 2 n~ nT r(n+o+i) 2 ' 
= (1T/2)1/2(WV)1/2 1"'_1/2 (Wv), (37) 

where Iv denotes a modified Bessel function of the first 
kind. Similar results can be found for 1_ and for p even. 

3. HARMONIC OSCILLATOR REPRESENTATIONS 
OF APARABOSE OPERATOR 

The third form of explicit representation of parabose 
operators is the harmonic oscillator or Schrodinger 
representation, and this is constructed by making suit
able generalizations of the usual methods. These results 
were first obtained by Yang, 9 although he did not give 
their relationship with a Bargmann representation. In 
order to distinguish between the two representations, 
we denote the annihilation and creation operators by ~ 

and 1) respectively where 

~=-(1/v'2)(q+ip), 1)=-(l/v'2)(q-ip), (38) 

and 

q=x, p=-i (~+ '!..R\. 
\dx x 'J (39) 

We use R to denote the operation x- - x in order to 
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distinguish it from P. If we decompose the representa
tion space into even and odd functions, the metric is 
given by 

(40) 

and ~ and 1) are mutually adjoint. The vacuum states are 
the solutions of ~zJ!o = 0, and are given by 

1 
zJ!o= [r(o + i)jl/2 x'" exp(- ix2), p=20+1, odd, 

1 
= [r(a+1)jlJ2 Ixll/2X'" exp(-ix2), p=2a+2, even. 

(41) 

The coefficients 0 and T are again related by 
T= (- l)"'+l a for p odd and T = (- 1)"'+1(0 + 1) for p even. 
In order to construct orthonormal bases for the rep
resentation spaces, one could apply the raising operator 
1) to zJ!o' but because of the presence of the operator R 
this is not so Simple, and instead we consider the 
"Hamiltonian" 

H=M1), ~L-p/2, ( 42) 

which satisfies 

(43) 

so that it can be interpreted as counting the power of 1) 

in an arbitrary state since HzJ!o = O. The eigenvalue 
equation H zJ!~ = X l/!~ can be written 

d2~X +/xi -x2- T(T:R)j l/!x=o, (44) 
dx '\ x I 

where X' = 2X + p. 

Since [H, R] = 0, it follows that Hand R form a com
plete set of commuting operators. The eigenstatesof 
H can thus be classified according to their parity and 
are denoted by zJ!, according to the equation 

RzJ!.x=±zJ!,x· 

The differential-difference equation then becomes a 
second order differential equation which can be trans
formed to the confluent hypergeometric equation. The 
norlll ... lized solutions for the various cases are 

p=20+1 odd: T=(-1),,+1 0 , 

A,'" (x) = (_ 1)n . x" exp( - x2/2) L "'-1/2(X2 ) 
( 

nl )1/2 
't'2n r(n+a+i) n' 

" _ n n! )1/2 
<P2n+1 (X)-(-1) (r(n+a+i) 

(45) 

p=2Q+2 even: T=(-l)",+l(a+i), 

( 
n! )1/2 

<P~n(x)=(-1)n r(n+o+l) 
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I ' 11/2 
'+'''' () (1)" n. X",·I v'iXT 
'+'2n+1 X = - I r(n + a + 2) I 

(46) 

and these form a complete orthonormal basis, which 
could also be constructed by applying raising operators 
to </lo' The complete analysis of the various cases is 
given in Ref. 10. 

4. EQUIVALENCE OF THE BARGMANN AND 
HARMONIC OSCillATOR REPRESENTATIONS 

Since both the Bargmann space F and harmonic os
cillator space H are representations of the parabose 
algebra, it immediately follows from general theory that 
they are unitarily equivalent, and following Bargmann's 
analysis, the kernel of the integral transform A(z, x) 
can be found by requiring that T)I/J be mappea into a*f 
and ~I/J into at". The most general form of A(z, x) is a 
2x 2 matrix Ajj(z, x), where the indices i,j take the 
values e and 0 and the mapping requires that 

a*f= I (zA)l/Jdx= I A(TiI/J)dx= I (Arl),jJdx. 

The arrow over T) indicates the direction in which 
d '= d/dx acts. Using the matrix representations, we 
c~n write the above equations determining A as 

_ ~A21 
--,,12 A z 11 

and similarly from the connection between aj and ~I/J 

we obtain the equations 

(47) 

( 48) 

(49) 

In the Appendix it is shown that the off-diagonal elements 
are zero and that 

.-t",_1 /2(Z, x) = C ",-1/2 (,,12 ZX)I /2 

A",,,/2(z,x)=C,,,.1/2(V2 ZX)I/2 

;)( exp[ - (x2 + z2)/2]J ",+1 /2(i ,,12 zx), 

for p odd, and 
(50) 

A",(z, x) = C~ (ff zzlx 1)1/2 exp[ - (x2 + z2)/2]J ",(i ,,12 zx), 

.'1,,+1(z, x) = C~+l( ,,12 zzlx 1)1/2 exp[ _ (x2 + z2)/2] 

X J",.I(iV2zx), (51) 
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for p even. 

The above notation means that we replace A ii by Av 
with states of parity (- 1 )V+I /2 in H going into states of 
the same parity in F. For example, i = e corresponds 
to states of even parity so that v + i must be even. Hence 
for p odd and a odd we have v= a + i while for a even 
we have v = a - i, and similarly for i = 0 or p even. 

The equivalence of the two representations requires 
A(z, x) to be unitary. This is equivalent to the following 
conditions: 

(52) 

where I.(z, w) is the representation of the unit element 
in even or odd subspaces of F, and 

( 53) 

where 0.(X - y) is the decompOSition of the <5 function 
into its even or odd components in H. Since it is more 
convenient to work in terms of well defined integrals, 
(53) is replaced by 

lim J A)AZ, x)Apl.z, y) dp)zz) = <5.(x - y). (53' ) 
A-I 

For the case of p odd, we have on substituting from (49) 
in (51) that the integral becomes 

V2 cJ5v 1: (zw)I/2exp[_ (z2+ w 2)/2J x exp(-x2) 

x Jv(i V2 zx)Jv(- iV2wx)dx 

= (1T/2)1/2 (ZW)I/2 Iv(zw), 

which is I.(zw) for V= a + i and Ijzw) for v= Ci! - i. Some 
identities in Ref. 8 have been used. Since I.(zw) are the 
unit elements already calculated, (51) is verified. 
Similar calculation can be made for p even. 

The verification of (53') is less straightforward. As 
is shown in the Appendix, (53') has the form 

(54) 

for V= Ci! ± i. Since the expression (54) for f)= Q or Ci! + 1 
is the same expression except for a factor A, and since 
A - 1, only (54) need be discussed. By inspection the 
argument of I v approaches infinity as A-I. An 
asymptotic expression for 1v(z) is 

M-J 

+iexp(-z+iv1T) 6 (f),m)(2zt m • 
m=O 

Considering only the first order terms in the expres
sion, we see that the asymptotic form of l/z) will be 

(21TZ)-1/2 e< as z - 00 
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and 

i(27Tztl/2 exp(-z+ill7T) as z--oo. 

Since in the domain where one of these is very large the 
other is very small, it is convenient to incorporate both 
forms in the one expression: 

(55) 

with the understanding that only the dominant term is 
considered in each case. As z=2X2xy/(1-X4

), it can be 
shown that in the limit as X-I, that (53') can be written 

(56) 

where 

x+y x-y 
s=-2-' t=-2-' 

This means that (53') has the form 

Wi(x - y) ± (- 1)" o(x + y)] 

for II = Ci ± ~, and this is just the decomposition of the 
unit operator o(x - y) into the space of even and odd 
functions. A similar conclusion is obtained for p even. 

5. CONCLUSIONS 

It has been shown that the Bargmann construction for 
a single boson operator can be extended to the case of 
a single parabose operator with only increased computa
tional complexity, but no real change in principle. How
ever, the extension to several parabose operators has 
not yet been carried out, and it does not appear to be 
particularly straightforward. An approach using the 
representations of Sp(2n) is being investigated, but it 
appears that a discussion of the representations of 
parabose fields is likely to be very involved. It can be 
remarked that this approach is in a sense the converse 
of that adopted by Alabiso and Duimio, U who have used 
parabose operators to construct representations of 
SP(4,R). 

APPENDIX 

Determination of the integral transform A(z,x) 

The matrix elements Au and A22 satisfy the two pairs 
of coupled partial differential equations 

(X+dx +T/X)Au =.J2 ZA22 , 

(x + d x - T/x)A22 = -12 Z All> 

(x - dx - T/X) Au = - .J2(d. - T /Z)A22 , 

(x - d x + T/x)A 22 = - .f2(d. + T/z)A u • 

(Ala) 

(Alb) 

(Alc) 

(AId) 

If we differentiate (Ala) and substitute for A22 and dx A22 
from (Alb), the following equation is obtained: 

ld; + 2xdx + 1- 2Z2 + x 2 - T(T+ 1)/x2]Au = 0, 

while (Alc) and (AId) reduce to 

[d; + 2zdz + 1- 2X2 + Z2 - T(T + 1)/z2]Au =0. 

The substitution 
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(A2) 

(A3) 

with ~ = (.f2 zx) reduces both these equations to the form 

~2U" + ~ u'W _l~2 + (T + W]uW=O, (A4) 

which is Bessel's equation with imaginary argument. 
The solution is 

Au = aT+1 / 2 exp[ - (x2 + z2)/2] (12 ZX)1/2 QT.l/2 (.f2 zx), 

where QT+l/2 (12 zx) is any combination of Bessel func
tions with imaginary argument and index T + ~ or - (T + ~) 
and av is an arbitrary coefficient. The solution for A22 
can be obtained in a similar manner. 

The solution for the off-diagonal elements can also be 
found and they are zero. The reason for this can be 
shown by a more general argument as fallows. The 
mapping (47) is equivalent to requiring that P is mapped 
into R, i. e. , 

f( - z) = f A(z, xl i/i( - x)dx, 

which implies that 

PA(z, x) =A(z, x)R, 

and hence A(z, x) is diagonal. 

Evaluation of the integral (53') 

If we substitute (30) and (49) in (53'), the latter 
becomes 

(X/rr) fXY exp[ - (x2 + y2)/2l.f dzdz zz exp[ - A 2(Z2 + ?)/2] 

x J v(i.J2 Xzx)J)- i.J2 Xzy)Kv(zZ) 

since8 

LVn(x
2 )LVm(y2) x 2-v - m - n 

r(n+ 11+ l)r(m + v+ 1) 

~ - ~ Lvn(x)zn 
J v(2vxz)=(XZ)"/2 exp(-z) 6 

n=O r(n+v+l)' 

(A5) 

If the integral is evaluated, the expression (A5) becomes 

LVn(x
2) LnV(y2)x 4nn! 

X2v ' 1 (xy )v.1/2 exp[ - (~ + y2)/2] 6 
r(n + v + 1) 

The last line follows from the fact that Iv is a generating 
function for products of Laguerre polynomials. Sub
stitution of v = Ci ± ~ gives the required result (54), 
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Formula for the computation of the representation matrix 
elements of the group SO(n) 

Takayoshi Maekawa 
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(Received 5 July 1974) 

The formulas of expressing the infinitesimal operators of the parameter groups of so (n) in terms of 
the Euler angles are given. By using these, recursion relations which are useful for calculations of 
the representation matrix elements of SO (n) are obtained. Expressions for the d functions with the 
highest and some weights are obtained explicitly, and it is shown that the d functions of SO (2j + I) 
or SO(2j) with special weights agree with those of SO(3) or SO(4) respectively. By using the 
results, a formula of computing the D -matrix elements of SO (n) are given in terms of lowering 
operators corresponding to those of Pang and Hecht. 

1. INTRODUCTION 

It is important to construct the representation matrix 
elements of 50(n) due to their applicability to phYSical 
problems. For 50(3), they are well-known D~')m(8, <P, ,y) 

functions which play an important role in angular mo
mentum theory. The d functions of 50(4) which are inti
mately connected with the D functions of 50(4) are used 
in particle physics by Freedman and Wang. 1 The d 
functions of 50(5) 2 and the relation between the d func
tions of 50(4) and the boost matrix elements3 have also 
been studied. The groups 50(5) and SO(8) are applied 
in nuclear physics. 4 Further, the group SO(n) is also 
important in physical problems. 5 

The irreducible representation matrix elements of 
50(n) have been studied by many authors. 6 These, how
ever, are restricted to special cases and functions. 
Among these, in the case of a single-valued representa
tion Wole gives a recursion formula by which the d 
functions of 50(n) are obtained as an integral of the d 
functions of 50(n - 1). On the other hand, the d functions 
of SO(3) are well known and can be given by various 
methods, one of which uses recursion relations and 
gives an explicit expression to the d functions by operat
ing lowering operators on the d function with the highest 
weight. 8 In this case, it is essential to use the matrix 
form for the generators Dj and the expressions for the 
corresponding operators of the parameter groups of 
SO(3), i. eo, differential operators with respect to the 
Euler angles. 

The matrix elements of the infinitesimal generators 
of SO(n) have been known since Gel'fand and Zetlin, 9 

whose bases are characterized by the group chain 
SO(II) ~ SO(n - 1) ~ 0 •• ~ SO(2). Therefore, if we can give 
to the operators of the parameter groups10 of SO(n) ex
plicit expressions in terms of the differential operators 
with respect to the Euler angles, we will be able to con
struct recursion relations among the d functions of 50(n) 
as in the three-dimensional case. By using these rela
tions, the d functions will be determined. The purpose 
of this article is to give explicit formulas, by which the 
differential operators of the parameter groups of SO(n) 
are given, and further to give a useful formula, by 
which the representation matrix elements of SO(n) are 
calculated through successive applications of lowering 
operators to the highest weight d function. 

In Sec. 2, a few results of a previous paperll are 
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summarized and notations used in the following sections 
are introduced. In Sec. 3, two formulas are given by 
which the differential operators of the parameter groups 
of SO(n) are expressed in terms of the Euler angles. And 
the operators are given explicitly for n = 3, 4 and for 
general n two useful recursion relations for the differ
ential operators are given explicitly. In Sec. 4, the d 

functions of SO(n) with the highest and some weights 
are obtained using the results in Sec. 3. It is shown 
that d functions of SO(n) with some weights correspond 
to the three- or four-dimenSional d functions according 
to n odd or even respectively. And a formula of comput
ing the representation matrix elements of SO(n) is given 
in terms of lowering operators corresponding to those 
of Pang and Hecht. 12 

2. PRELIMINARIES 

In this section, some notations are introduced and a 
brief review of Ref. 11 is given. 

Orthogonal coordinate systems E., En' 11.2 En and A 2En 
are considered. The systems En and En, whose ortho
normal bases are (e17~' ... , en) and (e11 e2, ... , en) re
spectively, are n-dimensionaL The systems A2En and 
11.2£., whose orthonormal bases are (E12, ••• , En_in) and 
(E12, ... , En-lul, are [n(n - 1)/2]-dimensional. The bases 
Ejk=ej!\ek, Ejk=ej!\ek have the inner products: 

Ejk .E zm 

=6jZ6km-6jm6kl> Ejk'Ezm=6jl6km-6jm6kZO (2.1) 

The bases ej and ej are connected as follows: 

(2.2) 

where the Cljk'S are given in terms of the Euler angles 
8jk (j = 2, 3, ... , n; k = 1, 2, ... ,j - 1): 

Clik =[i1{(A t~~)_l(epp_.+) 
P;2 .=P 'l 

Xt:lf> (8p P-2) tg>(8p P-1) }lk' (2.3) 

It is noted that the rotations tg)(e), t~f)(8) are considered 
instead of those t~f)(e), t~~)(8) in ReL 11 in order to 
make the definition of angles consistent with the usual 
one in a special case of n= 3, These tJt)(9) are nXn ma
trices and have the following nonzero elements: 

(t!~)_l(lm •• _l = - (t.<!;,)_1(8»)._1. = sin8 
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(t;~)_l (0) )00 = (to~)_l (0»)0-10 -1 = cosO 

(t~f)(O»)31 = - (t~f)(O»)13 = sinO, 

(t~f)(O»l1 = (t~f)(O»)33 = cosO, 

(t~~)(O»12 = - (tg)(O»)21 = sinO, 

(tg)(O»l1 = (t~)(O)b = cosO, 

(t~:l(B»)rs= Drs (r, 8 *q, q'). 

(q ? 4), 

(2.4) 

In order to clarify the relation of the systems En and 
En (A2En and A2En), we, hereafter, assume that t~ 
bases of En (A2En) are fixed in space and those of En 
(A2En) are rotating with respect to En (A2En» 

An n-dimensional rotation vector D corresponding to 
the three-dimensional one can be written as a vector in 
A2En as follows: 

D = ~ 6 EjkDjk , (2.5) 
j ,k 

where the Ejk component Djk is a generator of the rep
resentation corresponding to the rotation in the (ej - ek ) 

plane. The generators Djk satisfy the following commu
tation relations: 
[Djk , Dim] 

= i( 0jlDkm + OkmDj 1- 0klDlm - OjmDk/). (2.6) 

The representation matrices corresponding to the rota
tion of (203) is given as follows 

For Jnj U = 1, 2, ... , n - 1), 

D(n)=D(n)(021, ••• ,Onn_l) 

=R12(Onn-l) R 31 (Onn-2)( IT Rkk _1(Onn-k+l») D(n-l) 
k'4 

(2.7) 

where Rlk (0) is given by exp(i BDjk ). 11 

3. OPERATORS IN TERMS OF THE EULER ANGLES 

In this section, we give formulas by which the infinite
simal operators of the rotation (angular momentum) are 
expressed in terms of the Euler angles. 

It is known that the action of Djk on the D(n) which is 
given by (2.7) leads to the following relations10

: 

D(n) D -J D(n) D. D(n)=J. D(n) (3.1) lk - jk '1k 1k' 

where J jk and Jik are differential operators correspond
ing to the second and the first parameter groups. Having 
obtained the relation (2.2) between the bases of En and 
Em we can express these J jk and ~k in terms of the 
Euler angles and Pjk = - ia/a Ojk as in the three-dimen
sional case. It follows that it is sufficient for us to give 
the expressions for Jnj and J nj U= 1,2, ... , n-1). As 
the calculation is elementary and straightforward, we 
give only the results. 

n-2 t. . t. 
J.=(_l)n'J-1t.n_1 .bn_1+6(-l)n+j-l. . 11 . b , +(_l)n+l. 11. b1 n1 1 1=3 sInOn 1 slnOn_ll ••• slnO'+21 slnOnl .•• sIn 041 

where 

n4 n4 

b1 = P31 + 6 (M3)l p(M3)3 0 J pq , b2 = P21 + 6 (M2)2P(M2h 0 Jpq , 

t., j = 

335 

P,l1 P,l1 

(3""j""n-2), bn-1 =Pnb 

(M3 ) 11 

(M2)21 

(M4)31 

(M /)/_ll 

(M,+2) 1+11 

(M3)11_1 

(M2)21_1 

(M4)3 j_l 

(M3h j +l 

(M2}zj+l 

(M4) 3 j+l 

(M/) 1_1 j_l (M ,) 1-1 j+l 

(M,+2) /+1 1_1 (M
'
+2)/+lj+l 

(Mn)n_l j_l (Mn)n_l1+1 
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(M3)1n..!. 

(M2)2 n_1 

(M4)3 n_l 

(M /) 1_1 n-l 

(M,+2) 1+1 n-1 

(3.2) 
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The expressions for J ik (j, k ~ n - 1) which also appear on the right-hand side of (302) are obtained from those of the 
(n - 1)-dimensional case by the substitutions elm - e 1+1 m+1, P 1m - P 1+1 m+1 (I, rn ~ n - 1). 

For.!;,i (j=1,2, •.• ,n-1), 

n~ -
J.=(_l)n+i-1 li: .c +6(_1)'+i A,i ·c +(_1)i+1 Alj 

nJ n-1 J n-1 1=3 sinen1 ••• sinen n-I-1 I sine
n1 

•• 0 sine
n 

n-3 

where 

(Hn- 3)11 

(Hn_2)12 

(Hn_4)13 

(Hn_3)j_11 

(Hn_2)j_12 

(Hn_4) i-1 3 

(Hn- 3)j+11 

(Hn_2 ) i+1 2 

(Hn_4) i+l 3 

(Hn_l )j_ll_1 (Hn_l )l+11_1 

(Hn- I- 2)i-ll+1 (Hn_I_2)j+11+1' 

The expressions for :ilk !j, k ~ n - 1) which also appear 
on the right-hand side of (3.3) are the same as those of 
the (n - 1)-dimensional case. 

It is easy to give expressions for J lk and J lk from 
(3.2) and (3.3). The expressions for n = 3,4 are given 
below. 

For n= 3, 

J 12 =P32, 

C32 C31 
J 23 = - s32P31 + - P 21 - C32-P32, 

S31 S31 

S32 C31 
J 31 =C3zP31 + -P21 - s32- P 32, 

S31 s31 

- C21 C31 
J23 = S21P31 - - P 32 + c21 - P21, 

S31 s31 

For n=4, 
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(3.4) 

(3. 5) 

(Hn- 3)n-11 

(Hn- 2)n-12 

(H n- 4)n-13 

(Hn_l )n_ll_1 

(Hn_I _2)n_11+1 

(H O)n-l n-1 

-

n-l 

C i = P n n-i - "6 (H n- i - 1)Pi+l (H n-i - 1loipq 
P,q 

J 12 , J 23 , J 31 ; the same expressions for n = 3, 

- 1 
J 41 = - s31c 21P41 + - (c32 c 31 C 21 - s32 s 21)P42 

S41 

1 C41C31C21 
+ -- (s32 c 31 c 21 +C 32S 21)P43 - P 31 

S42 S 41 s41 
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where C Jk and S Jk mean coseJk and sineJk respectively. 
It is easy to see that they satisfy the following commuta
tion relations: 

[JJI" J,,,,] =i(o"Jkm + 0kmJ ,,- 0k,JJm - 0J",Jk'), 

[JJk' .I,,,,] = - i(oi/Jkm + 0k"'~' - 0k,~m - oJ",Jk,), 

[JJk' .1,,,,1 = o. 
It is noted that only the signs on the right-hand sides of 
the first two relations differ from each other. This fact 
is known in the case of n = 3. It is, however, seen that 
these relations must hold in general because of (3.1) or 
the relations JJk = ~,. '" cx"cxkmJ,,,, and [JJk' a,] = i(oJ,ak 

- ok,aJ), where aJ is a comp£.nent of a vector a. There
fore, it follows that JJk and JJk cor~spond to the angu
lar momentum and are the EJk and EJk components of an 
angular momentum vector J = ~J.k EJ~i,/2 in A 2 En. 

_ Finally, we give useful expressions for I n n-l and 
Jnn_1 which will be sufficient to determine the d functions 
of SO(n); 

J (n) _ D cos 8n l . D sin8n2 (n-1) 
n "-I - cos "nUJnl - -. -0- sm"nUJn2 + -. -0- J"_1 n-2, sm nl SIn nl 

J(n) - 8 COSOnl . n n-l - cos n-l1Pnl - -. -D- sm8n_1 1Pn_l1 
sIn"nl 

+ sinen_Il J(n-1), (n> 4), 
sin8

nl 
n_1 11_2 

(3) COSe31 . 
J 31 = cos83UJ31 - -'-D- sm83UJ32 

sm"31 

sin832
J

(2) +--sine31 12 

J-(3) COS831 . 
31 = cos e21P31 - -. -8- smB21P21 

sm 31 

sinB21 .1.(2), 
+ sine31 12 

Sine42 J(3) +-sineu 31, 

where 1 Jk is defined by 

(3.8) 

lJk=m Jk +[(j+l)/2]-k. (4.5) 

By taking the matrix elements of (3.1) after putting 
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-(4) COSB41 . sin831 -(3), 
J 43 = cos 831P41 - . 8 sm831P31 + -. -8- J 31 • 

sm 41 sm 41 

Here we introduced the superscript n such as Jj:) in 
order to distinguish their sPnaces to which they belong. 
Therefore, for example, JJ;-l) is a generator in the 
(n - l)-dimensional space, and primes on .1' mean the 
substitutions 8 Jk' P Jk - 8 J+I -.1, P J+I k+l in the expression of 
the corresponding d. 

4. SOME d FUNCTIONS AND FORMULA FOR THE D 
MATRIX ELEMENTS 

In this section, explicit expressions of the d functions 
corresponding to the highest and some weights are ob
tained, and then a formula to calculate the representa
tion matrix elements is given. 

Let us first introduce the Gel'fand and Zetlin bases9 

of the unitary irreducible representations of SO(n) which 
are classified by the canonical chain of subgroups SO(n) 
::J SO(n - 1)::J •.• ::J 80(2). They are given by 

mnb n1n2, ., mn(n /2J 

mn_Ib m n_12, ••• , m n_l [(n-1)/2J 

m41 

m31 
m21 

, (4.1) 

where (j/2] is the largest integer smaller than or equal 
to j /2. The numbers m Jk are simultaneously either 
integers or half-integers with restrictions 

m2J+I.I ;, m2J,i ;, m2J+l. 1+1 (i = 1, 2, ... ,j), 

m2i.I'" m2J-l,i;' m2i,1+1 (i = 1, 2, ... ,j -1), 

m2J+I. J = / m2i. i /. (4.2) 

The action of the generators DJ,J+l (1"" j "" n -1) on the 
bases is as follows: 

k 

D2k.2k+11 mjJ) = L; A(m2k,J) I m2k,J + 1) 
J=l 

k 

- ~ A(m2l.,J -1) / m2k,J - 1), 
J=I 

k 

D2k_I, 2kl miJ)= ~ E(m2k_I• i) / m2k_l. J + 1) 

k 

(4.3) 

- L; E(m2k_l. i - 1) Im2k-1 J - 1) + E2k I ml})' 
J~ , 

In these equations, the matrix elements A, E, and E are 
given by 

(4.4) 

j - n, k - n - 1 and taking into account (3.8), the follow
ing relations are obtained for n> 4: 

'" d(~n) (8 )d(All-P (D ) 
A~ >'~-1 ().~2 )>';:-1 nl ).:'-2 ().n-3».n-2 "n2 
n-l 
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X(AnA~_l An-2' o. A2lDnn_ll AnAn_l" . A2) 
- B d(~n-l) (B) d(~n) () 
- COS n2 ~~-2 (~n-3 )~n-2 n2 Pnl ~;"'1 (~~-2 )~n-l Bnl 

COSBnl . B 6 ( I 

+ -·-B- sm "2 ". An-l~-2An_3'" A2 sln nl 'n-2 

X 1 D n _1 n-21 An_l A:_2An_3 ... A2 > 

Xi~n-l) (B )i~n) (B) sinBn2 
~::-2(~n-3)~n-2 n2 A~_1 (~~-Z)~n-l nl + sinBnl 

x 6(A~_1 A~_2An_3 ... A21 Dn_1 n-21 A~_1 A:_2An_3' .. A?; 
A;:_2 

where the d functions are defined as follows: 

d~~n) (A )~ (B) 
n-l n-2 n-l 

=(AnA~_IAn_2'" A2IRnn_1(8) I AnAn_l'" A2), 

A~_1 '" (tn~_1 b m~_l 2, •.. , m~_l [(n-1> /2]), 

A~_2 =' (m~_2 b 111~_2 2, ••• , m~_2 [(n-2) /2]), (4.8) 

and Aj stands for the row (m jj, m j2, ••• , mj(j/2]) in the 
base (4.1) which is now written in a row on A/S. The 
summations over Ai in (4. 6) and (4.7) are to be taken 
over all possible numbers determined by the relations 
(4.2) and (4.3). In order to derive (4.7), the following 
relation has been used: 

D(n)=D(n-I)'(Dn Rkk-l(Bkl))R31(B31)RI2(B21), (4.9) 

where D(n-I)' is given by the substitutions B jk - Bj+l k+l 
from D(n-1>. 

If the d functions of SO(n - 1) are known, (4.6) and 
(4. 7) may be rewritten as the recursion relations for 
the d functions of SO(n) by using the orthogonal relations 
of the d functions. 7 They, however, can be used to de
termine the d functions with the highest and some spe
cial weights. If we can determine the d function with the 
highest weight, we will be able to express any d func
tions and therefore the representation matrix elements 
by operating the lowering operators on the d function. 
In this sense, the d function with the highest weight is 
important. 

Let us, therefore, determine an expression for the d 
function with the highest weight. For n = 3, it is well 
known that the relations hold: 

[1/131 'f 11121)(111 31 ± JlZ21 + 1)]1 /2d~~~~21'1 (B) 
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= (m 21 - ~21 cosB ±.!!:...) i';'31) (8) 
smB dB m21 m21 ' 

[(m31 ± m21)(m 31 'f m21 + 1) 11!2d~~!i m21 (8) 

= (m21 cosB - m21 .!!:...) d(';'31) (B) 
sinB ± d8 m21 m21 • 

From these, we obtain 

i m3tl (B) = (cos8/2)2m31 m31 m31 ' 

(4.10) 

d~~~U m31 (B) = - (2m 31 )1!2(sinB/2)(cos8/2)2mwi, (4. 11) 

i m
31) (B)=(2m )1/2(sinB/2)(cosB/2)2m31-1 

m31 m31-1 31 . 

For n = 4, the following relations are easily obtained 
by taking the matrix elements of (3.1) and considering 
(3.8): 

6 im41m42) (8 )d(m31 ) (B ) 
• mSI (m21 )m3'1 41 m21m21 42 m31 

X(11141 m 42; m3'1 m21 I D431 1114111142; m31tn21) 

(m31) ( ) (m41 m42) ( ) 
=cosB42dm21m21 B42 P41dm31 (m!!t)m31 B41 

COS841 . B d(m41 m42) (8) 
- sin841 sm 42 mh (m21 )m31 41 

X 6 (11131m:h ID31111131m~Dd~'::3~ (8 42 ) mil 21 21 

(4.13) 

The relations (4. 12) and (4. 13) are sufficient to deter
mine the d functions of SO(4). If we put 1n31 = 1n21 = tn31 
= 1n21 = m41 and take into account (4.11), we obtain the 
following results: 

(m41 m42) . 
dm (m )m (B) = exp(- un4Ze), 41 41 41 

(m41 m42) (B) (4.14) 
dm41 (m41-1 )m41 

= (1/rn41)(m41 cosB + im42 sinB) exp(- inl42B). 

Before determining the d functions of SO(n), we in
troduce some notations to express the matrix elements 
in compact form: 

A j =' (111 nb mn2' ••• ,nln [{j-2) /2]), 

Aj[j/2]=' (m n1 , m n2,". ,nln [<1-2)/2], m} [j/2]), 

Aj[j/2]'=' (mnb 111n2,"" mn [<1-2)/2], mj [j/2]), 

AU) =' (m nl, Inn2' ••• , tnn [U-2) /2], nln [j /2]- 1). 

That is, A} means that the numbers tn jk in Aj take 
maximum values which characterize the representa-
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tions, while A J [J/2), A J [J/2)', and A{J) mean that these 
numbers except for the last one take maximum values. 
It is noted that we must take n - n + 1 in these A's when 
SO(n + 1) is considered. 

Now let us determine some d functions by induction. 
First we assume the d functions with the highest and 
other two weights for n odd as follows: 

(4.15) 

= (2m )1/2 sin8/2 (cose/2)2mn(n-1)/a-
1 

n(n-1)/2 • 

The following relation is obtained from (4.7) for n + 1 
even: 

(::I.n+1An " • A2 I Dn+1 n I ::I.n+1An ••• A;; 

= cos 8 n+1 2 d~~~~ (A
n

_2 )An _1 (8n+1 2) XPn+11 d~l.nntK~_l )An (8n+11 ) 

+ COS8n+11 
sin8n+11 

x (AnA (n-1) A n_2 • , • A2 I Dn n-1 I AnAn_1 • 0 • A;; 

(I. n+1) (8) sin8n+12 d(A ) (8) 
Xd AnU'n_1)An n1 + sin8n+11 An~1(An-2)A(n_1) n+12 

X(A A A ···A I D I AnAn_1 oooA2), n (n-1) n-2 2 n n-1 (4.16) 

where the restrictions (402) for the numbers m jk and the 
relations (4.3) are taken into account. From (4.16), we 
obtain the following results by considering (4.15) and 
the explicit expressions (4.4): 

+ im n+l(n+1)/2 sin8) exp(- i8m n+l(n+2) /2). 

(4.17) 

(4.6) gives the same expressions as (4.17). Similarly, 
it is easy to obtain the corresponding expressions (4.15) 
by assuming the forms of (4.17). 

Therefore, by induction we could obtain the expres
sions for the d functions with the highest and some 
weights. Similarly, we can obtain the following results 
from (4.6) and (4.7) by using the expressions (4. 15) 
and (4.17). 

For n even, 
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(4,18) 
where 

j1 = ~(1nn (n-2) /2 + 1n n n fa), ja = ~(mn (n-2) /2 - mn n/2), 

m1 = ~(mn-2 (n-2) /2 + m), 1112 = ~(mn-2(n-2) /2 - m), 

and (j1 1111 , j21112;jm) is the Clebsch-Gordan coefficient. 

For n odd, 

d(l.n) (8) 
An_1 (n-1)'/2(An _2 )An _1 (n-1)/2 

(4.19) 

where d;';')m( e) is the usual d function for the three
dimensional case. (4.18) and (4.19) agree with the d 
functions of the four- and three-dimensional cases 
respectively. 

Finally, we give a useful formula of computing the 
representation matrix elements (D(n» of SO(n). It fol
lows from the above discussions that the D(n)-matrix 
element with the highest weight is given by 

(::I.n An_1 oooA2 1 D(n) 1,\A
n

_1 .. 01\.2) 

_d(mn1 )(" )d(mn1 ) (8 )x ... xd(l.n ) (8 )(AA 
- °nn_1 ntnlmnl ""-2 An_l (An -2) An .. l "1 n n-1 

(4.20) 

where 

(1'.2) () (A )() (mn1 )() (. ) 
d A (1'.)1'. 8 = d 2 8 = d e = exp l8m n1 , 

1 0 1 

d~~~~1)A2(8) =d~:~~(8), 

and the explicit expression for (4.20) can be easily 
given by using (4.15) and (4.17). Therefore, the general 
D(nl-matrix elements are obtained by operating the low
ering operators on the D(nl-matrix element (4.20): 

where Ai = (mi11 m;2, ••• , m'j [j /2), An = A: and the nor
malized lowering operators Uj ,-k and Uj ,-k are obtained 
respectively by replacing the generators Djk appearing 
in the definition of the lowering and raising operators of 
~ang and Hecht12 by the differential operators J

jk 
and 

J ik given in Sec. 3. 
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Thus we conclude that the representation matrix ele
ments of SO(n) are calculated by (4.21) through the 
action of the lowering operators on the D-matrix ele
ment (4.20) with the highest weight. The only task for 
us is to express J ik and ~k of (3.2) and (3.3) in terms 
of the differential operators and then to construct the 
lowering operators by these. The calculation of (3. 2) 
and (3. 3) is elementary but lengthy. It is, however, ex
pected that the representation matrix elements and d 
functions in general have compact expressions, for the 
recursion relations (4.6) and (4.7) have the similar and 
simple forms. 
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The Sagnac effect is a phase shift observed between two beams of light traversing in opposite 
directions the same closed path around a rotating object. A description of this experiment is obtained 
within the context of general relativity. In this context the effect provides an operational definition of 
rotation. An expression for the magnitude of the phase shift is derived under fairly general 
conditions. The general definition of rotation provided by this experiment is shown to reduce, in 
certain particular cases, to the usual definitions available. It is observed that the Sagnac effect 
represents a gravitational analog of the Aharanov-Bohm effect in electrodynamics. 

1. INTRODUCTION 

Consider a hollow toroidal tube of glass with perfectly 
reflecting internal walls. Let a half-silvered mirror 
be fixed to this tube at some point. Through this mir
ror, shine, around the tube, two rays of monochromatic 
light in opposite directions. Observe the interference 
pattern of the rays emerging out of the half-silvered 
mirror. It is clear, e. g., from the symmetry consid
erations, that when the two rays meet again at the mir
ror, they will be in phase. Let the tube now rotate with 
a certain angular speed. Then the two rays will be no 
longer in phase when they meet, and the phase differ
ence will be a measure of the angular speed of the tube. 
Such an experiment was first performed by Sagnac. 1 

Within the framework of Newtonian mechanics2 it is 
straightforward to obtain an expression for the Sagnac 
phase shift: if R denotes the radius of the tube, wits 
angular speed, and v the frequency of the light used, 
then this phase shift is 8i'vwR2. 3 Thus in the Newtonian 
interpretation the Sagnac shift is directly proportional 
to the angular speed of the tube. 

What is the situation in general relativity? Note, 
first, that it is meaningful to analyze this experiment in 
the framework of general relativity, since rotation is 
an unambiguous and absolute concept in this theory. 
However, most of the usual descriptions of this concept 
within the theory refer to particular contexts and their 
respective descriptions often seem to be unrelated. For 
example, one describes the rotation of a stationary 
massive object via the twist of the time like Killing vec
tor field associated with the object, whereas the rota
tion of an infinitesimal object is described by the fact 
that the spatial triad fixed to the object is not Fermi 
transported along its worldline. An analysis of the 
Sagnac experiment in the framework of general relativity 
would provide a general description of rotation within 
the theory; e. g., to know whether or not a given object 
rotates one can fix a Sagnac tube to the object and look 
for the phase shift. In particular, by performing the 
Sagnac experiment in the appropriate contexts one can 
compare the usual description of rotation which arises 
in each of these contexts with the one obtained from the 
Sagnac experiment. 

In the next section, we begin with a geometrical de
scription of the experiment, a description which is suit
able for its analySiS in general relativity. The analySiS 
itself is carried out only under certain restrictive con
ditions. However, these conditions are sufficiently 
general so that the results of the analySis are valid in 
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the usual contexts in which one describes rotating ob
jects in general relativity. By choosing suitable special 
cases we compare the Sagnac criterion for presence or 
absence of rotation with the usual criteria available in 
the respective contexts. Finally, we point out a formal 
analogy between the Sagnac experiment and the 
Aharanov-Bohm experiment. 

2. ANALYSIS IN GENERAL RELATIVITY 

Let (;11, gab) be a space-time, i. e., let;11 be a 4-
manifold with a metric gab of signature (- + + +). The 
Sagnac tube is represented by a two-dimensional time
like sub manifold j.L of;11 (see figure). On this j.L, the 
mirror is represented by a timelike curve M, the event 
at which the light rays are first shone by a point p of 
this curve M, and the two light rays by the null curves 
C and C- through this p. The fact that the two rays are 
of frequency v with respect to the mirror means v 
V=Ka~a=K~~a, where ~a, K

a
, and K,a are, respectively, 

the tangent vectors to the curves M, C·, and C-. The 
events m and m' at which the two rays meet the mirror 
after once traveling around the tube are represented by 
the points where C and C- first intersect the curve M. 
The Sagnac shift t.T in this space-time picture is given 
by the distance between the events m and m', measured 
along the world line M of the mirror. 

Given an arbitrary Sagnac tube in any particular 
space-time, the Sagnac shift t.T can always be com
puted. However, this shift will generally exhibit a com
plicated dependence upon the details of the geometry of 
the 2-manifold j.L representing the tube. This is analo
gous to the following situation in the Newtonian analySis: 
Given any arbitrary Sagnac tube, not necessarily in uni
form rotation, one can always compute the Sagnac shift, 
although the analysis becomes somewhat complicated. 
A convenient simplification arises in the Newtonian 
analysis if one restricts oneself to uniformly rotating 
tubes. Similarly, in the general relativistic framework 
one may expect a simplification to occur if the tube is 
in a "stationary" motion. This expectation is indeed 
correct. More precisely, it is easy to obtain a simple 
explicit formula for the Sagnac shift if the 2 -manifold 
f.L admits a time like Killing vector field and if the tube 
moves along the trajectories of this Killing field. 4 

Throughout this paper, we shall restrict ourselves to 
such Sagnac tubes. 

Let hab denote the metric induced on Il by the metric 
g Gb on;11. Denote by t a the time like Killing vector field on 
(Il,h ab ) (Ref. 5) whose integral curves are being followed 
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curve M 

curve C 

'l __ 

FIG. 1. The two-dimensional manifold Il represents the 
Sagnac tube, the curve M is the worldline of the mirror and 
the curves c+ and C- are the two light rays. The closed curve 
Son J.l is the boundary of the 2-surface L in the space-time 
manifold /11 • 

by the tube. Thus, if [a1a= -A, then the 4-velocity ~a of 
the tube is given by A-I / 2[a. Since ~ is a 2 -manifold and 
hab a metric of signature (- + ), at each point of ~ there 
are exactly two null directions. Hence, once the event 
j) is chosen, the null curves C· and Co, events m and 
m', and the Sagnac shift AT are completely determined. 
However, it is convenient to introduce, in addition, the 
null vector fields Ka and K,a tangent to C· and C-. Choose 
Ka and K,a such that Kat a = K,al a = -1. 6 It is easy to check 
that these vector fields are curl-free; hence the inte
grals7 I=:PcKadSa and l'=jcK~dsa are independent of the 
particular choice of the closed curves C on ~. Choose 
for C, in the definition of I, the closed curve pmp ob
tained by moving along C from p to m and along M from 
>n to p, and, in the definition of I', the closed curve 
Jnn 'J) obtained by moving along M from p to In' and along 
C- from In' to p (see figure). Then, since Ka and K,a are 
null, I = f~Ka dSa and I' = f'!:' K~ dSa, the integrals being 
evaluated along M. Hence I + I' =(AM)-1/2 AT, where AM 

is the value of the scalar field ,\ along the worldline M 
of the mirror, and AT is the distance between the events 
m and rn' evaluated also along M. Now choose for C, in 
the definition of I and I', any closed curve 5 on ~ (see 
figure).s ThenI+/':=2j s A-1 t a dSa. Hence the Sagnac 
shift is given by 

AT=2(A M)I/2 'Fs A- 1 l a dSa 

=2(lJM)-1 #s lJ~adSa 

where lJ=(Ka!='a=K,a~a) is the frequency of the light as 
seen by ~a, and lJM its value along the worldline M of 

(1) 

(2) 

the mirror. 9 The integrals in the above expressions are 
independent of the particular choice of the closed curve 
S. Thus, the Sagnac shift AT is completely determined 
by the value lJM of the frequency of the light as seen by 
the mirror. Thus, if we change the location of the mir
ror on the tube, the value of the Sagnac shift will also 
change. In the Newtonian analysis, on the other hand, 
this shift is independent of the location of the mirror 
on the tube. The difference in the two predictions arises 
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as fOllows: Whereas in general relativity the frequency 
of the light rays remains constant only along the world
line of a point on the tube, but changes from one point 
of the tube to another, in the Newtonian framework the 
frequency is constant everywhere on the tube. 

We now consider certain situations which arise when 
describing rotating objects in general relativity, and 
USing Eq. (1) obtain an expression for the Sagnac shift 
in each of these cases. These expressions will show 
explicitly how the Sagnac criterion for rotation is re
lated to the usual ones. 

Case 1: ConSider, as the first example, a stationary 
object. In general relativity such an object is described 
by a space-time ('11,gab) with a timelike Killing vector 
field [a and the state of rotation of this object by the 
twist of this ta. To relate the Sagnac criterion of rota
tion with the presence or absence of twist, it is con
venient to let each point of the tube follow a trajectory 
of this Killing field. 10 For such a tube our previous 
analysis holds and the Sagnac shift is given by Eq. (1). 

Let L denote any two-dimensional surface in space
time with boundary 5 (see figure). USing Stoke's theo
rem, it then follows from Eq. (1) that the Sagnac shift 
is given by 

AT-2(A )1/2 (. V A-It dSab 
- M ,. r; la bl 

:=(A )1/2 r A-.3/2 aE d~C 
M . r:: W abc (3) 

where Va denotes any derivative operator on ftJ, EObC is 
defined in terms of the alternating tensor Eabcd on (ftJ, gab) 

by Eabc=EabcdA-1/2td, and Wa=EabCdtb Veld is the twist of the 
Killing field [a. Thus the Sagnac shift may be regarded 
as a measure of the flux of (A- 3

/
2 times) the twist of the 

Killing field through the tube. Unfortunately, within the 
exact framework of general relativity, there is no sim
ple, direct, quantitative relationship between the geo
metrical properties of the Killing field, e. g., its twist, 
and the prope rties of the source, e. g., its angular 
momentum. 11 Hence, in general, we can draw only 
qualitative conclusions about the state of rotation of the 
source: If the source is static, the Killing field is twist 
free hence the Sagnac shift vanishes and, conversely, 
if the shift vanishes for arbitrary Sagnac tubes follow
ing Killing trajectories, the twist must vanish, and 
therefore the source must be static. 

Case 2: ConSider, as a second example, a stationary 
axisymmetric object. In general relativity one describes 
such an object by a space-time with two commuting 
Killing vector fields; one timelike (in some neighbor
hood of spatial infinity) and one rotational. Let these 
fields be denoted by T a and R a

, respectively. 12 The state 
of rotation of the object is described by the scalar pro
duct TaRa, e. g., this scalar product vanishes if and 
only if the object is static. To compare the Sagnac cri
terion for presence of rotation for such an object with 
this usual one, it is convenient to arrange the experi
ment as follows: Let the 2-manifold ~ representing the 
Sagnac tube be an integral manifold of the two Killing 
fields T a and R a

, and let each point of the tube follow a 
trajectory of T a

• 13 Then our previous analySiS holds and 
the Sagnac shift AT is given by Eq. (1). ChOOSing for the 
closed curve 5 in Eq. (1) an integral curve of the rota-
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tional Killing fie Id R a
, one obtains 

AT=[2;\.-1 / 2(RaR a)-1 / 2 (length of S)j(TaRa). (4) 

It is clear from Eq. (4) that the Sagnac shift vanishes if 
and only if the object is static (i. e., TaRa = 0), and thus 
the Sagnac criterion for rotation of this object agrees 
with the usual one. 

Consider a rotating object, i. e., let T"Ra *- O. In the 
gravitational field of such an object, how would a Sagnac 
tube have to move in order to register zero shift? We 
claim that it must move along the integral curves of 
the locally non rotating vector field 14 ta = T a 

- [(T· R)/ 
(R . R) JRa. Note first that this t a is a timelike Killing 
field on the 2-manifold (/.L, hab)' Hence the tube moving 
along ta satisfies the assumptions we made in the begin
ning of this section, so that DT= [2;\.-1/ 2 (R .R)-1 / 2 (length 
of S)] (t"R a). But the only direction orthogonal to R a in 
the 2 -manifold j.L is that of ta. Thus AT = 0 if and only if 
the tube follows the locally nonrotating vector field. 
This result reflects the fact that rotation is a "local" 
concept in general relativity: the shift vanishes only 
when the tube is at rest with respect to the local zero 
angular momentum observers and not when it is at rest 
with respect to the static observer at infinity. 

As particular examples of this case, we consider a 
Sagnac tube in a Kerr space-time and in the Minkowski 
space-time. In a Kerr space-time, choose for j.L the 
integral manifold of T a and R a defined by r = ro, e = eo 
in Boyer-Lindquist coordinates. If we further require 
that the 4 -velocity of the tube be a multiple of T a

, then 
we obtain 

AT = 4n(4AoMoro sin2eo)(r~ +A~ cos2 eo - 2Morotl/2 

x(r~ +A~cos2eo)-1/2. 

Note that this shift is nonzero although the tube is at 
rest with respect to the static observer at infinity. In 
Minkowski space-time, if r = ro and e = eo define the 
2-manifold j.L, and if the tube rotates with a uniform 
angular speed w, then Eq. (4) reduces to 

AT = 41Tw[ro sineo 12 [1 - w2r~ sin2 eo J-1 /2. 
Note that, since the non rotating frames in Minkowski 
space are global, the tube is in a state of rotation with 
respect to both the local zero angular momentum 
observer and the static observer at infinity. This re
flects the fact that rotation is a global concept in special 
relativity. (In the limit w2r~ «1 we recover from the 
last formula the Newtonian expression AT = 41Twr~ sin2 eo). 

Case 3: In a given space -time (/11, gab) consider as the 
last example a test body whose dimensions are small 
compared to the radius of curvature of this space
time. 15 The notion of Fermi transport enables one to 
decide whether or not such a body rotates. We now as
sume that this space-time admits a timelike Killing 
vector field t a

, choose for the test body a small Sagnac 
tube, and obtain an expression for the shift. 

Let the tube have radius 6 and let it follow the integral 
curves of the time like Killing field ta, i. e., if A = - tata, 
the 4-velocity field ~a of the tube is given by e = A -1/2 ta. 
Fix any two pOints on the tube and denote by U" and V" 
the "vector fields,,16 joining the center of the tube to 

343 J. Math. Phys., Vol. 16, No.2, February 1975 

these two points. Then L ,U" = L, Va = O. It is convenient 
to orient the tube such that U" and V" are orthogonal to 
VaX (in addition to being orthogonal to ~a). In this case 
the Sagnac shift of Eq. (3) reduces to 

(5) 

where W" = [(vm;\,)(VmA)r1/ 2 v"A, and Va is the derivative 
operator on (/I1,gab)' It is clear from Eq. (5) that the 
shift vanishes if U" is Fermi transported, i. e., if 
~m V m U" = ~a( U'" ~p Vp ~m)' We now conside r the conve rse, 
Let AT = O. Then it follows from Eq. (3) that the twist 
Wa of the Killing field ta is orthogonal to Va;\. and hence 
Wa is both Lie and Fermi transported by ~a. Using this 
fact and the linear independence of U" and V", it is 
straightforward to show that both these vectors are 
Fermi transported along ~a. Thus, the Sagnac test of 
rotation, a global test in general, 17 reduces, on choosing 
an infinitesimal Sagnac tube, to the usual local test of 
rotation provided by Fermi transport. 

Remark: There is a sense in which the Sagnac ex
periment represents a gravitational analog of Aharanov
Bohm experiment in electrodynamics. Let (/11, gab) be 
a stationary space-time with a timelike Killing vector 
field ta. One often thinks of the gradient of the norm VaA 
of this t a and of its twist Wa as representing, respec
tively, the electric and the magnetic parts of a natural, 
test, source-free Maxwell field Fab = Vatb on/l1. 18 From 
this viewpoint, the Sagnac shift may be regarded as a 
measure of the flux, through the tube, of the "natural 
magnetic field" associated with the Killing vector [see 
Eq. (3)]. 

The following experiment may be regarded as an 
electromagnetic analog of the present gravitational ex
periment. In Minkowski space-time shine a coherent 
beam of electrons. Put an obstacle in their path, split
ting the beam into two parts, and observe the usual 
(double slit) interference pattern. Then switch on a 
magnetic field in a region of space -time forbidden to 
the electrons by the obstacle. The interference pattern 
will be shifted, ThiS, which was first predicted by 
Aharanov and Bohm, 19 may also be regarded as a mea
sure of the flux of the magnetic field through the loop 
determined by the two beams. 

Although the two experiments are intuitively similar, 
their respective analyses in general relativity and in 
quantum mechanics are very different from one another. 
It is the final expressions for the shifts which are for
mally analogous. 
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lPresent address: Departement de Math€matiques, Complexe 
Universitaire des Cezeaux, Clermont-Ferrand, France. 
M.G. Sagnac, C.R. Acad. Sci. (Paris), 157, 708, 1410. 
(1913). This experiment is also described in most text books 
on relativity theory. See, e.g., Landau & Lifshitz, Classical 
Theory of Fields (Addison-Wesley, Reading, Mass., 1969). 

2We mean the framework of Newtonian mechanics together with 
the hypothesis of constancy of speed of light. 

3Throughout this paper we use units where c = G = 1. 
4Since the glass tube is rigid, it is natural to demand that the 
4-velocity vector field, ~a of the tube be Born-rigid on 
,,[i.e., L,(gob+~a~b)=Ol. This requirement is automatically 
satisfied if the tube moves along the trajectories of a Killing 
field. 

5Note that we only require that I" be a timelike Killing vector 
field on (",hob). The space-time Uh,gob) may not have any 
Killing field [e.g., the locally nonrotating vector field which 
we use in Case 2 is a Killing field on 1).1., hab) but not on 
(tn,gab)]. 

6Note that since v = - A-1/ 2 and since the scalar field A remains 
constant along the integral curves of 1", the frequency of the 
light rays represented by C' and C- remains constant along 
the worldline of the mirror. 

lIt is convenient, on an n-manifold, only to integrate n-forms, 
so that the volume element is independent of the metric. 

8The curve C appearing in the definitions of I and' is an ele
ment of the first homology group on IL. The curve S in Eq. (J) 

is homologous to C. 
9An interesting geometrical property of l).I.,hab) is the following. 
Suppose we start at the event m' (see Fig. 1.) and move or
thogonal to the Killing field f everywhere. Let m" be the 
event (in future of m') where we would first meet the world
line M of the mirror. Then m" is the midpoint of 111 and m' on 
M. To see this, choose for S in Eq. (1) the closed curve 
m'm"m' obtained by moving orthogonal to t" from m' to m W

, 

and along M from m" to m'. Then, since the tangent vector 
to the curv~ from m' to m" is orthogonal to F, 
~T = 2A1t/ 2f:::" A-1tadS" = 2 (distance between m" and m' as mea
sured along M). The result is immediate if one recalls that 
~T is the distance between m and m' measured along M. 

lOIn particular, this could be done by fixing the tube to the sta
tionary object. Note also that by requiring the tube to follow 
trajectories of t" we have restricted ourselves to the experi
ments which can be performed only outside the ergosphere. 
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llHowever, in the post-Newtonian approximations there does 
exist such a relationship. For example, to the first post
Newtonian approximation ~T is essentially the flux of the an
gular momentum of the source through the tube. For details 
see, e. g., S. Chandrasekhar in Relativity, edited by 
Carmeli, Fickler, Witten (Plenum, New York, 1970). 

12T' is that Killing vector field which is time like at spatial in
finity. We have assumed throughout that the two Killing vec
tors commute, i.e., LRT·=O. If there are no other indepen
dent Killing vectors and if there is an open region in which 
Ta is time like and R' spacelike with closed integral curves, 
this condition is always satisfied. Proof: let L R T a = aT' + bR" , 
with a, b, constants. Consider the scalar field 
0'= (aT'-2bR")T" thenLRO'=2a2TaT,,-2b2R"R.~ O. But the in
tegral curves of R' are closed. Since 0' is a well-defined 
(single-valued) function, L RO' = 0, i. e. , a = b = O. Thus the two 
Killing fields commute in an open region and hence every
where. This result is due to P. S. Jang (private 
communication) . 

13Note that we have let each point on the tube evolve along a 
trajectory of T' only because we wish to compare the Sagnac 
criterion for presence of rotation of the object itself with the 
usual one. Note also that we have restricted ourselves to ex
periments which can be performed only outSide the 
ergosphere. 

l~his vector field was first introduced by Bardeen. See, e. g. , 
J. Bardeen, Ap. J. 162, 71, (1970). Since the locally non
rotating vector field remains time like down to the horizon, 
the "zero rotation" Sagnac experiment can be performed in 
the ergosphere unlike the previous ones. 

15More precisely, consider a body which can be approximated 
by a worldline together with a spatial triad attached to each 
point of this worldline. Given a body, its description by a 
worldline with spatial triads becomes more and more accu
rate as the scalar curvature becomes smaller and smaller. 

16Thus the "vector fields" U' and V" are defined only along the 
worldline of the center of the tube. 

l1For example, a test applicable to bodies of finite size. 
18See, e.g., R. Geroch, J. Math. Phys. 12, 918 (1971), es

pecially the Appendix. 
19y. Aharanov and D. Bohm, Phys. Rev. 115, 485 (1959). 

This prediction has been experimentally verified. See, e. g., 
R.G. Chambers, Phys. Rev. Lett. 5, 3 (1960). 
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Spacetime symmetries and the complexion of the 
electromagnetic field 

John R. Ray and Everette L. Thompson 

Department of Physics and Astronomy. Clemson University. Clemson. South Carolina 29631 
(Received 11 September 1974; revised manuscript received 24 October 1974) 

Considering spacetimes admitting groups of motions, we derive the symmetry imposed on the 
electromagnetic field for solutions to the Einstein-Maxwell equations. It is found that the scalar 
products between the gradient of the complexion and the Killing vectors must be constants and 
that these constants enter into the symmetry condition on the electromagnetic field. We 
therefore obtain a geometrical interpretation of the complexion in spacetimes having symmetries. 

1. INTRODUCTION 

The Einstein equations are such complicated equa
tions that in order to obtain exact solutions, one usual
ly imposes certain restrictions on the spacetime. One 
useful method is to assume the spacetime allows a 
symmetry generated by a set of Killing vectors (~I). 
The invariance of the spacetime with respect to the 
symmetry implies the Lie derivative of the metric with 
respect to the Killing vectors vanishes: 

(1. 1) 

Since Lie differentiation commutes with ordinary differ
entiation, 1 we can at once prove that the Lie derivative 
of the Christoffel symbols r;t with respect to the Killing 
vectors vanishes 

Llr~t=o. (1. 2) 

Note that (1. 2) is valid in any coordinate system since 
the difference of two Christoffel symbols is a tensor. 
From (1. 2) and the commutation of ordinary and Lie 
differentiation it follows that the Lie derivative of the 
Einstein tensor GJk with respect to the Killing vectors 
vanishes 

(1. 3) 

If we apply Eqs. (1. 3) to the Einstein field equations 
the Lie derivative of the energy momentum tensor with 
respect to the Killing vectors must also vanish 

(1. 4) 

This last result gives a way of imposing the symmetry 
on the sources of the gravitational field. 

In this paper we are interested in imposing symmetry 
on the Einstein-Maxwell equations 

GJk= (87TK/C 4
) TH, 

IJl;k=O, 

*liJ
';. = 0, 

where 

(1. 5a) 

(1. 5b) 

(1. 5c) 

(1. 6) 

We shall restrict ourselves to the case of a nonnull 
electromagnetic field tensor. In this case the Einstein
Maxwell equations (1. 5) are equivalent to the "already 
unified" field equations of Rainich-Misner-Wheeler. 2 

In the "already unified" field theory the electromagnetic 
field is determined up to a constant duality rotation by 
the spacetime metric. This gives a simple way of im-

345 Journal of Mathematical Physics, Vol. 1£, No.2, February 1975 

posing the Killing vector symmetry on the electromag
netic field IJIt. 

In a recent paper3 Woolley has discussed the same 
problem as we discuss in this paper. However, the re
sults he obtained are not general. 

We shall prove that the general result of imposing 
the symmetry on the electromagnetic field is 

(1. 7) 

where k is a constant equal to the scalar product of the 
gradient of the complexion with the Killing vector. This 
gives a geometrical interpretation to the complexion in 
spactimes having symmetries. 

2. SYMMETRIES 

For a solution to the Einstein-Maxwell equations the 
gradient of the complexion 0' is given by 

(2.1) 

From Eqs. (1. 1) and (1. 3) it follows that 

(2.2) 

In deriving Eqs. (2. 2) one must use the commutation of 
Lie differentiation with respect to a Killing vector and 
covariant differentiation. 1 From Eqs. (2.2) we have 

(2.3) 

or 

(2.4) 

where k is a constant determined by the complexion and 
the Killing vector. 

The electromagnetic field is given by 

Iii =1:1 cosO' + *I/J sinO', (2.5) 

where I{J is the extremal field. 2 The extremal field can 
be found from 

I{JI;q= - t E 1Jh - tEIJI",Epq''''/(Rr~ra)1/2, 

where 

E j /' = t(-I5~RJ + 13JRI -I5JR~+ 13IRJ). 
From Eqs. (2.6) and (2.7) we find 

Ltl{J=O. 
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(2.6) 

(2.7) 

(2.8) 
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Now, calculating the Lie derivative of IIJ from Eqs. 
(2. 5), we find 

L,/jJ = */jJL,ct, 

or, using Eqs. (2.4), 

L,fjJ =k *fl1' 

(2.9) 

(2.10) 

which is the general result of imposing symmetries on 
the electromagnetic field. If there are several Killing 
vectors labeled by /l, ~~, then the result is 

(2.11) 

where the k" are constants defined by (2.4) for each 
Killing vector. 

3. DISCUSSION 

Often when one solves the Einstein-Maxwell equations 
one assumes that the Lie derivative of the electromag
netic field vanishes, e. g., Letelier and Tabensky. 4 

From Eqs. (2.11) we see that this will be correct only 
if the k" all vanish. In particular this will be true if 
the complexion is constant. The complexion is in fact 
constant for the plane-symmetric metric studied by 
Letelier and Tabensky. 

In general, however, the complexion will not be con
stant and the symmetry on the electromagnetic field 
must be imposed by using Eqs. (2.11). In practice one 
would start with a spacetime that allows a certain sym
metry (~i). This would specify the form of the metric. 
One could then calculate ct,;, using Eqs. (2.1). If ct,i 
as calculated from the right-hand side of Eqs. (2.1) is 
the gradient of a scalar then the complexion ct is deter
mined up to a constant. The Lie derivative of ct with 
respect to the Killing vectors then gives the kl" Next 
we impose the symmetry on the electromagnetic field 
by using Eqs. (2.11L Finally after imposing the sym
metry one hopes to find a solution to the Einstein
Maxwell equations. 
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It is interesting to note that if one solves the problem 
using the "already unified" field equations, then the 
symmetry is imposed on the electromagnetic field auto
matically. What we have done in this paper is to deter
mine the effect of this symmetry on the electromagnetic 
field. 

The fact that the complexion enters into the symmetry 
condition is a bonus since the physical meaning of the 
complexion is obscure. Geometrically we can say that 
the scalar products between the Killing vectors and the 
gradient of the complexion are constants in solutions to 
the Einstein- Maxwe!l equations and that these constant 
angles enter the symmetry conditions on the electro
magnetic field. Although this is not much of an inter
pretation of the complexion, it is at least some further 
information concerning its meaning. 

It would be valuable to find a solution with k" *- 0; how
ever, we have not yet found such a solution. 
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The stability of matter problem solved by Dyson and Lenard is studied by more field theoretic 
techniques. Stability is proven for matter in a periodic cube. 

INTRODUCTION 

We here study the problem of stability of matter in 
the following form. There are N positive and N negative 
charges, one species fermion the other boson, in a 
periodic cube. We establish for this system that the 
energy goes to + 00 as N increases. The present result 
is apparently weaker than the classic result of Dyson 
and Lenard. 1,2 The present research we feel is inter
esting for a number of reasons. 

Firstly, the present paper is much easier than the 
papers of Dyson and Lenard. It introduces to the subject 
techniques developed in constructive quantum field the
ory, and in a subsequent paper we will show the present 
approach can be extended to the Dyson-Lenard result 
in a still simple form. (The latter result is a lower 
bound on the energy in the infinite volume proportional 
to N.) We entered the present calculation largely to test 
the techniques of present field theory, trying to obtain 
lower bound estimates in a hard problem from many
body phYSics. This has been rewarding, an easy
though recent-estimate from field theory is very effec
tive on a hard problem in many-body phYSics. This in
dicates the value of pushing techniques from construc
tive quantum field theory into traditional fields of phys
ics and that the field is coming of age with useful, non
trivial, techniques. This paper is self-contained; no 
knowledge of constructive quantum field theory is 
necessary. 

The paper is organized as follows. In Sec. 1 the no
tation is presented. In Sec. 2 the results are presented. 
This is the statement that the lower bound on the energy 
increases with N, and two technical results used in the 
proof of this fact. The first technical result is a gen
eralization of the so-called NT estimates. It requires 
the anticommutivity of the fermion variables and sub
stitutes for complicated arguments on antisymmetric 
wave functions in Dyson and Lenal.] It is proved in 
Sec. 3. 

The other technical result, proved in Sec. 4, is an 
inequality two-point distribution functions must satisfy. 
It is a geometric requirement following from the three
dimensional nature of space and has nothing to do with 
interactions. It must be known by someone, but we have 
found no reference for it. It is not from constructive 
quantum field theory. It is not surprising when thought 
about, but we think it is amusing. Roughly stated it 
says: If each particle on the average has M particles 
within distance R of it, and R' <R, then each particle 
has on the average 2 M (R' /R)3 particles within distance 
R' of it. 

The energy bounds are tied together in the final sec
tions. As in Lenard and Dyson, basically one calculates 
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the energy of fermions moving in a fixed distribution of 
bosons, and compensates this by the repulsion energy 
of the bosons. Field theory ideas are here evident. We 
note that neither the mass nor the statistics of the posi
tive charges enter our estimates. 

1. NOTATION 

We shall work in a unit periodic cube containing N 
fermions of charge - q and N bosons of charge + q. The 
mass of the fermions will be m, the mass of the bosons 
will not be of interest and might be infinite. The ferm
ions are described by fields I/J and iii, 

?]; = '6 exp(ikx) bk , 
(1. 1) 

IP=L exp(- ikx) bt 

with k summed over modes of the unit cube with period
ic boundary conditions. The bosons are described by 
fields cf> and 1). We use V for the basic interaction, 

V=q2/r (1.2) 

and V n for a "cutoff" interaction 

V
n
=q2 exp(- nr)/r. (1. 3) 

By defining w k =k2/2m, the fermion kinetic energy 
is given by 

It is also convenient to define F, a rescaled kinetic 
energy: 

F=HOF+N ='6(wk + 1) btbk=6 w~btbk' 

The total Hamiltonian may be written 

H =HOF + HOB + H : ('$(x) I/J(x) - ¢(x) cf>(x) 

(1.4) 

(1. 5) 

x V(x - y)(ljj( y) I/J( y) -1>( y) cf>( y»:. (1. 6) 

We shall use the two-point distribution function for the 
boson field, 

p(x, y) = (:1)(x) cf>(x) 1)( y) cf>( y):). (1.7) 

A number of constants will arise in estimates. which 
do not depend on any variables of interest; they will be 
denoted by C i' and satisfy 0 < C i < 00. 

The matter problem in a periodic cube is somewhat 
ambiguous. We here will work with periodic boundary 
conditions on the wavefunctions, but the interaction q2/ 
r is not taken periodic. One could instead choose the 
interaction to be Lk(q247T /k2

) exp(ik • r), a periodic inter
action corresponding to periodic matter. Whereas this 
latter choice is more interesting, and all the results of 
the present paper remain true for this choice also (re
quiring only simple modifications of the proof), the pro
cedure we follow is more in tune with the infinite volume 
problem pursued in a sequel paper. 
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2. RESULTS 

We summarize the results of the present paper in 
three facts. The first two are technical results, inter
esting in their own right, used in the proof of the third. 
Fact 1 is proven in III, Fact 2 in IV, and Fact 3 in V 
and VI. 

Fact 1 

Letcy~o, 13;0,0, CY+I3-1/2=0>0, and 0<0'<0, 
then there is a constant c(o, 0') such that for all con
stants d ik 

IIF1",~ dikbfbk }811 !S c(o, o'L 

where wi,k=min{w;,wj, ~i,k=max{w;,wj, and the 
double bars indicate operator norm, 

Fact 2 

There is a constant c2 > 0 such that if p'(x, y) 
= (¢(x)</>(x)¢(y)</>(Y», F(x)~ 0, and O!SR'!SR then 

(2,1) 

f F(x)p'(x,y)F(y)~ C2(~'Y f F(x)p'(x,y)F(y) 

Ix"Y I<R' I,-,I<R 

(2.2) 

Fact 3 

If EN is the minimum energy for N positive and N 
negative charges (one boson, one fermion) in a periodic 
cube, then 

E _00 
N ' (2.3) 

If Fact 2 is specialized to a situation where F(x) = 1 
and p'(x,y) is given by 

p'(x,y)= ~ o(x -xj)o(Y -Yj) 
xi c 5 
'lc 5 

(2.4) 

for 5 set of pOints in R3 (a classical limit for a distri
bution of particles located at the pOints in 5), one ob
tains Fact 2'. 

Fact 2' 

There is a constant c2 > 0 such that if 5 is a set of 
points in R3 and O!S R' !S R, then 

Card{(x,y)c 5 x 511x -y 1 < R'} 

? c2e:r Card{(x,y) E 5 x511x -y 1 < R}. (2,5) 

Fact 2' is the form of Fact 2 used in this paper. Fi
nally we give another specialization of Fact 2 for 
amusement. 

Fact 2" 

There is a constant c2 > 0 such that if F? 0 is a func-
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tion on R3 and O!S R'!S R, then 

J F(x)F(y)? C2(~) 3 f F(x)F(y). (2,6) 

I,-y I<R' Ix-y I<R 

3. GENERALIZED NT ESTIMATES 

NT estimates were derived in Ref. 3 and generalized 
in the direction of our interest in Refs. 4 and 5. Our 
derivation of (2,1) is rather complete, since we are 
more interested in presenting methods than results, We 
begin with a classical result following from the anti
commutivity of the b's. 

Lemma 1: Let A=L;dlbi (the d l constants); then IIAII 
!S (L;I d

j 
12)1/2, 

Proof: By anticommutivity of the b's, 

AA*+A*A=~ldI12 

=>A*A !S~I di 12 (3.1) 

We next prove a slightly strengthened form of one of 
the original NT estimates. 3 

Lemma 2: If the dlk are constants and IIBII !S 1, 

Proof: Let 1 s > and 1 t> be normalized states: 

I( s 16 dlkbt Bbk p\21 t)1 

= 12?(2? w~ri2 blsl Bbkw;1/2 F;/2 t) I· 
By the Schwartz inequality 

(" 1/" 1 112)1/2 !S ~ \ L?dtkw~1/2 biS 

using Lemma 1, we have 

Now to the proof of Fact 1. We consider 

F1",'Edlkbtbk ;8' 

(3,2) 

(3,3) 

(3.4) 

(3.5) 

(3.6) 

We break up {djJ into two sets of terms, determined by 
the following inequalities: 

WI - wk ? 0, WI - W k < 0 

It is clearly sufficient to prove the inequality with the 
d's in each of these sets separately, We assume WI - wk 
? O. We note the equality 

I '" . dt ~1'" dx r 6= 0 exp(-Ft)tl - 6!)0 exp(-x) X l - 6 (3,7) 
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1
~ dt 

=C
50 

exp(-Ft)t1- O' 

(3.6) becomes 

c51~ tl~L, F~-56djktO' exp(-wtt)bjexp(-Ft)bk;a' 

Notice the fancy footwork on the t6
'. We now use 

1 exp( - wt)t'" I.,; c/ w'" 

and the following lemma. 

(3.8) 

(3.9) 

Lemma 3: Let A be a positive operator, B an arbi
trary operator, and r ~ 0, s ~ 0; then 

(3.10) 

with r'=r/(r+s) and s'=s/(r+s)o 

We omit a proof of this lemma, an elementary type of 
interpolation theorem based on the three lines theorem. 6 

Fact 1 follows from (3.8), (3 0 9), (3.10), Lemma 2, 
and the inequality 

II J g(t)O(t)dtll .,; J 1 g(t) 1 ,11 O(t)1I dt (3.11) 

with g(t) a numerical function and O(t) an operator de
pending on the parameter t. Fact 1 first appeared in an 
unpublished paper by the author. 

Many variations of Fact 1 are possible. We now re
strict ourselves to noting the following variation: Using 
a result of McBryan, 7 we may in (2.1) pick 0' =0 and 
c(o, 6')=1 if ~i,k is replaced by Wi,ko 

4. A PACKING INEQUALITY FOR P2 (x,y) 

We reduce the proof of Fact 2 to the proof of Fact 2' 0 

Let the N-partic1e wavefunction of the boson field be 
given by the symmetric function I/J{xu ••• ,x N)' Then 

p' (x, y) = ("¢ (x)cp(x )¢(y}cp (y» 

= J dxl ... dxN~(Xi}I/J(Xi) 
N 

Proof of fact 2' 

Fill space with a lattice of small cubes {~i}' nj points 
of 5 in ~io There are eight lattices of large cubes {H j }, 

N j points of 5 in HI' Each small cube is in eight large 
cubes. The eight lattices of large cubes are obtained 
by starting with one of these lattices and displacing in 
some number of coordinate directions by one-half a 
cube sideo 

We require the following additional properties: 

(A) The diameter of the small cubes is less than R'. 

(B) Every sphere of radius R is contained in some 
large cube. 

We can set up these lattices of cubes such that if there 
are Q small cubes in each large cube 

Q.,; cl (R/ R'P 

for some universal constant cl' 

There follows 

Card{(x,y}ESXS\lx-YI <R} 

";6~ 

.,;8Q,0n~ 

.,; 8QCard{(x,y) E sxSllx -y 1 < R'}o 

(4.4) 

This yields Fact 2' with c2 =1/8cl • It would be of inter
est to find a best possible value of c2 • 

Although as we said before we could find no reference 
for this specific result, Lenard, in Ref. 8, gives the 
most general conditions on distribution functions, so 
that this inequality must be contained implicitly there. 

5. THE BASIC-PROBLEM 

We recall H: 

H =HOF + HOB + H :(~I/J - ¢cp)V(~1/J - ¢cp):. (5.1) 

xI; 6(x -xj )6(Y -Xk). 

We will make no use of the (positive) boson kinetic en
ergy in obtaining our boundo By a standard argument it 
is sufficient to obtain a uniform bound for the bosons in 
classical configurationso We will pursue our proof with 
the bosons in a fixed configuration. We divide H into 

(4.1) seven pieces 
it k=l 

Thus F(x)p'(x,y)F(y) is a (continuous) positive linear 
combination of terms of the form 

F(X/ t 6(x -x j)6(y -x) F(y). (4.2) 
~.k=1 J 

Fact 2 would follow from 

J In I<R·F(X)(66(X -xJ)o(Y -Xk»)F(Y) 

~ c2 (R' / RP J Ix-y I<RF(x) (I; 6(x -x J)6 (y -x k~ F(y) (4.3) 

by taking positive linear combinations, an operation pre
serving the inequality. It is an easy deduction that (4.3) 
is implied by Fact 2'. 
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H = Hl + R2 + 0 0 " + H6 - N, 

Hl =HOB , 

H 2 =iF , 

H3= H: ~I/JV"~I/J:, 
H4= H: (~I/J -¢cp)(V - V")(~I/J - ¢cp):, 

1 J - -H5 = 2F - : I/JI/J V,cpcp : 

Hs=H: ¢cpV,¢cp: 

(502) 

(503) 

(5.4) 

(5.5) 

(506) 

(5.7) 

(5 0 8) 

The value of n will be picked later, depending on the 
boson configuration. We procede to bound the terms 
individually. 

We will not detail dependences on q and m. The Fermi 
sea energy gives 
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(5.9) 

Unsubscripted c's will not be required to have the same 
value in different equations-c may be read as 0(1) to 
those who prefer that notation. 

Consider H3: 

H3 = tJ : ~(x)z/!(x) Vn(x - y)~(y)z/!(y): 

We now observe 

Vn(r) = q2 exp(_ nr)jr 

is a positive potentiaL But H3 then merely multiplies 
the many-body wavefunction by the potentials. Thus, 
being a positive multiplication operator, 

(5.10) 

H4 looks alot like H3 in form, but H4 is not positive. 
We write 

H4 = H (~tjJ - ¢1>}(V - Vn}(~z/! - ¢1» + H l : (~tjJ - ¢1» 

xCV - Vn}(~zj; -¢1»: -(~zj; -¢1»(V - Vn)(~zj; -¢1»] 

(5.11) 

and observe 

(V - Vn ) = J dk2!2 ifG2 - k2! nz)eXp(ik .x) exp( -ik· yL 
(5. 12) 

The first term in the right side of (5.11) is positive, as 
the (continuous) positively weighted sum of operators 
times their conjugates. The second term is evaluable 
and yields 

H4? -Nn. (5.13) 

H5 requires some study. Recalling 

H5 = tF- J: ~z/!Vn¢1>:· 
Let 

(5.14 ) 

Let E> 0 be a small number to be further specified later 
and conSider 

Ilp~a .. w pta .. IL =A(¢, 1». (5.15) 

Here the subscripted double bars indicate the operator 
norm of the expression inside as an operator in the fer
mion variables, treating the boson operators as numeri
cal quantities. In fact in W the boson operators occur 
only in the combination ¢(x)1>(x), a numerical quantity 
for a classical boson distribution. Using Fact 1, we get 

A ~ c1 (E) (22 C1k C1_0 1
/

2 

with 

C1k = J ¢(x)1> (x)V(x - y) exp(ik . y). 

To see where (5.16) comes from, we write 

W= ~ C1k -k bk*bk 
k
i

• k2 1 2 2 1 

and apply (2.1) with 

dk2• ki = C1k1-k2' 
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(5.16) 

(5.17) 

(5.18) 

(5.19) 

remembering that we do not require that the right side 
of (2.1) equal the right side of (5.16), but only that the 
right side of (5.16) is greater than the right side of 
(2.1). This is easy. 

(5.15) and (5.16) yield 

w ~ Cl(E)(~O'kO'_k)1/2F3/4'2e. 

We now use the numerical estimate 

xy~xP/p+yq/q 

for 1/p+1/q=1, p>O, q>O, x>O, y>Owith 

q=(~ +2Er 1
, 

p == (t - 2Er1, 

y~F3/4+2E, 

and, defining E' = 2/ (1 - 8E) - 2, 

W ~ C2(E)(~O'kO'-k )2'" + 1/2F. 

(5.20) 

(5.21) 

(5.22) 

The fact that F and the expression in parentheses are 
positive commuting operators allows the use of the 
numerical estimate. This gives directly 

H5? - C2(E)(~ C1kC1_~ 2+E' • (5.23) 

The sequence of steps (5.15)-(5.23) is exactly patterned 
on calculations in Refs. 4 and 5. 

We now observe 

(5.24) 

where X is the characteristic function of the unit cube, 

~ J ¢1> V V ¢1> 

= c J ¢1>lexp( - nr)/ n]<f)1> (5.25) 

== dJ: ¢1>(exp( - nr)/n)<f)1> : + N/ n] 

so that 

H5? - C(E)[J (p/ n) exp( - nr)]2+E' - c(E)(N/n)2+'·. (5.26) 

H6 may be written as 

H6=H pexp(-nr)/r. (5.27) 

Observe that 

I r<f)1>exp(-nr}(1/n)<f)1>I~NZln. (5.28) 

We collect terms to achieve an estimate for H: 

H? CA W/ 3 - cBNn - cc(E)(N/n)2+E' - N 
(5.29) 

- CD(E}(NZ/n)E' [J p/nexp(-nr)]2 + cEJ p exp(- nr)/r. 

The remaining program is to pick an E, and a boson dis
tribution dependent value of n, to show the bound (5.29) 
forces ENi{: ~ 00. 

6. COMPLETION OF ESTIMATES. INCORPORATION 
OF BOSON REPULSION 

In this final section we study (5.29). Basically the 
last term arising from boson repulsion is used to can-
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cel the next to last term. Two cases are considered, 
depending on the boson configuration. In the first case 
n is picked - N2/3 and includes all configurations except 
a very unusual set where the bosons are extremely 
clustered. 

We pick E and E' of the last section and two new pa
rameters y and y satisfying 

y' > 0, y > 0, E> 0, E' > 0, 

E'=2/(1-8E} -2, 

y'>y +{E', 

y > e, 

y'</o, y<fo, 1 
E'<1o· 

We have not sought optimal estimates in making these 
choiceso 

The two cases are given by the following: 

Case I: 

(6.1) 

Case II: 

(6.2) 

We apply the Schwartz inequality to the next to last 
term in (50 29) to obtain 

H ~ Q+R, 

(6.3) 

R=cD fi exp(;nr) [~: - (~r /p exp~;nrlr]. (6.4) 

To handle Case I, wepickn=AN2/3 w ithA<cA /c
B

• Then 
clearly Q approaches 00 as N- 00. Consider the second 
term in brackets in (6.4); using (6.1), we get 

(:r fp exp~;nr) r 

(6.5) 

when N is large. The conditions on the parameters im
ply this last term in (60 5) goes to zero as N- 00 and 
thus EN - 00 0 This estimate on the integral in (6.5) may 
be obtained by separately considering the regions where 
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r is greater or less than ]V2/3+'. In the first region the 
exponential exp( - nr) is so small this region contributes 
negligibly. 

Turning to Case II, we now choose n = N2/3+Y. The 
second integral in (6.4) is small similar to the above 
estimate. For N large we have 

R> c[ pexp(- nr}/r. (6 0 6) 

Looking at the contribution to the integral in (6.6) from 
the region Ix-yl<N-2/3-" we get 

fpexp(-nr)~ ( .N2/3+'oe-1 

r )Ix-y I<N-2 /3-, 

(6.7) 

(6.8) 

(6.9) 

(6.8) follows by using Fact 2. (6.9) implies R ~ N2 for 
N large, which dominates Q and implies EN - 00. To this 
end it is important but trivial to note that in each of the 
two classes estimates can be obtained uniformly over 
all boson configurations (in each class estimates depend 
on Nbut not the distribution). 
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Several perturbation solutions for the effective permittivity in a completely random medium are 
evaluated and the validity of the approximations is discussed. It is shown through a diagram 
technique that the effective-medium theory in a macroscopically inhomogeneous material is equivalent 
to the coherent-potential approximation in a disordered binary alloy not only in its physical concept 
but also in its mathematical structure. A cumulant expansion method which substantially takes into 
account the clustering effects j" proposed while the effective-medium theory or the coherent-potential 
approximation is, by its nature, a single-site approximation and neglects the clustering effects. The 

numerical results obtained by the effective-medium theory and by the cumulant method for a binary 
mixture of a conducting material and an insulating material are compared with the computer 
simulation data on the effective conductivity of a three-dimensional random network. The solution of 
the cumulant method gives a remarkably good agreement with the computer simulation for the whole 
range of parameters. An important point is that the cumulant expansion theory holds excellently 
even near the critical percolation concentration where the clustering plays an essential role and where 
the effective-medium theory fails to work. 

1, INTRODUCTION 

This is part of a series of work on the study of the ef
fective permittivity of a disordered inhomogeneous ma
terial whose local permittivity is given as a random 
function of position. The whole discussion in this series 
of work holds for other physical constants such as mag
netic permeability, electrical,and thermal conductivity, 
and diffusion constanL In the first paper 1,1 a formal 
perturbation solution was derived for a cell material 
where constituent cells are distributed in a statistically 
homogeneous manner and the property of a particular 
cell is statistically independent of that of any other 
celL In the second paper II, 2 upper and lower bounds 
on the effective permittivity were expressed in terms of 
the three -point correlation functions. In the preceding 
paper III' and the present paper, we are concerned with 
the perturbation treatment for completely random sys
terns. A usual procedure of the perturbation technique 
for obtainipg an effective property in a random medium 
is stated as follows: 

(i) Expand a local field in a perturbation series; 

(li) average in the ensemble sense each term of the 
expansion series; 

(iii) resum the averaged perturbation terms and deter-
mine the effective constant. 

The first and second steps have already been investi
gated in I and III. Particularly, the concept and impor
tance of the exclusion effect4 were discussed, on the 
baSIS of which the prescription for constructing the ex
pansion coefficients of all orders was given and the ex
phcit forms of the leading terms were calculated. In 
order to get a general idea about the whole scheme of 
the work, it would help if readers could briefly study at 
least the mtroduction and summary of III. 
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The present paper will concentrate on the third step 
of resummation and the entire procedure will be com
pleted. Especially, we have two significant purposes in 
this article. The first aim is to prove by means of a 
diagram technique that the effective -medium (EM) the-
0ry is equivalent to the coherent-potential approxima
tion (CPA) not only in its physical concept but also in 
its mathematical structure. The EM theory, which is 
sometimes called just the self-consistent theory, has 
attained some success in the understanding of the aver
age properties in classical inhomogeneous materials, 5-25 

while the CPA has been proposed to give a good overall 
explanation of quantum-mechanical quasiparticle prop
erties in substitutionally disordered alloys. 26 Although 
it has been pointed out that the philosophy underlying 
the EM theory for classical mixtures is analogous to 
that leading to the CPA in solid state physics, 27-29 there 
is no detailed proof of the mathematical equivalence be
tween the EM theory and the CPA. Showing the indicat
ed equivalence is important in the sense that this guar
antees the validity of the EM theory since the CPA has 
been studied intensively and its usefulness and adequacy 
have been well-accepted. 

The EM theory for classical inhomogeneous mixtures 
has recently been revalued mainly because the theory 
seems to work well for describing classical aspects of 
the problem of electron localization in some disordered 
systems. 13, 30 Actually, it has turned out that the EM 
theory is a far better approach to this problem of elec
tron localization than it might have been expected to be. 
The breakdown of the EM theory is observed in the con
centration region near the critical percolation concen
tration for a mixture of a conducting material and an in
sulating material. 27,29,31 This breakdown is due to the 
fact that the EM theory or the CPA is essentially a 
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single-site approximation and ignores the effect of clus
ters, while the region near the critical percolation con
centration is the very range where the clustering plays 
a crucial role. Therefore, another purpose of the pre
sent article is to propose an approximate solution which 
takes some important clustering effects into account and 
works as a more adequate theory for a critical concen
tration region. We argue that the cumulant expansion 
method32 serves this purpose of a better approximation 
because it can be shown that the cumulant solution picks 
up the contributions from most important clusters. This 
argument is supported by the numerical agreement of 
the cumulant solution with the result of a computer 
simulation. 27,29,31 

2. DIAGRAMMATIC REPRESENTATION OF THE 
PERTURBATION EXPANSION 

In the perturbation theory of quantum mechanics and 
other fields, the third procedure (as explained in Sec. 1) 
of resumming the averaged perturbation terms is quite 
often facilitated by the use of diagram techniques. 33 By 
means of diagrams, the complicated perturbation inte
grals of higher orders are visualized and intuition helps 
to understand the structure of higher-order terms and 
to pick up terms more important than others. In view 
of introducing appropriate diagrams for our perturbation 
series, let us first review how the expansion terms of 
general orders are constructed. 

The problem is to obtain the effective scalar permit
tivity €* for a completely random inhomogeneous system 
where a local permittivity €(r) at a point r is statistical
ly independent of permittivities at other pOints. As 
shown in I, E* is expressed as a sum of infinite pertur
bation series in the form 

~ 

e* '" E* _ (E) =6 E(n), (2.1) 
n:::2 

(2.2) 

Here the angular brackets indicate the ensemble aver
age and the summation convention is used. Under ap
propriate boundary conditions we can transform Eq. 
(2.2) into 

E(n) = [dW12 j dW23 ' • ° [dWn_l,nG Ik(rlZ) 
v v v 

x Gkh(r 23) ••• (E'(rl)E'(r2) " 'E'(r
n
»), 

where 

(2.3) 

(2.4) 

It has been shown in III that the concept of complete 
randomness leads us to a more compact expression 

(2.5) 

The symbol L:{"m l denotes the sum over all possible par-
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titions of n variables ru r 2, "', rn into m subsets of at 
least two variables each. The factors Bl~~l and E(n,{v,J) 
appearing in the nth-order term are defined by 

Bl~))= (-41 
)n-l (dWl21dW23 o •• 1dWn-l,n~ 

m 7T Jv v y r l2 

x~ ••• on-1Fn({vJ; r 12 , r 23 , "',rn-un) 

r 23
3 OX12,koX23,h' o. oXn-l,n;(il 

E(n, {v,J) = (E"I) c(EV2) c ••• (EV",) c. (2 07) 

Here {v,J denotes the way of partitioning n variables into 
'!l subsets of at least two elements and (EV) c stands for 
the vth-order cumulant of E(r). Besides, Fn({vJ;rI2' 
r 23 , "., rn-l,n) means the product of null functions orlj 
corresponding to the partition {v".} and expresses the 
condition that variables belonging to the same group all 
coincide. Notice that we have employed the relation 

(E'(rl)E'(r 2) ... E'(r n») 

=6{v",)Fn({vJ;rWr23,o •• rn-l,n)E(n,{V".}). (2.8) 

In addition to E(n, {v,J) we introduce quantities 
y(n,{vJ) such that 

yen, {v J) = (E'Vl)(eV2) •.• (E'"m). (2.9) 

Then Eq. (2.8) is rearranged as 

(E'(rt)E'(r
2

) ••• E'(rn}) 

(2.10) 

where Hn({v".}; r 12, r 23 , "', r n-l n) signifies the condition 
that variables belonging to the 'same group all coincide 
and variables belonging to different groups never coin
cide. Similarly, Eq. (2.5) is rewritten in the form 

e* - f L:{vm)A!V~)y (n, {vm}) (2.11) 
-~ (_ (E»n-l • 

Needless to say, Al~~) is obtained by substituting 
Hn({v".};r12,r23' ... ,rn_l,n)for Fn({v,J;r12,r23' "', 
rn-l,n) in Eq. (2.6). 

The leading terms in Eq. (2.5) or (2.11) are evaluat
ed as follows: 

(second-order term) 

(i) 

(ii) 

F2(I;rl2)=H2(1;r12)=or, 12 
E(2,1)=(E 2)e, y(2,1)=(E'2), 

(iii) B(Z)=A(2)=i, 

E(2) __ (E2)e __ «('2) 

(iv) - 3(E) - 3(E) • 

(third-order term) 

(i) F 3(1 ; r l2 , r 23) = H3 (1 ; r 12 , r 23) = 0rt20r23' 

(ii) E(3, 1) = (E3) e' 'Y (3,1) = (e 3), 

(iii) B(3) =A (3) =.L 
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(2.12a) 

(2. 12b) 

(2.12c) 

(2. 12d) 

(2. 13a) 

(2. 13b) 

(2.13c) 
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(iv) (v) (vi) 

+ 
FIG. 1. Diagrammatic representation of Eq. (2.5). 

(
.) (3) (E3)e (£,3) 
IV E = 9(E)2 = 9(E)2 . (2, l3d) 

(fourth -order term) 

(i) F4(1; r 12, r 23 , r 34) =H4(1; r 12 , r 23 , r 34) = 0rI20r230r34' 

F4(2; r 12 , r 23 , r 34) = 0rI20r34' 

H4(2; r 12 , r 23 , r 34) = orI20r3'l(1 - 0r23)' 

F 4 (3; r 12 , r 23 , r 34 ) = 0r140r23' 

H4(3; r 12, r 23 , r 34) = or140r23(1 - orI2)' 

F4(4; r 12J r 23 , r 34) = or Or , 
13 24 

H4(4; r 12 , r 23 , r 34) =Or13or24(1 - orI2); 

(ii) £(4,1)=«(4)e' y(4,l)=(e4), 

(4,2)=(4,3)=E(4,4)=(E2)~, 

y(4, 2) =y (4,3) =y (4, 4) = (£,2)2; 

(iii) Bi4
) =Ai4 ) = 1/27 

(iv) 

B~4) = 0, A;4) = - 1/27, 

B~4) = 1/9, A~4) = 2/27, 

B~4)=0, A~4)= -1/27; 

«(4) __ «(4)e _ (E2)~ __ (e4 ) 

- 27(E)3 9(E)3- 27(E)3' 

(2.14a) 

(2. 14b) 

(2. 14c) 

(2, 14d) 

As we shall see later, the fact that B~4) = ° is significant 
in the sense that this provides us with a very fortunate 
situation in summing partially the perturbation series 
up to an infinite order" 

(fifth-order term) 

(i) 

= or12 or230r34 °r45 , 

Fs(2; r 12, r Z3 ' r3-j, r 45 ) = 0'120r230r4S' 

Hs(2; r 12 , r 23 • r 34 , r 4S) = 0'120r230r4s(1 - or34)' 

(ii) E(5,1)=(£S)e, y(5,1)=«('S), 

E(5,2)=£(5, 3)=" '=E(5, 11)= (E3)e«(2)e, 

(2,15a) 

y (5,2) =y (5,3) = . , . =y (5,11) = (e3)(E'2), (20 15b) 

(iii) Bi S ) =AiS
) = 1/81, 

B;S)=B~5)=0, A~S)=A~S)=_1/81, 
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B(S) =B(S) =B(S) = 1/27 A (5) -AIS) -A (s) -2/81 
4 5 6 .. q-5-6- , 

B~S) = B~S) = B~S) = Bi~) = 0, 

A;S) =A~S) =A~5) =Aig) = -1/81; (2,15c) 

(iii ,) Bii) = 0, Aii) = -1/81 (unproved); (2,15c') 

(iv) 
() (E5) e (E3) e(E2) e (e 5) (£,3)(£,2) 

E 5 =81(E)4+g(E)4 -=81(E)4- 81(E)4 ' (2,15d) 

Out of the perturbation coefficients, we have failed to 
determine Bii) Or Aii>, but we assume that B~i) = ° in 
analogy with B!4) , B~5), ' , " Big). 

NOW, let us try and see how our perturbation series 
are interpreted in the language of diagrams, From the 
explicit expressions as indicated in the above, it is sug
gested that the diagrams proposed by Yonezawa and 
Matsubara 32 are most suitable for our purposeo 33 They 
were introduced to study the electronic properties in 
disordered binary alloys and used to derive the CPA, 4 

Each diagram is composed of vertices, dashed vertical 
lines, and solid horizontal lines. A vertex may be a 
cross, an open Circle, or a closed circle according to 
the type of diagrams. Diagrams whose vertices are 
crosses, open circles, or closed Circles are called cu
mulant diagrams, restricted moment diagrams, or un
restricted moment diagrams, respectivelyo Using stan
dard terminology in the quantum-mechanical diagram 
methods, we shall name a vertical line an interaction 
line and a horizontal line a propagator, 

In order to represent the perturbation series in Eq. 
(2.5), we adopt cumulant diagrams with cross vertices. 
The perturbation expansion of e* up to fourth order is 
expressed diagrammatically by Fig, 1. For example, 
the second-order diagram l(i) is defined in Fig, 2 and 
equivalent to ((2). Cumulant diagrams of general order 
are constructed in accordance with the following 
prescription: 

~ 

(i) Represent the points ru r 2 , •••• r" by means of 
nodes on the horizontal base line. 

(ii-a) Assign e(r i ) to the ith interaction line and take 
the cumulant of the product of all e(r) that cor
respond to the interaction lines starting from the 
same cross vertex, 

(iii) Associate the ith propagator (connecting the 
points r i and r i+l) with the tensor G(r i, i+l) de
fined in Eq. (2.4). 

(iv) Multiply the tensor product G(rI2)G(r23)' .. 
G(r

M
- l • n ) by the above-mentioned cumulants and 

< )c (E
12

>CSr,2 

~, x. , , 
, , , 

, , I 

((~) E';(I2) , , , , 
I 

G(~2) rz ~ G(r12) rz 

(a) (b) 

FIG. 2. Definition of the second-order cumulant diagram. 
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(vi) 

FIG. 3. Diagrammatic representation of Eq. (2.11). 

integrate the result thus obtained with respect 
to dW12 , dW 23 , ••• , dwn- 1, n' 

It is evident that the convention (ii-a) can be replaced 
by: 

(ii-b) When v interaction lines associated with r i' r i' 
r k , ••• start from the same cross vertex, allot 
(E'") 0 or ... to these interaction lines. 

c r ij jk 

On the other hand, restricted moment diagrams which 
contain open-circle vertices are introduced to represent 
perturbation terms in Eq. (2.11) rather than in Eqo 
(2,5), The diagram expression of Eq. (2.11) up to fourth 
order is presented in Fig. 3. For restricted moment 
diagrams, the following rule is framed instead of (ii-a): 

(ii-a') When v1 interaction lines start from the first 
vertex, v2 from the second and so on (v m to the 
last), allot Hn({v J; r12> r 23 , •• " r n-1 n}y(n, {v J) 
to these interaction lines. Further~ore, we 
make another convention concerning unrestrict
ed moment diagrams: 

(ii-b') When v interaction lines associated with rp r i' 
r k , ••• start from the same closed-circle ver
tex, allot (eV)or . . Or'k ••• to these interaction 

11 J 
lines. 

We remark that the two requirements (ii-a /) and 
(ii-b') are not necessarily equivalent to each other. Re
stricted moment diagrams obey the rules (1), (ii-a'), 
(iii), and (iv), while unrestricted moment diagrams obey 
the rules (i), (ii-b'), (iii), and (iv). Definitions of re
stricted and unrestricted moment diagrams of second 
order are illustrated in Fig. 4. Figures 5 and 6 show the 
relations among the three types of low-order diagrams. 

, , 

< ) 
R, 

, , 
, 

, 
I 

I 

, 
I 

I 

, , , , 

G(r,2) 

(b) 

, , 
, , 

FIG. 4. Definition of the second-order moment diagrams. 
(a) Restricted moment diagram with an open-circle vertex. 
(b) Unrestricted moment diagram with a closed-circle vertex. 
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(a) 

(b) 

I \ = 

(i) 

iii 
/1\ , ' , , , , , , , 
~ 

( i) 

It , , 
, " 
(ii) 

( ii) 

*" , , 

~ " , " , , , 
, , , 
~ 

(iii) 

FIG. 5. Relation among the three types of second-order and 
third-order diagrams. The diagrams (a-i)-(a-iii) are of sec
ond order and (b-i)-(b-iii) are of third order. In these cases, 
restricted moment diagrams (i), unrestricted moment dia
grams (ii), and cumulant diagrams (iii) coincide fortuitously 
with one another. 

Let us again return to a discussion about cumulant 
diagrams. Out of these diagrams, proper or connected 
diagrams are defined as diagrams that cannot be divided 
into two separate parts by cutting a propagator once. It 
is easily seen that the diagram (iv) in Fig. 1 is uncon
nected. We classify proper diagrams into three cate
gories. Figures 1 (i)-(iii), which include only one ver
tex, are called one-vertex or Single-site diagrams. A 
diagram such as Fig. 1 (v) is sometimes named a nest
ed diagram. 34 A crossed or irreducible diagram as de
picted in Fig. 1 (vi) is a proper diagram where some 
interaction lines intersect with one another. Typical ex
amples of unconnected, nested, and crossed diagrams 
representing perturbation terms of fifth and sixth order 
are given in Figs. 7 to 9. 

With the knowledge of lower-order terms described in 
earlier paragraphs, we will find a simpler expedient for 
counting contributions from cumulant diagrams, First 
we investigate the behavior of improper Or unconnected 
diagrams. As seen directly from Eq. (2.6), such dia
grams correspond to terms with extra partial deriva
tives which lead to zero. Consequently, we have the first 
rule regarding unconnected diagrams: 

(a) 

(b) 

(c) 

(1) Identify unconnected diagrams with Zero. 
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I , I, , , , " I ............... ~ ............... 
(ii) (iii) (iv) 

FIG. 6. Relation among the three types of fourth-order 
diagrams. The diagram (a-i) corresponds to (",4)0"120"230r34' 
!b-O to <Io,4)orI20r230r34' (c-i) to «4)cOrI26r2ljr~4' (a-ii) to 
~'2)26rI20r34 (1- 0"23)' !b-ii} to «,2)26rI20r34' (b-ii') to 
~'2)26r120r340'23' (c-ii) to ~2)2c6rI26r34' and so on. 
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FIG. 7. Examples of unconnected diagrams. The diagram (a) 
is of fifth order, and (b-i) -(b-v) are of sixth order. 

In other words, proper diagrams alone contribute to 
the effective permittivity and this situation is entirely 
different from the quantum-mechanical case. In our 
problem, e* is nothing but the sum of all possible prop
er diagrams, which is called the mass operator in the 
quantum field theory and the effective index operator in 
the theory of wave propagation. 35,36 

Next we deal with one-vertex or single-site diagrams. 
It is obvious from Eq. (m.2.27) that the nth-order dia
gram with one cross vertex gives 

B{,J(E")c 1 (E'")c 
(_ (£»),-1 3'-1' (_ (E»"-l' 

Therefore, the prescription for evaluating one-vertex 
diagrams is written out as follows: 

(ii) Assign E' to a dashed interaction line and take the 
cumulant of the product of all E" s that correspond 
to interaction lines starting from a cross vertex. 
That is to say, allot the lJth -order cumulant «('V) c 

to lJ dashed interaction lines which start from the 
same cross vertex. Note that (eV)c=(Ev\for lJ~2. 

(iii) Assign -1/ (E) to each propagator. 

(iv) Assign t to each propagator. 

(v) Calculate the product of all factors determined 
by the above three rules. 

Nested diagrams are in general reducible to the pro
ducts of single-site diagrams, although they are asso
ciated with more than one vertex. Hence nested dia
grams belong to single -site diagrams in a wide sense. 
By way of explanation consider nested diagrams in Fig. 
8. Equations (20 15) demonstrate that the terms corre
sponding to the diagrams (a-i) and (a-ii) are evaluated 
as 

(2.17) 

X )'. )< ,~. 
" " 

¥ 
, .. 
~\ 

-'01' , : >,' ,,",' .' ?' , , , , , 
(a-i) (a-ii) (b-i) (b-ii) 

)\ "x, ,"'. )C, 

" " , 1<. " i': )I. <)<,', -:x '>',', , ,: J", 
( . , , . ( , , > , 

(b-iii) (b-iY) (b-y) (b-Yi) 

FIG. 8. Examples of nested diagrams. The diagrams (a-i) 
and (a-ii) are of fifth order, and (b-i)-(b-vi) are of sixth 
order. 
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" I<. '\ ~ 
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" J( ~ 
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I" \ 

(b-xiii) 

FIG. 9. Examples of crossed diagrams. The diagrams (a-i)
(a-ii i) are of fifth order. and (b-i) -(b-xiii) are of sixth order. 

Likewise, the diagrams (b-i)-(b-iii) are 

1 ( (E2)c) ( (£4)c) (E4)c(E2)c 
- (E)' - 3(E) . - 27(E)3 = -"81(E)5 , (2.18) 

(b-iv) is 

1 ( (E3) c )2 (E3)~ 
- (E) 0 - 9(E)2 = - 81(E)5 , (2.19) 

and (b-v) and (b-vi) are 

(2.20) 

The proof will be presented in Appendix A. The diagram 
equations in Fig. 10 show the process of factorization of 
the diagrams 8(b-O, (b-iv), and (b-vi) into single-site 
diagrams. 

Taking these results into account, we arrive at the 
conclusion that for nested diagrams rule (iv) should be 
replaced by: 

(iv/) Assign t to each "independent" propagator. 

For instance, the propagator lines indicated by ar
rows in Fig. 11 are not independent. More generally, 
any polygon formed in the interior of a diagram contains 
only one independent propagator. In the Green's function 
formalism and diagrams in the momentum space, this 
factor % corresponds to the integral or summation over 
an inner variable k associated with an independent prop
agator (see for detail Refs. 4 and 26). The prescriptions 
(ii), (iii), (iv /), and (v) suffice to determine the contri
bution of every single-site diagram in the wide sense. 

From a slightly different point of view, nested dia-

x 1', ,~ 

[- (~) ] 
, '" />r:,' , , I'" \ ''''" (a) >< I X 

, , / I ' ~ 
L----> ><---.L-...l--> 

, « ,~\ I~" 
(b) 

," [- (~) ] x , , 
X I 

, 
': ,"', " I 

I 

"I ...... I , , , , , , , 

/x.. .. 2 ~ ~ lI; 

[- (~)] X 

' , , , , , , ' , , , 
(e) = )( x 

'" 1\' 
, , , , 

" , , , ' , , , 
, , , , . . ~ '---> '-----' 

FIG. 10. Process for factorizing nested diagrams into lower
order one-vertex diagrams. 
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FIG. 11. Explanation for independent propagators. 

grams can also be interpreted as one-vertex diagrams 
with renormalized propagators. Take the diagram 1 (v) 
as an example. The process of renormalization is illus
trated in Fig. 12. As stated in Fig. 12 (a), the fourth
order nested diagram is equivalent to the second-order 
diagram with a renormalized propagator expressed by a 
thick line. which is in turn defined by Fig. 12(b). It is 
interesting to note that, although all improper diagrams 
as shown in Fig. 7 vanish, Fig. 8 (b-vi) gives a nonzero 
contribution [see Fig. 10(c)] and this is the case for any 
nested diagram whose inner propagators involve improp
er diagrams. 

For later convenience, we shall express the sum of 
all one-vertex and nested diagrams in terms of renor
malized propagators. In Fig. 13(a), let a wavy interac
tion line denote the sum of all single -site diagrams in 
the wide sense. This wavy interaction line is also de
fined by Figs. 13(b) and (c) in a self-consistent manner. 
Figure 13(b) shows the sum of all one-vertex diagrams 
where renormalized propagators are expressed by 
double lines. These double-line propagators are related 
to the wavy interaction lines by the diagram equation in 
Fig. 13(c), whose second line may be regarded as a kind 
of Dyson equation. The equivalence of Figs. 13(b) and 
(c) to Fig. 13(a) is easily confirmed by repeated applica
tion of Fig. 13(c) to Fig. 13(b). 

The contributions from crossed diagrams are normal
ly difficult to compute but some of them are proved to 
vanish. As pointed out by Eqs. (2. 14c) and (2.15c), dia
grams such as Figs. 1 (vi), 9(a-i), and 9(a-ii} contribute 
zero. For higher-order crossed diagrams we obtain an 
additional rule: 

(a) 

(b) 

,~) 
, ) 

, l( ) 

, , " " " ) 

( 

~, , 

/\ 
, 

) 

, 

I<, 
LX 

FIG. 12. Process for renormalizing an inner propagator in 
the fourth-order nested diagram. 
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(a) 

(b) 
~ ,~, "~" ,;~:, ,,+ ,1, + ,I', + ~/',' + 
~ ~ ~ /::'.'" 

(c) 

FIG. 13. Sum of all single-site diagrams in the wide sense. 
(a) Direct expression up to fourth order. (b) Indirect expres
sion in terms of renormalized propagators. (c) Definition of a 
renormalized propagator. 

(vi) Associate zero with crossed diagrams which are 
comprised as addends in Fig. 14(aL 

As shown in Figs. 14(b) and (c), a wavy interaction 
line and a double-line propagator in Fig. 14(a) are the 
same as in Fig. 13. Actually, Fig. 14(b) and (<')0=0 
imply Fig. 13(b). By formal iteration, the sixth-order 
crossed diagrams in Figs. 9(b-i), (b-ii), (b-v), (b-vi), 
(b-ix), and (b-xi) are found to belong to the category de
fined in Fig. 14(a). For the proof of the prescription (vi) 
we refer to Appendix B. The existence of crossed dia
grams equal to zero is a characteristic feature of our 
problem which we do not encounter in the quantum
mechanical problems. 

Concerning the rest of crossed diagrams, we have not 
been successful in proving zero contributions rigorously. 
In fact, we are not able to determine Bii) but conjecture 
that Bif)=O, Similarly, it is expected on inspection of 
mathematical structures that contributions from a num
ber of other crossed diagrams vanish, However, there 
are still higher-order diagrams which give nonzero con
tributions. The higher the order of the term is, the 
more complicated the structure of the diagram becomes. 
Accordingly, an exact infinite summation of all non
vanishing diagrams is impossible. In the subsequent 
section, we shall seek a partial summation of most im
portant terms up to an infinite order, following closely 
the procedures usually employed in the diagram 
methods. 

(a) 

(b) 

(e) 
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I ~ ( I,' 
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.' t" /' .. 

.' 
+ :~ + /;'" + . <,",: .. + 

id ~ ~ 

FIG. 14. Crossed diagrams who3e contribution is zero. (a) 
Sum of vanishing crossed diagrams. (b) Definition of a wavy 
interaction line. (e) Definition of a double-line propagator. 
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Finally, we state the prescription for counting contri
butions from moment diagrams with open-circle or 
closed-circle vertices, For an unrestricted moment dia
gram whose vertices are indicated by closed circles, 
the vth-order cumulant «('V)c in rule (ii) must be replaced 
by the vth-order moment (UV). The other prescriptions 
(i), (iii), (iv'), (v), and (vi) hold good for a diagram of 
this sorL As regards restricted moment diagrams with 
open-circle vertices, their contributions are evaluated 
indirectly from those of unrestricted moment diagrams. 

3. VARIOUS APPROXIMATIONS TO THE 
PERTURBATION SERIES 

A. Non-self-consistent cumulant solution 

As the simplest case we take into consideration only 
single-site cumulant diagrams in the strict sense. The 
partition in this case is to group all variables in one 
subset, to which the factors B~n)=(t)n-1 and E(n, l)=(E")c 
are allotted. From Eq. (2,5) it follows that the partial 
summation of the perturbation series is expressed in 
the form 

E* = «() + t (1.)n_1_(E_n)_c _ 
o n~2 3 (_ (E»n-1 

_ (E2)c (E3)c (E4)c (E5)c 
- (E) - 3(E) + 9«()2 - 27«()3 + 81«()4 - , , , 

= (E) _ (e 2 ) + (E'3) _ (e 4 ) _ 3(E'2)2 «('5) _10«('3)(£,2) 
3(E) 9(E)2 27(E)3 + 81(E)4 - ..• , 

(3.1) 

which is identical with the diagram equation in Fig. 
15(a). Clearly Eq. (3.1) is exact only up to third order 
but not for higher orders_ 

A trick to sum up the perturbation series in Eq. (3.1) 
has been given by Yonezawa and Matsubara. 32 According 
to this theory, we rewrite Eq. (3.1) as 

£'*=(*-(E)=~ =- (Ern) "" ( 1 )"-1 
o 0 n~1 3(E) c 

(
-1 )-1~(_1)n 1["" 

= 3«() ~ 3(E) (e">c n ! 0 zn e-· dz 

= _ 3(E) eO, ~ - (Ern) 2. dz [ "" "" 1 ( )" 
o n~1 n! c 3(E) , 

(3.2) 

where we have used «(')c=(e)=O. On the other hand, the 
cumulant generating function is defined by 

log (exp(- ez/3(E») =E ~ (en) c (;(:)Y, (3.3) 

so that 

E~* = _ 3«() ["" e-Z log(exp(-£,z/3(E)}) dz 

=-3(E) [\Og(ZE'/3(E»dZ. (3.4) 

Integrating by parts, we have 

(3.5) 
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B. Self-consistent cumulant solution 

Next step usually followed in the diagram methods is 
to make the approximation self-consistent in the sense 
that an inner free propagator is renormalized, As stated 
in the foregoing section, the process of renormalizing 
inner propagators is given by Figs. 12 and 13. Let us 
adopt the diagram equation shown in Fig. 15(b), that is, 
identify a wavy interaction line with E'*. Then, all 
single-site diagrams in the wide sense are included in 
the summation. The renormalized propagator is calcu
lated by Fig. 15(b) as 

-1 -1 -1 -1 -1 1 
(E) + (E) e* (E) + "(0E'* "(0E'* «() +. , . 

-1 1 -1 1 
=(0' 1 + £1*/ (E) = (E) + E"'*= - E* . (3.6) 

Consequently, a factor - 1/ E* is assigned to a renormal
ized propagator, whereas -1/ (E) is associated with a 
free propagator. Substitution of E* for (E) on the right
hand side of Eq, (3.5) yields 

E*- dz 11 (EZE/3E~) 

c - 0 TzE73E!) , 

or 

which is strictly valid up to fourth order. The physical 
meaning of the self -consistent cumulant solution will be 
discussed in the next section. 

C. Krc;ner's approximation 

In the non-self-consistent or self-consistent cumulant 
solution, cumulant averages playa more important role 
than that of ordinary moment averages. Suppose that the 
nth-order cumulant (en) c is approximated by the nth
order moment (en), This assumption corresponds to the 
neglect of the exclusion effect, NOW, the expansion se
ries (3,1) becomes 

"" (Ern) 
E* = (E) + ~ (1.)n-1 ----K n~2 3 ( _ (E) )n-1 

(a) 

(b) 

E" o 

E" e 

'I' ~ JI, 

,'" + /';\\ -t-~ + 

l( ]Ii lI. 

" \ + ,/:'\ + ,F
,
'''', + 

1==1 ~ ~ 

FIG. 15. Diagram equations for estimating €t and Et:. (a) Non
self-consistent cumulant solution. (b) Self-consistent cumulant 
solution. 
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(a) 

(b) 

E'* K 

~ ,~. ,9. 
I I + I' \ + 'I"~ + . 
LJ ~ ~ 

+ . 

FIG. 16. Diagram equations for estimating €1 and €l(sc)' (a) 
Non-self-consistent Kroner solution. (b) Self-consistent Kroner 
solution. 

= (c) - (3 (c;': E') , (3.9) 

which is equivalent to Krllner's approximation37- 39 dis
cussed in m. Diagrammatically, Eq. (3.9) reduces to 
the sum of restricted or unrestricted moment diagrams 
as depicted in Fig. 16(a). In the same way as employed 
in the previous subsection, Kroner's solution is made 
self -consistent by renormalizing inner propagators [see 
Fig. 16(b)]; the result is 

(€,2) (e3) (E'4) + 3(€,2)2 
= (c) - 3(E) + 9(E)2 - 27 (E)3 

(E'5) + 9(E'3)(e2) 
+ 81(E)4 + .... (3.10) 

D. Self-contained treatment for the cumulant expansion 

As can be seen from the derivation process in ITI, the 
cumulant average associated with each cross vertex is 
the result of corrections from more complicated dia
grams. For illustration, consider the fourth-order dia
grams in Fig. 6. The cumulant assigned to the diagram 
6 (c-i) has the form 

(a) 

(b) 

Ji! "~" +.~ .'~' 1\ + /:\ + 
~~~ 

.~ .~. .~. ~ 
'----l + ~ + ,'11/\'\0, -~ 

.-", ~ 
+ '~', - .'A\ + 
~~ 

(3.11) 

FIG. 17. Diagrammatic expansion of€~PA up to fourth order. 
(a) Expression by means of restricted moment diagrams. (b) 
Expression by means of unrestricted moment diagrams. 
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The second term on the right-hand side comes from the 
diagrams 6(b-ii'), (b-iii') , and (b-iv'), which are the 
correction terms attributable to the diagrams 6(c-ii), 
(c -iii), and (c -iv), respectively. The exclusion effect 
requires a factor 1 - or23 with Fig. 6(a-ii), and 1 - or12 
with Figs. 6(a-iii) and (a-iv); namely, 

(E'(r l)E'(r 2)E'(r 3)E' (r 4» 

= «('4)0 0 0 + (e2)2[0 0 (1 - 0 ) 
r:t.z r 23 r34 r 12 r 34 r Z3 

(3.12) 

Thus, - 3(E'2)2 is introduced in the contribution of the 
diagram 6(c-iL 

NOW, in this context, it is important to notice that, in 
the renormalized single-site approximation, all of the 
crossed diagrams such as those in Fig. 9 are discarded, 
and yet the cumulants included in Fig. 15(b) take care 
of all correction terms including those from discarded 
diagrams. In other words, the renormalized cumulant 
solution (3.7) is not self -contained since the approxima
tion and the way of choosing corrections are not consis
tent. 4 The self-contained treatment is performed by dis
carding crossed diagrams with open-circle vertices 
rather than crossed diagrams with cross vertices. The 
corresponding diagram expansion up to fourth order is 
given in Fig. 17. Detailed discussion and analysis of 
this problem are given in Ref. 4 at full length. It is 
shown that the consideration on the self -containedness 
leads to the renormalization of interaction lines as il
lustrated by Fig. 18, where the renormalized interaction 
lines are denoted by dotted lines. In the case of disor
dered binary alloys treated in Ref. 4, the solution thus 
obtained turns out to be equivalent to the result of the 
CPA. 

For our problem, the diagram equation in Fig. 18 is 
written as 

* ~ (E'(E _E~PA)n-1) 
EcPA=(E)+D (-3E* )"-1 , 

"=2 CPA 

which after some manipulation becomes 

(a) 

(b) 

(c) 

~ .. 
-CPA 

r ... , 
'== 

~ ? 
+ 

i=='=:. ~ 

E' - EO IX 
CPA 

+ 

(3.13) 

FIG. 18. Diagram equations for estimating €~PA' (a) Self
contained single-site approximation. (b) Definition of a renor
malized interaction line. (c) Definition of a modified propagator 
(after Yonezawa4). 
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FIG. 19. Plots of the relative permittivity E:VE: 1 and E:~PA/E:l 
against the volume fraction x for the choice of E:2/E:l = 0.1. The 
dashed line represents E:~ and E:~PA' and the solid lines incH
cate the bounds on E:*. 

(3,14) 

or 

(3.15) 

Equation (3.14) is nothing but the condition for the EM 
approximation described in the succeeding section, The 
explicit expansion series up to fifth order is 

E* _ £ _ (£2)S (E3)c _ (E4)c+4(E2)~ 
CPA -() 3(£) + 9(E)2 27(E)3 

(E5)c + 14(E3)c(E2)c 
+ 81(E)4 _ •• , 

(e2) (E'3) (£,4) + (E'2)2 
== (E) - 3(£) + 9(E)2 - 27(E)3 

(£,5) + 4(e3)(E'2) 
+ 81(E)4 "<>,, " (3.16) 

In contrast with the cumulant solution (3,8), Eq, (3.16) 
is not correct in fourth order, Of course, this does not 
contradict the assertion that Eq, (3.14) is the best 
single-site approximation to the effective permittivity 
E*. 

E. Numerical calculation on two-phase materials 

In order to check the validity of various approximate 
solUtions, we shall compare some numerical results 

1.0,--,--,,----,----,-----,, 

o 0.2 04 0.6 0.8 1.0 
VOLUME FRACTION 

FIG. 20. Plots of the relative permittivity E:/!':/E:l and E:/!':PA/E:l 

against the volume fraction x for the choice of "2/"1 = O. 01. 
The dashed lines (a) and (h) represent €~ and "CPA' respective
ly, and the solid lines indicate the bounds on €*. 
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for the effective permittivity of a completely random 
two-phase materiaL Let the two constituting phases 
have permittivities El and E2 and occupy fractions of the 
total volume v1 =x and v2=I-x. In this caSe it is seen 
that 

(E)= E1V1 +E2V2=E2+(E1-E2)X, (3.17) 

(Em) = (E1 - (E) )nV1 + (E2 - (E) )nV2 = (El - (2 )nRn(x), (3. 18) 

where 

Rn(x) =x(1 -x)[(I- x)n-l - (_x)n-l}. 

Similarly, we can write 

(En)c= (£1 -(
2
)npn(X); 

(3.19) 

(3.20) 

Pn(x) has been found in ReL 32 to possess a generating 
function such that 

(3.21) 

From Eqs. (3.5), (3.7), (3.9), (3.10), and (3.14) we 
obtain 

X 101 dz(x + (I-X)Z'('I-'2) /3'~)-1, 

E~=[E2+(El _(2)xJ(1-3(E1 -E2)2 

x(1 -x) ) 

9E~(SC) + 3[E1 - 4E2 - 5(E1 - (2)XJE~~SC) 

-(E1 -(2)[3E2+(El-7E2)X -4(EI-E2)X2]E~(SC) 

+ (El - (2)2x(1 -X)[E2 + (E1 - (2)X} = 0, 

2E~~A + [E1 - 2E2 - 3(El - (2)X JE~PA - E1 E2 = O. 

The root of the quadratic equation (3.26) is 

E~PA=H-El +2E2+3(E1-E2)X+[(E1 +2Ey 

- 6(E1 - (2)(E
1 

- 2(
2)X + 9(E1 - ( 2)2x2]1/2). 

lO.--r--,.---,---'----" 

o 02 0.4 06 0.8 
VOLUME FRACTION 

(3.22) 

(3.23 ) 

(3.24) 

(3.25) 

(3.26) 

(3,26') 

FIG. 21. Plots of the relative permittivity €~/€I and €~PA/€l 
against the volume fraction x for the choice of € 2/ € 1= 2 x 10- • 
The dashed lines (a) and (b) represent €c and €~PA' respective
ly. and the solid lines indicate the bounds on €*. 
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FIG. 22. Plots of the relative permittivity lO!/lOt and lOt/lOt 
against the volume fraction x for the choice of lO2/lO t = 2 X 10-4• 
The dashed lines (c) and (d) represent lOl and lOt, respectively, 
and the solid lines indicate the bounds on lO*. 

Upper and lower bOlUlds of E* are expressed by the in
equalities (2.30) and (2.31) in m; that is, 

( E -E)2x(1-x) 
E* .; E + (E _ E )x _ ~ z , 

2 1 2 E + 2E + (E _ E )X' 
1 z 1 2 

E* > E1Ez 
~ El - (El -Ez)X -{2(E1 -(2)2x(1-x)/[E1 +2E2 + (El -(2)xlr 

(3.28) 

It was pointed out in III that Krliner' s solution cannot 
be used in the whole range of parameters because Eq. 
(3.24) fails to give a nonnegative permittivity for some 
concentration regions. Especially when E1- 00 or Ez = 0, 
E: takes negative values for x < 1/7. This demerit is 
partially improved by the self-consistent treatment 
since Eq. (3.25) gives nonnegative solutions over all 
parameter regions. For some values of x and EiEl> 
however, E~(SC) becomes smaller than the lower bound 
(3.28). The non-self-consistent cumulant solution (3.22) 
always exceeds the upper bound (3.27). On the other 
hand, E~ and E~PA given by Eqs. (3.23) and (3.26') are 
safely within the bOlUlds. Numerical results for the 
three cases of EiEl = O. 1, 0.01, 2 x 10-4 are plotted in 
Figs. 19-22. 

It is worth while to remark that all the approximate 
solutions E~, E~(SC)' Ed, E~, and EbpA obtained in this sec
tion correctly reproduce the behavior of effective per
mittivity in the dilute limit. According to the theory of 
dilute suspensions, 40 the effective permittivity of a di
lute suspension where spherical particles of permittivity 
El are embedded in a matrix of permittivity E2 takes the 
form 

(3.29) 

or 

E* = 1 + 3(El - Ez) x + ••• 
E2 El + 2Ez ' 

(3.29') 

under the condition that the inclusion concentration x is 
very smalL Since (Em) or (E")c has a dominant term pro
portional to x, perturbation expansions involving all one
vertex diagrams must be exact in the low-concentration 
limit. Actually, it may be readily confirmed that Eqs. 
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(3.22)-{3.26) as well as the bounding equations (3.27) 
and (3.28) are identical with Eq. (3.29') in the first or
derofx. 

4. COMPARISON OF THE PERTURBATION SOLUTIONS 
WITH THE EFFECTIVE-MEDIUM THEORY 

The effective -medium theory based upon the self
consistent local field concept has been widely applied in 
predicting the electricap-13 and mechanical14- 25 prop
erties of heterogeneous materials. The essence of this 
method is to solve the field equation for a representative 
element of the material, which is taken to be embedded 
in an effective medium with the as yet unknown physical 
constant. The effective constant is determined in turn 
by requiring that the effects of the deviation from the 
true constant shall, on the average, cancel out. There
fore, the basic principle underlying the classical EM 
theory is closely akin to that leading to the CPA in the 
quantum mechanics of random alloys. 27-29 

Let E~M be the EM solution for the effective permit
tivity of a random mixture composed of spherical par
tic1es. Consider first a sphere of permittivity Ei em
bedded in an infinite medium of permittivity Eo under the 
influence of a uniform external field Eo' As is well 
known, the electric field E j inside the sphere is related 
to Eo by 

E -(1 _ Ej 
- Eo )E 

j - E
j 
+ 2Eo o· 

The effective-medium assumption and the ergodic hy
pothesis assert that for the electric field E(r) in the 
mixture 

() ( 
E(r)-E~M) 

E r = l-E(r)+2E~M (E), 

whence 

(4,3) 

or equivalently, 

E~M (E+ ~Et) = (E+ ~E;) = ~. (4.4) 

From Eqs. (3.14) and (4.3), we can see that the CPA 
result satisfies the same condition as that of the EM 
approximation, so that 

(4.5) 

Thus we reach the conclusion that the EM theory is equi
valent to the CPA not only in its physical concept but 
also in its mathematical structure. In the framework of 
single-site approximations, the CPA is known to be the 
best possible from both physical and mathematical 
points of view. 26 The CPA or EM theory works very well 
for explaining the overall properties of random inhomo
geneous materials. Particularly, it has been shown that 
the EM theory for a random mixture of conducting and 
insulating materials gives a remarkably good agreement 
with the results of the computer simulation of a simple 
cubic network of resistors, 27,29,31 Nevertheless, the EM 
solution deviates from the computer results near the 
critical percolation concentration. 
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FIG. 23. Comparison of a'/;/ (Tj and o1M/O"I with the simulation 
data of Kirkpatrick. 21,25,31 The solid lines (a) and (b) represent 
~ and uh! for (T2/ (Tl = 0, respectively. Data points indicate 
the results of the computer simulation for simple cubic net
works which range in size from 15x15x15 to 25x25x25. 

Let us treat a random binary mixture which consists 
of a conducting material with conductivity 01 and volume 
fraction x and an insulating material with conductivity 0 
and volume fraction 1-x. Then, the CPA or EM solu
tion corresponding to Eq. (3,26') is written as 

O;M {O for x <-L 
0::= (-1+3x)/2 forx>L 

(4.6) 

In other words, the concentration at which the effective 
conductivity O~M vanisues is .x c=1/3. Moreover, Eq. 
(4.6) suggests a scaling law with a critical exponent 
s=l; namely, 

(4.7) 

From the standpoint of percolation theory, 29,41,42 the 
critical concentration can be interpreted as the critical 
probability of bond percolation on a simple cubic lattice. 
The estimates obtained from the percolation theory and 
the computer simulation are x c "'O.25 and 5::::1.6,27,29,31 

This breakdown of the EM theory is due to the fact 
that the CPA or EM approximation neglects essential 
clustering effects, Note that the clustering effects are 
most important near the critical percolation concentra
tion where infinite islands of conducting materials begin 
to form, Generally speaking, however, the effects of 
clusters are very difficult to take into account in any 
sensible manner, but in our problem we are extremely 
fortunate because some of the most important crossed 
diagrams give zero contributions. For instance, all 
diagrams comprised in Fig. 14 drop out and the contri
butions from some other crossed diagrams are predict
ed to vanish on inspecting their mathematical structures, 
This implies that the self -consistent cumulant solution 
is superior to the EM approximation. Although the 
crossed diagrams themselves such as those in Fig. 14 
contribute nothing, the exclusion correction terms from 
them are not zero and these corrections are exactly 
counted in the cumulant solution, Here we recall that 
the fourth -order term of o~ is correct in contrast to 
0tM' Hence it is concluded that the self -consistent cumu
lant solution takes into consideration most of the cluster
ing effects. 

The above argument is supported by the numerical 
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success of the self -consistent cumulant solution. In the 
present case Eq, (3,23) reduces to 

""£=x --- dz 
0* 11 zOl/3a~ 
0 1 0 1-x+xz~ . 

(4.8) 

As illustrated in Fig. 23, the numerical agreement of 
O~ with the simulation data of Kirkpatrick27 , 29,31 is truly 
excellent for the whole range of the concentration x in
cluding the vicinity of the critical concentration. The 
critical concentration calculated by Eq. (4.8) is 

(4,9) 

which is a little higher than the correct value of x c (see 
Appendix C), The little difference is due to complicated 
higher-order clusters of nonzero contributions which 
are not included in (Y~, These higher-order clusters be
come distinguished only in the region very close to the 
critical percolation concentration. The behavior of o~ 
near Xc is expressed in the form 

O~/Ol =a(x -xc) +o(x -xc), 

where 
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APPENDIX A 
We shall evaluate the contributions from nested dia

grams of sixth order shown in Fig, 8{bL For the dia
grams (b-i)-{b-v), the procedure goes exactly as in 
Appendix D of IlL The diagrams (b-i)-(b-iii) lead to 
- (E4)c{E2)j81(E)\ (b-iv) to - (E3);jS1(E)S, and (b-v) to 
- (E2>V27(E)5. To calculate the contribution of the last 
diagram we begin with the relation 

(A1) 

from which we get 

(A2) 

By means of Eqs, (3,13), (3,14), (4,1), (4 0 3), and (C4) 
in III, Eq, (A2) is converted into 
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=limiJ 1(·)(0)=1/27, P, • 
p~ +0 

(A3) 

Thus the diagram (b-vi) also gives - <E2)':/27 <E)5 , In the 
same way, nested diagrams representing perturbation 
terms of arbitrary order can be reduced to products of 
lower-order single-site diagrams. 

APPENDIX B 

Out of the crossed diagrams in Fig, 9{b), the diagrams 
(b-i), (b-ii), (b-v), (b-vi), (b-ix) , and (b-xi) belong to 
the category defined by Fig, 14. In a similar manner to 
that developed in Appendix D of III, the first four dia
grams are easily proved to vanish. For the diagram 
(b-ix), we have 

(Bl) 

whence 

(B2) 

The argument in Appendix A shows that 

1 ill X23 k X34 h X56 I - (4 )3 dW 23 dW 34 dW56 ~ "4 --'3 
rr v v v r 23 r 34 r56 

(B3) 

Consequently, Eq, (B2) becomes 

(B4) 

Now we turn to the estimation of the diagram {b-xi}, 
The product of 6' s associated with this diagram is 

(B5) 

so that 
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(B6) 

From Eq, (III-C3) it follows that 

(B7) 

Therefore, Eq. (B6) reduces to 

1 { fd (d X 12 ,i x k x 56 ,m 
-3(4rr)3)v dW12 v W Jv W56 r

1
/ r3 r56 3 

(B8) 

Similarly, we may demonstrate that any crossed dia
gram included in Figo 14 contributes zero, 

APPENDIX C 

Equation (4.8) is recast as 

i 1 Z1/3{ 
~ =X ------dz 

o 1-x+xz1/3{ 

(C1) 

where ~ = Ot/ 0'1 0 It is seen that ~ is a continuous function 
in the interval of 0 -'S x -'S 1 which satisfies ~ = 0 for x = 0, 
~ = 1 for x = 1, and 0 -'S ~ -'S 1 for all x, Putting y = Z1 / 3{ , 

we obtain 

1 11 y3{ 
-=3 ----dy 
x 0 1 -x +xy , (C2) 

whenever ~ * 00 Now suppose that ~ sometimes decreases 
with increasing x, Then, the left-hand side decreases as 
x increases, while the integrand on the right-hand side 
increases; this is a contradiction. Therefore, ~ is con
sidered to be a nonnegative, monotone nondecreasing, 
and continuous function in the range of 0 '" x -'S 1. 

To find the critical concentration let ~ approach zero 
as x - Xc + 00 Passage of Eq, (C2) to the limit yields 

(C3) 

so that 

(C4) 

The value of Xc determined by Eq. (C4) gives a critical 
concentration such that the effective conductivity a~ 
vanishes at x less than x c and increases monotonically 
if x exceeds xc' 

Finally, we want to expand ~ in a power series of 
x - xc' Formal differentiation of Eq. (C2) leads to 
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d~ __ 1/x2 + 3 Ii (y3f(1 - y)/(1-x +Xy)2] dy (C5) 
dx - 9 fl[y 3 'logy 7 (1 - x + xYTI dy • 

Substituting Xc for x in Eq. (C5), we have 

d~ I = -(3- (1 _ - )11 
logydy )"1 

dx Xc Xc 1 - - 0 

X=X c 0 -xc +xoY 
(C6) 

Since the integral on the right is expressed as 

(1 logy d 
)0 1 - Xc + X oY Y 

1 Xc x~ 
= -1 -xc + 22(1_x)2 - 32(1_x)3 +"', (C7) 

the differential coefficient dU dx is estimated to be 

d~ I dx _ =1.284···. 
x=xc 

(C8) 

Thus we arrive at the Taylor expansion equivalent to 
Eq. (4.10). 
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A perturbation theory is developed for the effective permittivity of one- and two-dimensional random 
heterogeneous materials that are statistically homogeneous. Closely following the formulations for 
three-dimensional systems presented in Papers I-IV in this series of work, we derive the formal 
perturbation solutions for two-dimensional systems, evaluate the second-order and third-order terms 
for cell materials, and determine upper and lower bounds of the effective permittivity. Here statistical 
isotropy is not necessarily required. Several approximate perturbation solutions for completely random 
systems (which are statistically isotropic) are obtained by summing some selected partial series of the 
perturbation expansion up to an infinite order and numerical results are illustrated. We analyze 
validity of approximations by means of diagram representation of the perturbation series. The 
effective-medium theory serves as a good approximation for two-dimensional systems and gives the 
critical percolation concentration correctly. For one-dimensional materials, the effective-medium 
approximation turns out to be an exact solution. 

1. INTRODUCTION 

In the preceding papers of this series, 1-4 hereafter 
called I to IV, a perturbation treatment was performed 
for the effective permittivity of three-dimensional (3D) 
inhomogeneous materials whose local permittivity may 
be regarded as a random function of position. The 
whole argument holds also for other physical constants 
such as magnetic permeability, electrical and thermal 
conductivity, and diffusion constant. The purpose of the 
present paper V is to extend our formulations to one
and two-dimensional media and to compare the results 
with those in the 3D case. Especially, the meanings of 
the 2D problem are twofold. From a practical point of 
view, a 2D system serves as a simple model for fiber
reinforced composite materials. 5.6 On the other hand, 
the dependence of the overall behavior of random media 
on their dimensionality is very important from a the
oretical point of view. For example, percolation thresh
olds in disordered systems are determined almost en
tirely by the dimenSionality and insensitive to the de
tails of the geometrical structure. 7,8 Therefore, we 
are mainly concerned with the effective permittivity of 
2D heterogeneous materials. 

In Sec. 2 we develop a general perturbation formula
tion for the effective permittivity of random hetero
geneous materials of two dimensions that are statisti
cally homogeneous but not necessarily statistically 
isotropic. In Sec. 3, the second-order and third-order 
perturbation terms are calculated explicitly for cell 
materials where the property of a particular cell is 
statistically independent of that of any other cell. 
Furthermore, upper and lower bounds of the effective 
permittivity are obtained taking account of the three
point correlation effects. Section 4 gives a prescription 
to construct the perturbation coefficient of an arbitrary 
order for completely random media. Regarding the 
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completely random material as a limiting case of a 
circular-cell material, we compute the fourth-order 
and fifth-order perturbation terms. Section 5 shows how 
the perturbation expansions can be interpreted by means 
of diagrams. In Sec. 6, several approximate perturba
tion solutions are derived and some numerical results 
are presented. The last section is devoted to a discus
sion of the 1D problem where an exact solution is easily 
obtained, in order to check the validity of various 
approximations. 

2. BASIC EQUATIONS, FORMAL PERTURBATION 
SERIES, AND BOUNDS FOR EFFECTIVE 
PERMITTIVITY 

We deal with a 2D material with random variations in 
permittivity whose area S is eventually brought to 
infinity. Assume that the medium is locally isotropic 
and statistically homogeneous. Denote by £(r) the 
permittivity at a point r and let £'(r) =E(r) - (E), where 
the brackets ( ... ) indicate the ensemble average. Then, 
the normalized n-point correlation function g(r12 , 

r23, ... , r "-I, n) is given by 

(£'(r1)E'(r2)'" E'(r") =(E'(O)£'(rd··· £'(r1n) 

=(E'")g(r12' r23, 0'" rn_1• n), (2.1) 

in which r ij = rj - rio According to the ergodic hypothe
sis for statistically homogeneous media, the ensemble 
average is supposed to be replaceable with the spatial 
average, so that in our 2D case 

(1[£(r)]) =~i~(l/S) j~f[E(r)]da, (2.2) 

where f[ £(r)] is an arbitrary functional of E(r) and da is 
an area element of Sat r. 

The basic equations governing the static electric 
field in a material with variable permittivity are 
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o -a [E(r)E;(r)] = 0, 
Xi 

(2.3) 

E .( )=_ ocp(r) 
~, r O. 

X; 
(2.4) 

Here E;(r) is the ith component of the electric field, 
cp(r) is the electrostatic potential, and the summation 
convention is employed. Putting Ei(r) =E;(r) - (E;), we 
have 

aEl(r) = _ (E i ) oE'(r) _l... _0_ [E'(r)E!(r)] 
aXi (E) OX; (E) OX; ,. 

(2.5) 

By means of the Green's function for the 2D Laplacian 
operator, Eq. (2. 5) leads to 

E!(r ) = _1_ (E .)[da XI2,; aE'(r2) 
, 1 21T(E) J 2 r 2 OX . 

S 12 2, J 

(2.6) 

The effective permittivity tensor Eij of a heterogeneous 
medium is defined by the relation 

(2.7) 

In order to evaluate Eij' therefore, it is necessary to 
solve the random integral equation (2. 6). 

Through an analogous procedure to that presented in 
I, the solution of Eq. (2.6) can be expanded in a pertur
bation series of the form 

., 
E!(r) = 6 E~n)(r) 

, n=1 I , 
(2.8) 

(2.9) 
As for the perturbation series of Eij corresponding to 
Eq. (2.8), we easily obtain 

Etj =(E)(O;j- ~ (_I)nA!~)~:;~), 
where 0ij denotes the Kronecker delta. The nth-order 
perturbation coefficient A!~) is related to the normalized 
n-point correlation function g(r12, r23, ... , r n-l, n) by 

Aii) = (;; til da12 Is da23"';: dan_l,n 

x X12'2; X23,k • .. on-lg (r12' r23' ... ,rn_l,n) (2.11) 
Y12 r232 OXI2,k OX23,h'" OXn_l,n;j . 

For a statistically isotropic medium the second-order 
tensors Etj and A:~) reduce to scalars E* and A (n) such 
that 

E* =(E) (1- t (_ l)nA (n) (en;). 
".2 (E) 

In particular, the second-order coefficient Ag> 
becomes 

A(2) __ -1-1 d x12,i 0(E'(rl)E'(r2) 
ij - 21T(E'2) a12 r 2 OX s 12 12, j 
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(2.12) 

- 1 1 d XI2,; og(rd -- - a12 ---
21T s r122 aX12, j • 

(2.13) 

Let us impose appropriate boundary conditions upon 
g(r I2); for example, assume that in the polar coordinate 
system (r I2 , 812 ) 

Then Eq. (2.13) is transformed into 

A (2) - l...ld a2
1og(l/rd ( ) 

ij -- 21T a12 oX .ax . g r12 , 
S 12, , 12, J 

or 

A~2.) = -I-ida ida ~ ~ 02g(rd 
'J (2)2 1 2 2 2 0 '0 • 

1T S S Yl Y2 xl,; UX2,j 

(2.14) 

(2.15) 

(2.16) 

The proof of Eqs. (2.15) and (2.16) is given in Appendix 
A. 

As in the 3D case, it follows from Eqs. (2.13), (2.15), 
and (2.16) that the second-order coefficient A!}) 
satisfies 

(i) A:~) =A~~>, (2.17) 

(ii) A:~) = 1, (2.18) 

(iii) A)~i):;c 0; (2.19) 

the parentheses around the index i indicate that summa
tion over i is not performed. The symmetric second
order tensor A:~) has eigenvalues A:2

) such that 

and 

A?),A~2) ~ 0. 

It is readily seen that for a statistically isotropic 
material 

(2.20) 

(2.21) 

A (2) = tAW = t. (2.22) 

The corresponding perturbation expansion of the effec
tive permittivity E* up to second order is 

(2.23) 

Furthermore, the third-order coefficient A!~) is de
fined as 

A~3)= 1 ida ida X12,i X23,k 02g (rI2,r23) 
'J P2) 12 23 2 2 '0 a . 

1T S S r 12 r23 uXl2,k X23,j 
(2.24) 

In polar coordinates boundary conditions for g(rl2, r23) 
are 

g(O, 812 ; 0,823) = 1, (2. 25a) 

g(O, 812 ; Y23, 823) = independent of 812 , (2. 25b) 

g(rl2, 812 ; 0,823) = independent of 823 , (2. 25c) 

g(oo, 812 ; r23, 8nl =g(YI2, 812 ; 00, 8zs} = 0. (2. 25d) 

Under these conditions we get 

A (3) __ I_[d ld o21og(l/rd a21og(I/Y23) 
'j - (2)2 an a23 
, 1T S S aX12,; aX12, k aX23, kOX23, j 

X g(r I2, r23), (2.26) 

which leads to 
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(2.27) 

Generally speaking, the perturbation coefficient At) of 
an arbitrary order is symmetric. 

In II, upper and lower bounds of the eigenvalues of 
the effective permittivity Ef are obtained in terms of 
A~2) and AP). The formulations given in II are mostly 
effective in 2D systems with the appropriate changes of 
quantities characteristic of dimensions such as the 
change of volume integrals into area integrals, 1/47T 
-l/27T, t -~, etc. Especially, Eqs. (11.317) and 
(11.417) hold for the 2D case; that is, 

* < ( (AF\E,2)/(E)2)2 ) 
Ei ~ (E) 1- AF)(E,2)!(E)2 +Aj3)(E'3)!(E)3 , (2.28) 

* 1 { ( (2,1) 2 ( _1 _ )2 
Ei ""(i'7E)l-l-B i ) l-(K)(E) 

x [(1- 2B!2,1) +B~3,2) (1- _1_) 
, , (K)(E) 

+ (A!2) _ B!3,2)_E_ ( '2)]-1}-1 
, , (E)2 . (2.29) 

The coefficients B ;Z,I) and B l3, 2) are the eigenvalues of 

B(2,ll- 1 l d X12,i o(K'(rl)E'(r2» (2.30) 
ij - - 27T(K'E') (T12? ox. ' 

S 12 12, J 

and 

(2.31) 

where K = liE and K' = K - (K). For statistically isotropic 
materials Eqs. (2. 28) and (2.29) are simplified to 

* < ( t(e2)/(E 2)2 ) 
E ~ (E) 1 - ~(E'2) (E)2 +A (3)(E'3) (E)3 ' 

3. DETERMINATION OF LOW-ORDER 
PERTURBATION TERMS FOR CELL MATERIALS 

(2.32) 

As explained in I, the cell model introduced by 
Miller9.1Q is based on the assumption that the medium 
can be subdivided into a large number of nonoverlap
ping cells. The cell material is defined as a random 
multiphase material in which the permittivity of a 
particular cell is statistically independent of that of any 
other cell. We shall confine ourselves to the symmetric 
case where the fluctuation properties of the geometry 
of all phases are identical. Let P(rj, r2) be the probabil
ity that the two points rl and rz fall into the same cell 
and P(rj, r2, rs) be the probability that the three points 
rj, r2, rs lie in the same cell. Then the independence 
hypothesis asserts that 

(3. 1) 

whence 
(3.2) 
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(3.4) 

We first treat a symmetric cell material composed 
of cells of uniform shape, size, and orientation. Pro
ceeding in the same way as we did in Sec. 3B of I, we 
have 

A (2)- .!fd 0
2 ld log(1/r12l ij -- a 10 a20 

S s OX10,i OX10,j s 27T 

= ~ [ dal0 [ da20 OX10.~:X20,j eOg~yrI2»), (3.5) 

where s is the cell area. Thus, the second-order pertur
bation coefficient Al~) is equal to the magnetometric 
demagnetization tensor of two dimensions. Define the 
2D point-function demagnetization tensor by 

Then Eq. (3 0 5) is written as 

(2) 1 f () Aij = 'S s da10L ij riO' 

Likewise, 

(3.6) 

(3.7) 

(3.8) 

Note that A~~) as well as Al~) depends only on the shape 
of cells and not on their size. 

Next we shall discuss the case where identical cells 
are oriented at random. In the present case the cell 
material is statistically isotropic, so that Al~) must be 
~lSij as shown in Eq. (2.22). For the third-order coeffi
cient A (S) we obtain 

A (3) 'A(3) 1 jd L 2( ) 
=:2 ii = 2s s a20 kh r20 • 

The inequalities corresponding to Eq. (II. 5.9) are 

(3.9) 

(3.10) 

that have already been conjectured by Beran and 
Silnutzer. 6 Clearly the argument in this paragraph holds 
true even when the medium consists of cells of varying 
size. In addition, Eqs. (5.18) and (5.19) in II guarantee 
that the bounding equations (3.10) apply equally well to 
an asymmetric cell material. 

Finally, let us consider cell materials where elliptic 
cells are uniformly or randomly oriented. The point
function demagnetization tensor of an ellipse and its 
degenerate shapes is constant throughout the interior 
of the body. Consequently, Eqs. (3.7) and (3.8) become 

(3.11) 

When axes of elliptic cells are aligned parallel with the 
coordinate axes, 

(3.12) 

Needless to say, L i signify the depolarizing or demag-
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netizing factors of the ellipse. For randomly oriented 
ellipses, on the other hand, A (3) is given by 

A (3) '" i(Li + L~). (3.13) 

The depolarizing factors of an ellipse may be deter
mined exactly as in the 3D case of an ellipsoid. 11 In the 
process of calculation we need to adopt the elliptic 
coordinate instead of the ellipsoidal coordinate. The re
sult is 

ajaol°O dl 
L; = 2 0 (I +am(t +aI)(t +am1!2 

= 1- [a/raj +a2)1, 

A (3) = HI - [2aja2/ (a j + az)Zl}. 

(3.14) 

(3.15) 

Here a j and az are the semiaxes of the Xj and Xz direc
tions, respectively. For a circular cell where a1 ",a2, 

we have L1 = L2 = t so that Eqs. (3.12) and (3.13) yield 

A (3) -~ 
- 4· (3.16) 

If az = 0 or a j ~ 00, the ellipse degenerates into a parallel 
lamella (two-dimensional needle), for which 

A (3) - ~ 
- 2- (3.17) 

The bounds presented in Eqso (2.28), (2,29), (2.32), 
and (2.33) can be simplified for a symmetric cell mate
rial composed of elliptic cells, Since A?) = B!2, 1) = L; 
and A~3) =Bl3

,2) =L~il' Eqs. (2.28) and (2.29) reduce to 

* < ( L;(E'2)/(E)2)2) 
E; ~ (E) 1- (E'2)/(E)2 +L/E'3)/(E)3 ' (3.18) 

Et?o (1/E) {1 -(1- L;)2 (1 - (1/~)(E) Y 
x [(1- 2L; +LL)(1- (1/:>(E») + (L; - L~i)) 

(3.19) 

which are formally equivalent to Eqs. (5. 16) and (5. 17) 
of II. Especially for an isotropic circular-cell 
material, 

It is extremely difficult to evaluate the fourth- or 
higher-order perturbation coefficient. The four-point 
moment (E'(r1)E'(r2)E'(r3)E'(r4) takes the value (E,4) when 
four points are in the same cell, (E,2)2 when two pairs 
of points are in two different cells, and 0 otherwise. 
Let P(rj, rz, r 3, r 4) be the probability that the points 
rj, r2, r 3, r4 are in the same cell, P(rj, rz; r3, r4) the 
probability that the two pairs of points, (rl, rz) and 
(r3, r 4), are in two different cells, and so on. It is 
evident that Eq. (III. 2. 18) also holds in our 2D case; 
namely, 

(E'(r1)E'(r2)E'(r3)f'(r4) =(E ,4 )g(r12, r23, r 34) 
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+(E'Z)Z[P(rj, r2; r 3, r 4) 

+ P(rj, r4;r2, r3) + P(rl, r3;r2, r 4) J. 
(3.22) 

Hence the fourth-order coefficient Alj) is separated 
into four parts as 

(3.23) 

where 

A (4) 1 [1 [ 1 X12,; XZ3,k X34,h 
l,;j=- (2 )3 (a1Z. da23 da 34 2 2 2 

'IT S S S Y1Z YZ3 Y34 

03P(rJ, r2, r3, r4) 
x OX12,kOX23,hOX34,i , 

(3.24) 

(4) 1 1 [ 1 X12,i X23,k X34,h A 3, ij = - (2 )3 dalZ daz 3 da 34 Z 2 -;z-
'IT S S S Y1Z r23 134 

(3.26) 

(4) 1 i J: 1 X12,; X23,k X34,h A 4, ij = - -(2)3 da12 ria23 da34 2 2 2 
'IT S S S r 12 rZ3 r34 

x o3P(r1, r3; r2, r4) (3.27) 
ilx12, kOX23, hex 34, i 

Out of these coefficients, A!;li is independent not only 
of the size of cells but also of their relative arrange
ment, because P(rj, rz, r 3, r4) concerns the geometry of 
a single cell. If homothetic ellipses are uniformly or 
randomly oriented, we find 

A!:L = LikLkhLhj, 

A!4) =i, 
(3.28) 

(3.29) 

whose proof goes in a similar manner to that described 
in Appendix A of ill. On the contrary, it is practically 
. ·bl t d t . A(4) A(4) d A(4) tl Impossl e 0 e ermme 2, ii' 3, ij' an 4. ij exac y. 
In addition, Eqs. (3.28) and (3 0 29) are generalized to 

AtL= (- ;In_11 da1z1 da23···;: da n_l,n 

x X12,i X23,k ••. an
-
1p(rj, r2, ... , rn) 

rlZ2 rZ32 OX12,k ilx23,h··· oXn_1,n;i 

= LikLkh •.. Lmi [(n-1)-fold product], 

A:n) = 1/2"-1. 

(3.30) 

(3.31) 

4. DETERMINATION OF LOW-ORDER PERTURBATION 
TERMS FOR COMPLETEL Y RANDOM MATERIALS 

Now, for the purpose of studying the fourth- and 
fifth-order terms of perturbation expansions, we fol
low the discussion of III. We treat completely random 
heterogeneous materials of two dimensions, in which 
physical constants at different points are statistically 
independent. The many-point correlation functiom, 
g(r12, r23, ... ,rn_l.n) in this case are expressed by means 
of the appropriate products and sums of such null func
tions as 0r1Z where 
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{
1 for rl =r2, Ii -

r12 - 0 for rl *" r2. 

For illustration let us show some of lower- order 
moments in terms of Iir12 , 1i~3' etc.: 

(e'(r1W(r2) =(E'~)lirI2' 

(e' (r 1 )E' (r2)e' (r3) = (et3
) IirI21i~3' 

(E' (r l)e' (r2 )e' (r3)e' (r 4) 

= (e,4) Iir121i~31ir34 + (e,2 )2[ Iir12lir34 (1 - Ii r23) 

+ Iir14lir23 (1 - Ii r12 ) + Iirl3lir24 (1 - Ii r12 ) J. 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

The factors (1 - Ii r12) and (1 - Iir23) arise from the ex
clusion effect. 12 It should be noticed that a completely 
random material is statistically isotropic as well as 
statistically homogeneous. 

In order to facilitate the formulation, we regard a 
completely random material as a limiting case of a 
symmetric cell material where circular cells of in
finitesimal size are distributed at random, Based upon 
this idea of limiting cell materials, the evaluation of 
A (n) for an arbitrary n is carried out in accordance with 
the following conventions: 

(i) Express the many-point moment appearing in Eq. 
(2.11) in terms of Iir12 , etc.; 

(ii) contract each product of Ii's to the simplest form 
with respect to r12, r23, .. " and arrange the subscripts 
in order whenever possible; for example, use Iir121i~31ir34 
instead of IirI2Iir14Ii~3' Iir12 Iir13 Iir24 , Iir121ir131ir231ir34' etc.; 

(iii) replace Iir12 , Ii r13 , . o. by characteristic functions 
Jp(r I2 ), I p (rI3),'" such that 

I (r) = {1 for r < p, (4.5) 
p 0 for r> p. 

(iv) take the limits as p - + O. 

Let us first calculate the fourth-order perturbation 
term. Considering the statistical isotropy of a com
pletely random material, we rewrite Eq. (3,23) in the 
form 

A (4)(e,4) =A14)(E,4) + (AJ4) +A~4) +A14»)(E,2)2, (4.6) 

which corresponds to Eq. (4.4). On the introduction of 
cumulant averages (en)e, Eq. (4.6) is rearranged as 

A (4)(e,4) =B14\E4)e + (BJ4) +B~4) +B14»)(E2)~, (4.7) 

where 

A14> =B14), 

A~4) = BJ4) _ B~4), 

(4.8) 

(4.9) 

A~4) = B~4) - B~4), (4.10) 

A14)=B14)-Bl4). (4.11) 

It follows directly from the definitions of Bl4) and B~4) 
that 

(4.12) 

and that 

BJ4) = 0, AJ4) = - i- (4.13) 

To compute A~4) we contract Iir140~3 as 
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then 

(4) 1 lId 1 d X12 i X23,k X3')h B3 =- (2 )3 dU12 U23 U34~ 2 
11 S S S r12 r23 r34 

Accordingly, 

B~4)=A(2)'A(2)=i, A~4)=i-

We turn to the numerical estimation of A14), By 
definition, 

(4.14) 

(4.15) 

(4.17) 

(4) . 1 i d l d ld X12,iX23,k X34,h B4 = - hm (2 )3 U12 U23 U34--2 2 --2 
p-+O 11 S S S r12 r23 r34 

a3I p (r!3lIp(r24) x -:----''7-""''"--,"::,-""""''"''''--
OX12,kOX23,hOX 34, (i) 

1· lid X23,k oJp, ik(r23)Jp, h(ll (r23) 
=- 1m - U23-- • 

p-+O 21T S r232 OX23, h 

In Appendix B we prove that 

J ( )- l..ld X12,i aJp(rd 
e.ik r23 - - 211 u12 r 2 ax 

S 12 12,k 

where 

{
o forr23<p, 

Cp(r23) = _ p2/r232 f or r23:> p, 

{
! for r23 < p, 

D p(r23) = p2/2r232 for r23 > p. 

(4. 18) 

(4.19) 

(4.20) 

(4.21) 

Substitution of Eqs. (4.19)-(4.21) into Eq. (4.18) yields 

(4.22) 

from which we get 

B14) = t, A14) = O. (4.23) 

This implies that A14 ) vanishes in the 2D case, while 
B14 ) vanishes in the 3D case. 

On the other hand, the five-point moment becomes 
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=(E,5)orI20r230r346r45 +(£,3)(£,2>[OrI2 0r23 0r45(1- Or34) 

+ Or12 0r34 or45 (1 - or2) + or12 or25 or34 (1 - or2) 

+ orI40r4/'r2/1 - 0rI2) + or15 or23 6r34 (1 - Or12) 

+ orI20r240r35(1- 0r23) + 6rI30r2/ir45(1- 6r12 ) 

+ or13 0r34 0r25(1 - orl2 ) + orI4 6r23 0r35(1- orl2) 

+ 0 0 0 (1 - 0 )] r13 r35 r24 r12 ' (4.24) 

The eleven coefficients corresponding to the terms on 
the right- hand side of Eq. (4.24) are 

11 
A (5)(E,5> ocAi5)(E,5) + L:{A';:\E,3)(E,2). 

m= .. 

By means of the cumulant averages, Eq. (4.25) is 
converted into 

ifm oc l, 
otherwise. 

(4.25) 

(4. 26) 

(4.27) 

With the help of the arguments in Appendix D of Ill, 
we have 

Bj5) =A (2)·A (2).A (2)·A (2) = -Ie, 
B~5) = B~5) = 0, 

Bl5) =B~5) =BJ5) =A (2). Bi4) = %, 

B (5) - B<5J - B(5) - B(S) - A (2). B(4) _ .l. 
7 - 8 - 9 - 10 - 4 - 16 • 

In analogy with Bi5) to Bi~), we expect that 

(4.28) 

(4.29) 

(4.30) 

(4.31) 

B;r) = +s ' (4.32) 

although we have not been successful in proving this 
rigorously. Moreover, Eqs. (4.28) to (4.32) enable us 
to determine A~S) as 

A(5)-J.. 
1 - 1{)' 

A
(5) -A(5) - J.. 
2 - 3 - - 16' 

A (5) - A (5) - A (5) - J.. 
4 - 5 - 6 - 16 ' 

Ai5) =A~5) = ••• =Air> = 0. 

(4.33) 

(4.34) 

(4.35) 

(4.36) 

Therefore, the effective permittivity £* up to the fifth 
order is 

~ -1- (£2>c + (E3)c _ (£4>0 +3(£2); 
(E) - 2(£)2 4(£)3 8(£)4 

«(5)c + 11(£3)c«(2>o 
+ 16(£)5 - ... , 

or 

5. DIAGRAMMATIC REPRESENTATION OF THE 
PERTURBATION EXPANSION 

(4.37) 

(4.38) 

In parallel with the discussion in IV, let us introduce 
diagrams to represent perturbation terms appearing in 
Eq. (2.12). Before explaining our diagram method in 
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detail, we will review how the expansion terms of gen
eral orders are constructed. As in the 3D case, the 
effective permittivity of a completely random material 
is expressed as a sum of infinite perturbation series 
in the form 

,*_ * ()-t (n)-:s ~(vm)Bl~~}E(n,{ZJJ). 
£ -E - £ -n=2£ - 71:2 (_(E»"-1 (5.1) 

Here {ZJm} denotes the way of partitioning n variables 
rj, r2, ... ,rn into m subsets of at least two elements 
each and ~("m) signifies the sum over all possible 
partitions. The factors E(n, {ZJm}) and Bl~~) are defined by 

E(n,{ZJm})=(EY 1)c(£V2 \ ••• (EVm)c, (5.2) 

(n) ( 1 )n-l1d 1 1 X12 i B{v )= --2 <i12 da23'" d(Jn_l,n~ 
m 7T S S s r12 

xGkh(r23)'" Fn({ZJm}; r12, r23,." , r n_l,n), (5.3) 

where Fn({ZJm}; r12, r23'" 0' r n_l,n) stands for the product 
of o's corresponding to the partition {ZJm} and 

G ( ) 
_..!.. (JZ[IOg(l/YI2)/27T] 

'k r12 - < 
I E) OXI2.;OXI2,k 

By the use of quantities y(n, {ZJ m}) such that 

y(n, {ZJJ) = (E'"I)(£'"2) ..• (E'"m), 

Eq. (5.1) is rearranged as 

,* -:S L;{vm)A\~~)y(n, {ZJm}) 
£ - n=2 (_ (£) ).-1 . 

(5.4) 

(5.5) 

(5.6) 

In the foregoing sections, we have estimated lower
order perturbation coefficients as follows: 

(Second-order term) 

(0 Fz(l; r12) = or1z 

(ii) E(2, 1) =«(2)c, y(2, 1) =(£,2), 

(iii) B(2) =A (2) =~, 

( ) 
(2) «(2)c _ «(,2> 

iv £ =- 2(£) -- 2(E) . 

(third-order term) 

(i) F3(1; r12, r23) = 0rI2(;r23' 

(ii) E(3, 1) =(E3>" y(3, 1) =(£,3>, 

(iii) B (3) = A (3) = t, 

(iv) £(3) _ (E3)c _ (E,3) 
- 4(£)2 - 4(£)2' 

(fourth-order term) 

(i) F4(1; r12, r 23 , r34) = 0rI26r236r34' 

F4(2; r12, r 23 , r34) = or120r34' 

F4 (3; r 12, r 23 , r34) = 0r14 lir23 , 

F 4(4; r12, r23, r 34) = OrI3 0"24; 
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(5.7a) 

(5.7b) 

(5.7c) 

(5.7d) 

(5. Ba) 

(5. Bb) 

(5. Bc) 

(5.8d) 

(5. 9a) 
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• ll\ [ .~, , ' . " , \ + ' . + I J \ ~ , , , , 1\,\ , , , , , . , , , , . , ! . . , , , 

rl rz ~ rz r3 ~ r2 r3 r4 

(I) (ii) (iii) 

1- If. ~ ~ ~ ] ' ~ " ' ' ~ \ I \ 

+ .' + /.-\ + I " \ , ' ' . , . ' /" " I 1\ " 

, '. ' , '", " ' , \ \ 

I , • I 1 

r1 r2 r3 r4 ~ r2 r31l. ~ r2 r3 r4 

(iv) (V) (vi) 

+ 
FIG, L Diagrammatic representation of Eq. (5.1). 

(a) 

(b) 

(e) 

(il) d4,1)=(E4)c, y(4,1)=(e4
), 

(4,2) = E(4, 3) = E(4, 4) =(E2 )~, 

1'(4,2) =1'(4, 3) =y(4, 4) =(E/2)2; 

(iii) B14) =Af4) =t, 

(iv) 

B~4) = 0, AJ4) = - t, 
B~4)=t, A~4)=t, 

Bl4) =t, Al4 ) = 0; 

(4) __ (E4)c _ 3<E2)~ = _ ~ , 
f - 8(E)3 8(.)3 8(E)3 , 

(fifth-order term) 

(i) F5(1; r12, r23, r34, r45) = or12lir23lir34lir45' 

F5(2; r12, r23, r34, r45) = c'irI20rz30r45' etc.; 

(ii) E(5, 1) =(E5)c, ')1(5,1) =(E'5), 

E(5, 2) =E(5, 3) = •.. =E(5, 11) = «(3)c(E2)c 

,,(5,2) = ')1(5,3) = ••• = y(5, 11) = «(,3)(E,2); 

(iii) B(5) - A (5) -..!.. 
1 - 1 - 16 ' 

Bi» =B~5) = 0, A~5) =A~5) = - fs, 
A (5) -A(5) -A(:;) _.1-

4 - 5 - • - 16 ' 

B (S) -B(5) - B!5l - B(5) -..!.. 
7 - 8 - 9 - 10 - 16 ' 

A~5) =A~5) =A~5) =Afg) = 0; 

II: ,If, .. ¥ .. '1" ,<:/:\::~ / + '. + ,'I .', + + " . , I I ~ 

~ L......I......> '--'--'----' 
, I 

~ .'". ~, 

'/'~" r ,'1, 
+ ,/ : \. + ,J I, + + 
~ , , ' 

l==> 
. 

- + 

= - + 

(5.9b) 

(5.9c) 

(5.9d) 

(5. lOa) 

(5. lOb) 

(5. 10c) 

FIG. 2. Process for modifying single-sit!:' diagrams. (a) Sin
gle-sit", diagrams with free propagators. (b) Single-site dia
grams with modified propagators. (c) Definition of a modified 
?r()?agator. 
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(5.10c') 

(5.10d) 

In order to represent the perturbation series in Eq. 
(5.1), we adopt cumulant diagrams proposed by Yoneza
wa and Matsubara. 13 As mentioned in IV, these dia
grams are composed of cross vertices, dashed vertical 
lines, and solid horizontal lines. According to usual 
nomenclature in the quantum-mechanical diagram meth
ods, we shall name a vertical line an interaction line 
and a horizontal line a propagator. The perturbation 
expansion of ('* up to fourth order is expressed dia
grammatically by Fig. 1. With the knowledge of lower
order terms obtained in the preceding paragraph, we 
make the rules for counting contributions from cumulant 
diagrams; 

(i) Identify unconnected or improper diagrams with 
zero. In the quantum-mechanical problems we do not 
encounter the situation that all the improper diagrams 
contribute zero. 

(ti) Assign (' to a dashed interaction line and take 
the cumulant of the product of all fl'S that correspond 
to interaction lines starting from a Cross vertex. That 
is to say, alJ.ot the lith-order cumulant <.,V)c to v 
dashed interaction lines which start from a cross ver
tex. Note that (f,V)c"'(EV)c for v? 2. 

(iii) Assign -l/(f) to each propagator. 

(iv) Assign ~ to each independent propagatoro More 
generally, use the reciprocal of the dimensionality of 
the medium. In the Green's function formalism and 
diagrams in the momentum space, this independent 
propagator corresponds to the independent integral 
with respect to an inner propagator k, For detail see 
Refs. 12 and 14. 

(v) Calculate the product of aU factors thus 
detet'm ined. 

The above prescriptions (ii) to (v) suffice to deter
mine the contributions of nested diagrams as well as 
those of one-vertex diagrams. Although nested diagrams 
are concerned with two or more vertices, they are re
ducible to single-site diagrams with modified propaga
tors. The process of modifying propagators is illus-

~ 
, , + 

(i) 

+ 
~ 'i? 
J • ff ~ 
'l ,I + 
" , I 

o.-...L........ 

~ r2 l3 Il. 
(iv) 

+ 

R '., . ' . \ , 

~ 
,'9'" 

I ~\ " , , , 
" \, 
~ 

~ r2 r31l. 
(v) 

+ ,9., ,P-, ] 
I , ' 

I I' \ 
, " \ 

« I ' ) 

r, rz r3 r4 
(vi) 

FIG. ~. Diagrammatic representation of Eq. (~. ()). 

M. Hen and F. YQnez<lw<l 371 
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" .' 
~ 

+ 

(i) 

,~, 
'" '. + ", , 

I 1\ , 
~ 

(i) 

,~\ '. , I, \ \ 
II \ \ ............... 

(iii') 

11 !? P- I? ~ 
" " ,',Q\ I I" 

"" 
, , + + ' V , , , 

,';' \ \ I L\ \ 

'\ I I I , \ \ 

'---'----'---' ~ ~ 

(ii) (iii) (iv) 

[~ ! ~J l ~, It " 
,\ I, + ,'jI," 

" I I ,\ I I 

I' '\ " I I 
'I' , I, ,\ 

~ ~ ~ 

(ii) (in (iii) , ~ 
,''./ \ -

I I, \ ,~, J ' v ' f II \ , , \ \ I I, I 
~ 

(iv) 
If 

............... 
(iv) 

1 ~ 
: ~ , I 
,\ , t 

" " ~ + :,.?\. + 

~ ,l(, 
, I, \ 
, }, \ 

I " \ 
~ 

(ii) (iii) (iv) 

(a) 

(b) 

(e) 

FIG. 4. Process for transforming restricted moment dia
grams into cumulant diagrams. The diagram (a-i) corresponds 
to (<,,4)OrI2 0!'2/i r;l4' (b-i) to «,4)Or\50r230r34' (c-O to 
«4);rI20r230r:!4' (a-iO to (<,,2)2 0rI2 r34 U'-Orn)' (b-ii) to 
«,2; 0rI20r34. {b-ii} to (<,,2)20rI20r340"23' (c-ii) to 
«(~cOr12or34' and so on. 

trated in Fig. 2. Figure 2 (a) represents the sum of all 
one-vertex diagrams. In Fig. 2(b), an inner free prop
agator expressed by a solid horizontal line is replaced 
by a modified propagator expressed by a double line 
which in turn is defined by Fig. 2(c). It is obvious that 
all nested diagrams are included in Fig. 2(b). There
fore, nested diagrams belong to Single-site diagrams in 
a wide sense. The procedure to evaluate such single
site diagrams is Similar to that described in Appendix A 
of IV. 

Besides cumulant diagrams having cross vertices, 
we employ two other types of diagrams due to 
Yonezawa12 which contain vertices indicated by open or 
closed circles. For a diagram with closed-circle ver
tices, called an unrestricted moment diagram, the vth
order moment (E/") instead of the vth-order cumulant 
(£'")C is allotted to v interaction lines starting from the 
same vertex. The prescriptions (i), (iii), (iv) , and (v) 
hold good for a diagram of this sort. On the other hand, 
diagrams with open-circle vertices (which are called 
restricted moment diagrams) are introduced to rep
resent perturbation terms in Eq. (5. 6) rather than in 
Eq. (5.1). The diagram expression of Eq. (5.6) up to 

(a) 

(b) 

(e) 

FIG. 5. Crossed diagrams with open-circle vertices whose 
contribution is zero. (a) Sum of vanishing crossed diagrams. 
(b) Definition of a wavy interaction line. (c) Definition of a 
double-line propagator. 
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fourth order is presented in Fig. 3. By way of illus
tration let us compare the fourth-order terms in 
Figs. 1 and 3. The process of transforming restricted 
moment diagrams into cumulant diagrams is shown in 
Fig. 4. 

The contributions from crossed diagrams are quite 
different in our 2D case from the 3D case. Recall that 
A14 ) = 0 and Ai5) =A~5) =A~5) =A!8) = 0 for a 2D material 
while BJ4) = 0 and Bi5) =B~5) =B~5) =B~~) = 0 for a 3D ma
terial. In the 3D formulation, zero contributions are 
due to crossed diagrams with cross vertices. In the 
2D problem, however, crossed diagrams with open
circle vertices are proved or expected to vanish. Thus, 
the following rule concerning crossed diagrams with 
open-circle vertices is framed: 

(vi) Associate zero with crossed diagrams which are 
comprised as addends in Fig. 5. 

The proof of the prescription (vi) proceeds exactly as in 
Appendix B of IV. 

Strictly speaking, the above six rules are not com
prehensive in the sense that all crossed diagrams do 
not belong to the category defined by Fig. 5, In fact, 
we are not able to prove Air) = 0 and a number of other 
crossed diagrams of higher orders are undetermined. 
As we shall see later, we disregard all crossed dia
grams with open-circle vertices in the course of cal
culating partial summation of the perturbation series. 
It is expected, however, that the neglect of these com
plicated diagrams is not serious partly because zero 
contributions are demonstrated for important higher
order diagrams included in Fig. 5, and partly because 
there are not wanting indications that some other 
crossed diagrams vanish. 

6. APPROXIMATE PERTURBATION SOLUTIONS AND 
NUMERICAL RESULTS 

In view of finding the best estimate for the effective 
permittivity in 2D systems, we calculate various ap
proximate solutions to the perturbation series (5. 1) or 
(5.6). First, Kroner's approximation15

- 17 corresponds 
to summing only the first terms of the nth-order coef
ficients in Eq, (5,6). Consequently, 

Considering that Ain) = Bin) = 1/2n-1
, we have 

(a) 

(b) 

E" 
K 

E" 
0 = 

11 • • 
i\ + ,':\ + ,""'~', + 
'\ I" I 1\ , 

~ '--'---' '---'--'--' 

'II- .~ ~ 
" 

~ + : + " , + 
~ ~ 

FIG. 6, Diagram equations for evaluating EOi'( and €~. (a) 
Kroner's approximation. (b) Non-self-consistent cumulant 
approximation. 
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(a) 

(b) 

E" c 
4 
, , + , 
I=l 

- + 

-1IE~ 

l'i :~, ':. + I' \" + 
~ 

, I. " 

"===='==" 

FIG. 7. Diagram equations for evaluating €~. (a) Self-consis
tent cumulant approximation. (b) Definition of a modified 
propagator. 

(E/2) (E/3) ~ (E /5 ) 

EI{ = (E) - 2(E) + 4(E)2 - 8(E)3 + 16(E)4 - ... 

=(E) -(2(EE;2+E/)' (6.2) 

In the language of diagrams, Eq. (6.2) is identical with 
the sum of restricted or unrestricted moment diagrams 
as shown in Fig. 6(a). 

As discussed in IV, Kroner's theory neglects the ex
clusion effect; the ordinary moment averages must be 
replaced by the appropriate cumulant averages when 
the exclusion effect is properly taken into account. 
Diagrammatically, this reduces to the employment of 
cross vertices instead of circular vertices. The single
site diagrams along this line are given in Fig. 6(b). As 
a result, we obtain an infinite series of the form 

~ (1)"-1 (En)c 
d=(E)-~2 (_(E»)n-1 

_ (E2)c n II ~ 
-(E) - 2(E) + 4(E)2 - 8(E)3 + 16(E)4 - ... 

(E/2) (E/3) (E'4) _ 3(E/2)2 
=(E) - 2(E) + 4(E)2 - 8(E)3 

The resultant effective permittivity satisfies a self
consistent equation 

E~=Jo1(EZ'/2Et)/(ze/2et). (6.6) 

The series expansion of Et up to fifth order is 

* () (E2)c (E3)c (c4)c +2(E2>~ 
Ec = E - 2(E> + 4(E)2 - 8(E)3 

(E5 ) c + 6(E3 >c (E2 )c 
+ 16(E)4 

(E/2) ~ (E/4) _ (E/2)2 
=(E) - 2(E) + 4(E)2 - 8(E)3 

(E /5 ) _ 4(E/3)(E/2) 
+ 16(E)4 - ... (6.7) 

It has been argued in Ref. 12 that, for the purpose of 
obtaining both mathematically correct and physically 
reasonable results, the corrections from the exclusion 
effect and the degree of approximations must be self
contained. The self-consistent cumulant solution is not 
self-contained since the theory counts the corrections 
from all higher-order diagrams, some of which are 
neglected in the approximation. The procedure of making 
the single-site approximation self-contained is given in 
Fig. 8, where dotted lines denote renormalized interac
tion lines. This treatment leads to the coherent-poten
tial approximation (CPA) for the average Green's func
tion of noninteracting electrons in disordered binary 
alloys. 12,14 In IV it has been proved that the CPA is 
identical with the effective-medium (EM) theory for the 
problem of classical systems. 18 Moreover, we remark 
that the self-contained single-site approximation or the 
EM theory essentially ignores crossed diagrams with 
open-circle vertices, while the self-consistent cumulant 
approximation disregards crossed diagrams with cross 
vertices. 

(E/5) _ 10(E/3)(Ef2) 
+ 16(E) - ... 

According to Fig. 8, the effective permittivity deter
(6.3) mined by the self-contained single-site approximation 

is written as 
The partial summation in Eq. (6.3) is equivalent to 
counting Btnl correctly and discarding all B~"l for m 
~ 2. It has been pointed out in N that Eq. (6.3) is 
brought into a compact form as 

Ell' = J/ (EZ' /2(,» /(z' /2( E» dz. (6.4) 

The cumulant expansion solution (6.4) is usually re
garded as non-self-consistent in the sense that the cor
responding diagrams are expressed by free propagators. 
We shall make the approximation self-consistent so that 
all of nested diagrams discarded in the non-self-con
sistent approximation are included. The self-consistent 
cumulant solution is derived by replacing inner free 
propagators with modified propagators illustrated in 
Fig. 2(c). Namely, we use the diagram equation in Fig. 
7, where a wavy interaction line is identified with E~*. 
Then, it is easy to see that a modified propagator is 
calculated as 

-1 -1 -1 -1 -1 -1 
(ET + (ETE~*(ET + WE~*WEb*W + ... 

-1 1 1 
=W 1+Eb*I(E) =- E6' (6.5) 
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(6.8) 

which yields the relation 

(E- C:M)= O. 
E +EEM 

(6.9) 

(a) E" ~ 
EM f 

~ ,~ ,.. 
+ + + 

b:i '='==' ~ 

(b) r E' - E~~ 

(c) 

-1/E~M 

FIG. 8. Diagram equations for evaluating €~M' (a) Self-con
tained single-site approximation. (b) Definition of a renormal
ized interaction line. (c) Definition of a modified propagator. 
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VOWME FRACTION 

FIG. 9. Plots of the relative permittivity E~/EI and E~M/EI 
against the volume fraction x for the choice of E2/EI = 0..1. The 
dashed lines (a) and (b) represent Ee and E~M' respectively, 
and the solid lines indicate the bounds on E*. 

Equation (6. 9) can also be obtained from the EM the
ory in an analogous manner to the derivation of Eq. 
(IV. 4. 3). The explicit expansion series of t~M up to 
fifth order becomes 

* _() (E2)c (E3)c (E4)c + 3(E2>~ 
EEM - E - 2(E) + 4(E)2 - 8(E)3 

(E5)c + 11(E3)c(E2)c 
+ 16(E)4 

(E/2) (E/3) (E/4) (E /5 ) +(E/3)(E/2) 
=(E) - 2(E) + 4(E)2 - 8(E)3 + 16(E)4 - ... 

(6.10) 

Now we consider 2D systems with binary disorder. 
Let the two constituent phases have permittivities El and 
E2 and occupy fractions of the total volume 111 =x and 112 

= 1 - x. Then it follows that 

E* = [(2 + (E1 - (2)X 1(1- 2«(1 - (2)2 

x(1 - x) ) (6.11) 
x [El + E2 + (E I - ( 2)X ][2E2 + (E1 - (2)X] , 

Et = E2 + (El - (2)X J~ 1 dz [x + (1- X)z-«I-<2) /2[<2+«1-<2):<1]-1, 

(6.12) 

Et = E2 + (El - (2)X J~ 1 
dZ[x + (1 - X)Z-«I-<2) /2<t]-t, (6.13) 

(6.14) 

10 ~-,---,---'--'--JI 

o 02 0.4 06 0.8 10 
VOLUME FRACTION 

FIG. 10.. Plots of the relative permittivity Etl/E I and EtiE I 

against the volume fraction x for the choice of E 21 E 1= D. 1. The 
dashed lines (c) and (d) represent Ele and Et, respectively. and 
the solid lines indicate the bounds on E*. 
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o 0.2 0.4 0.6 08 1.0 
VOLUME FRACTION 

FIG. 11. Plots of the relative permittivity Ee/EI and E~M/EI 
against the volume fraction x for the choice of E2/EI = D. 0.1. 
Labeling conventions are the same as in Fig. 9. 

The root of the quadratic equation (6.14) is 

E~M = H- (El - (2)(1 - 2x) + [(El +(2)2 - 4(EI - (2)2X 

+ 4(E1 - (2)2xZJ1!2). (6.14/) 

The bounding inequalities (3.20) and (3.21) reduce to 

* 2E2(EI - (2) (El - (2)2 2 
E ~E2+ X+ X, 

El + E2 El + E2 
(6.15) 

E*? __ ~~~_~~ __ ~E~IE~2~~ __ ~ftT~_~~ 
El - [2E1(E1 - (2)/(El +(2)]x + [(El - (2)2/(El +(2)]x2 

(6,16) 

In Figs. 9 to 14 we plot Eqs. (6.11) to (6.14') together 
with the bounds (6. 15) and (6.16). The relative values of 
the effective permittivity, E* /Ej, for the three cases of 
E2/EI = O. 1, 0.01, 0 are exhibited as functions of the 
volume fraction x. As in the case of 3D materials, E* 
sometimes violates the lower bound and even takes 
negative values. If EziEI = 0 we find from Eq. (6.11) 

EVEI = - [x(l- 3x)/(1 +x)1, (6.17) 

whence E~ < 0 for 0 < x < ~. The non-self-consistent 
cumulant approximation systematically gives Et larger 
than the upper bound. This is owing to the fact that a 
number of important diagrams are assumed to be zero 
and the corrections from the exclusion effect are over-

>
I-
:;; 

0.8 

f= 0.6 
>:: 
~ 
0:: 
~ 0.4 
w 
> 
~ 0.2 
---' w 
0:: 

0_ 

o 0.2 0.4 06 08 10 
VOWME FRACTION 

FIG. 12. Plots of the relative permittivity EIe/E 1 and q IE I 

against the volume fraction x for the choice of E2/El = O. 01. 
Labeling conventions are the same as in Fig. 10.. 
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FIG. 13. Plots of the relative permittivity €~/€ 1 and EgM/€ 1 

against the volume fraction x for the choice of E2 /"1 = O. Data 
points represent the results of the computer simulation car
ried out by Kirkpatrick. 8,21,22 Other labeling conventions are 
the same as in Fig. 9. 

counted. In both the self-consistent cumulant theory and 
the EM approximation, however, the estimates of £~ and 
£~M lie always within the bounds. 

To discuss the comparative merits of £~ and £~M we 
investigate the behavior of effective permittivities in the 
vicinity of £2/£1 = O. The difference between £~ and £~M 
becomes serious as £2/£j approaches zero. From Eq. 
(6. 14') we find 

£~M {O for x <i, - - (6.18) 
£j - - 1 + 2x for x > ~. 

The critical concentration Xc = t reached by Eq. (6.18) 
is in agreement with the critical probability for the bond 
percolation on a square lattice. 7, j9, 20 On the contrary, 
the self-consistent cumulant method fails to give a cor
rect critical percolation concentration. Actually, sub
stitution of £2 = 0 into Eq. (6.13) yields 

£c =x *dz. 
* [j z</2'~ 

£j 0 l-x+xz'/2'c 
(6.19) 

By reference to Appendix C in IV, the critical con
centration is estimated at 

(6.20) 

The numerical data by Kirkpatrick, 8, 2j, 22 who carried 
out computer simulation on 2D square networks with 50 
X50 sites, also fit Eq. (6.18) rather than Eq. (6.19) 
(see Fig. 13). 

The above situation is different from the 3D case in 
which £~ serves as a better approximation than t~M' The 
difference is clearly explained by means of diagrams. 
In the 3D problem, contributions of crossed diagrams 
with cross vertices are proved or expected to vanish. 
Zero contributions from crossed diagrams with cross 
vertices guarantee the validity of the self-consistent 
cumulant solution, because in this theory the corrections 
coming from the exclusion effect of crossed diagrams 
are wholly taken into account. Although the crossed 
diagrams themselves contribute nothing, their exclu
sion corrections are not zero and these terms are exact
ly counted in the cumulant approximation. Now that 
crossed diagrams are concerned with cluster effects, 
t~ corresponds to an improved approximation which in
cludes cluster effects. As stated in IV, this is the rea-
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son why £t gives a better result than E;;M near the perco
lation threshold. 

In our case of 2D systems, we have demonstrated that 
crossed diagrams with open-circle vertices as ex
pressed by Fig. 5 vanish. That is, the contributions 
from a crossed cumulant diagram and the corrections 
due to the same diagram are equal to zero only all 
together but not independently. In this sense, the effec
tive-medium theory is regarded as an approximation in 
which crossed cumulant diagrams and exclusion-effect 
corrections from them are both taken into consideration 
in a self-contained manner, and therefore some impor
tant cluster effects are included. In contrast to t~M' the 
cumulant solution t~ contains corrections alone and 
apparently violates the self-containedness requirement. 
Here we recall that Eq. (6.10) is exact up to fourth 
order but Eq. (6.7) is not true in fourth order. This 
reasoning accounts for the numerical behavior of £~M 
and Et in 2D materials. 

7. ONE-DIMENSIONAL SYSTEMS 

We conclude this paper with a discussion of the 
mathematically trivial but nevertheless interesting 1D 
problem. In the 1D case the governing equation (2.3) 
will be 

dE(Xj)E j (Xj) = 0 
dXj , 

or 

Since the effective permittivity E* is defined by 

(£(xj)E j (Xj) = £*(E j ), 

we arrive at an exact result 

£* = 1/(1/£). 

The perturbation series for £* is23 

(£'2) (£,3) (£'4) _ (£,2)2 
E* =(£) - W + (E)2 - (E)3 

(E '5 ) _ 2(E,3)(£,2) 
+ (£)4 - ... 

1,0,---,----,-----,-----,----, 

0.8 

" /(c) 

0 .• 
" 

o 02 0.4 0.6 0.8 10 
VOWME FRACTION 

(7.1) 

(7.2) 

(7.3) 

(7.4) 

FIG, 14. Plots of the relative permittivity €/I/E 1 and £(\/€1 
against the volume fraction x for the choice of "2/E 1 = O. Label
in:; conventions are the same as in Fig. 10. 
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=(£) _ (£2)0 + (£3)0 _ (E4)c + 2(E2)0 
(E) (E)2 (E)3 

+ (E') 0 + 8( E3 )0 ( E2 )0 _ ... 
(E)4 (7.5) 

It has already been pointed out that Ain ) = 1/3"-1 for a 
3D system and A~n) = 1/2"-1 for a 2D system [see Eqs. 
(Ill. 2. 27) and (3.31)]. The corresponding expression in 
the present case is 

A~n) = 1/1 "-1 = 1, (7.6) 

so that Kroner's approximation gives 

~ (E/n) 
E~ = (E) + ~ (_ (E) )"-1 

(£12) (E'3) (E'4) (£15) 
=(£) - T> + (E)2 - (E)3 + (E)4-

=(E) -(£r~J =(£)(2 - (f) G)), (7.7) 

As the non-self-consistent cumulant solution we get 

* () t (En)c 
EO=E +",,2(-(£»)"-1 

-(E) _ (£2)c + (E3
\ _ (E4)0 + (£5)c _ '" 

- (E) (E)2 (E)3 (E)4 

(E'2) (£13) (f14) _ 3(£12)2 
=(£) - T> + (£)2 - (E)3 

(£15) _10(E'2)2 
+ (£)4 -'" 

= 11 (£ze/(e»/(ze/<e~ dz. (7.8) 

Similarly, for the self-consistent cumulant solution, 

* <£2)c (£3)c (£4)c +(£2); 
Ec =(E) - W + «)2 - (E)3 

+ (£5>0 + 3(£3)0(£2\ _ c •• 

(E) 4 

(£12) (£13) (E'4) _ 2(E'2)2 
=(£) - T> + TtY - (£)3 

(£15) _ 7(£,3)(£12) 
+ (E)4 - ... 

To sum up, the EM theory provides an exact result in 
1D systems and serves as a better approximation than 
the cumulant expansion method in 2D systems. 

APPENDIX A 

Integrating by parts and applying Gauss' theorem of 
two dimenSions, we recast Eq. (2.13) as 

A (2 ) _1.... f 1 0 log(1/rd ag(rd 
.. - (, U 12 
1) 21T s aX12, i oX12, j 

1 1 d/J.12 X12 i ( 1 1 =-- --n12.j--=.:.gr I2)-- dCJ12 
2?T C Y12 Y 12 21T S 

(Al) 

Here C is the bounding curve of the medium S, ri/J.12 a 
line element of the boundary C, and n12, j the x j com
ponent of an outward unit normal to the line element 
dJ.J.12' Since the boundary condition (2.14) guarantees 
that the curvilinear integral on the right approaches 
zero a's S-oo, the proof of Eq. (2.15) is completed. 

To demonstrate Eq. (2, 16) we transform the right
hand side into 

_1_ r d (I ~~ aZ
g(r12) 

(27T)2 1 s a1 1 s ( CJ2 r12 Yz2 OXI. jOX2, i 

= _ ~ ( d0 12 ag(r12) r dal Xl'2k _O_(X\i). 

(27T) ls OX12,j Js Yl OX1,k 12 

In polar coordinates we have 

i da xl'k_a_(~)=12' de l~dY _i)_(~) 
1 r 2 ox r " 1 1 i)r r 2 s 1 1, k 2 0 0 . 1 2 

= _ 27T X12d 

1"12
2 

Insertion of Eq. (A3) into Eq. (A2) yields 

-1-1 d Is t XI,k ~ i)2g(rI2) 
)
2 a 1 (, (T 2 2 2 ~ 

(21T S S 1'1 Y2 eXl.ioX2,j 

=-1....[da X12,i og(r12) =A~2) 
27T S 12 1'12 2 OX12. j 1) , 

(A2) 

(A3) 

(A4) 

= [I (£z,/et)/(z,/et) dz. (7.9) which accomplishes the proof. 

It is important to note that the EM approximation for 
a 1D materiai coincides with the exact solution. The 
EM theory is exact in one dimension because the re
placement of the surrounding medium of a particular 
element by the effective medium does not affect the 
electric displacement in that element. Actually, the 
diagram equation shown in Fig. 8 yields 

which is equivalent to 

E;M = 1/(1/£). 
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(7.10) 

(7. 11) 

APPENDIX B 
The quantity Jp,ik(r) entering in Eq. (4.18) is an 

isotropic tensor and has the form 

1 1 d X12 i aIp (rI3) 
J p• ik(r23) = - 27T U12-:'T a:x-

s ' 12 12, k 

'( )X23,i X23,k D ( )0 = C p Y23 ---- + P r23 ik' 
Y23 Y23 

It follows that 
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(B1) 
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376 



                                                                                                                                    

For evaluating Cp(r23) and D p(r23) choose r23 to lie along 
the XI axis; then 

Or13 X13, I B -- = =cos 130 
aX13, I rl3 

From Eqs. (Bl) and (B3) we obtain 

J (r) = - ..!...1 d(J X1\1 aIp(r13) 
",11 23 27T 13 r ax s 12 13,1 

for r13 < r23, 
for r l 3 > r 23 , 

( /p(r23) 1 [T23 2 
Dp r2S) = -2- - -2 2 r13 d/p(rI 3) 

r23 0 

{
l for r Z3 <p, 

= p2/2r232 for r Z3 > p. 

It is seen that 

J", 1I.(r23)J p, Itl (r23) 

377 

= Cp(rd[ Cp(r23) + 2Dp(r2S)]X23,k X23.h + [Dp(r23)]21ikh , 
r23 r23 

J. Math. Phys., Vol. 16, No.2. February 1975 

(B3) 

(B4) 

(B5) 

(B6) 

(B7) 

(B8) 

(B9) 

aJp, Ik(r23)Jp,hi (r23) = X23,k (d[ Cp(r2S) + Dp(r23)]2 
aXZ3, h r23 dr23 

Cp(rzs)[ Cp(rzS) + 2Dp(r23) J) 
+ . 

r2S 
(BiD) 

Accordingly, combination of Eqs. (4.18), (B7), (BB), 
and (BiD) leads to the conclusion that 

B (4) _1. 1.1' i '" Cp(r23)[ Cp(r23) + 2Dp(r23)] d 
4 - 8 - 2 1m r23 

p~+O 0 r23 
1 ='8, (Bl1) 

as asserted in Eq. (4.23). 
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Simple expression for the linear boson transformation 
coefficients. II 
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We obtain a simple expression for the coefficients which connect a Fock state containing an arbitrary 
number of quasiparticles with its transformed state under a boson Bogolubov transformation. 

I. INTRODUCTION 

On account of the importance of the Bogolubov trans
formation in the theoretical understanding of supercon
ductivity,l there has been interest in obtaining an ex
plicit expression for the transformation coefficients 
which connect a Fock state containing an arbitrary num
ber of quasiparticles with its transform under a boson 
Bogolubov transformation. In fact, Tanabe2 in a recent 
attempt obtained an expression for these coefficients. 
However, his answer is extremely complicated on 
account of the presence of four explicit and two implicit 
summations. 3 Moreover, his calculations are not at all 
straightforward and involve a lot of computations. It 
seems that his indirect method of using the eigenfunc
tions of a linear harmonic oscillator to effect the calcu
lations makes the calculations unnecessarily involved 
when one attempts to obtain a simple analytic expres
sion for these coefficients. 

We attempt the problem directly by writing difference 
equations for the coefficients in question. A slight mani
pulation of these equations gives us a form which can 
be used to solve the problem using the technique of 
generating functions. Finally we can compute the ex
plicit answer by expanding the generating function. 

The scheme of this paper is as follows. In Sec. II we 
gi ve the calculations for the zero momentum case. In 
Sec. III we do the same calculation for the momentum
dependent case wherein we arrive at the expression 
mentioned above. To make comparison with Tanabe's 
work easier, we shall be using his notations throughout. 

II. EXPLICIT DETERMINATION OF THE 
COEFFICIENTS FOR THE ZERO·MOMENTUM 
BOSONS 

In this case, the Bogolubov transformation is e S with 

(1) 

where the creation and the annihilation operators a and 
at satisfy the commutation relation 

(2) 

The operators band bt which are the transforms of the 
operators a and at are given by 

h =ua + vat = eSae-s, 

bt = nat + 1'(1 = eSate-S, (3) 

where u = coshx and 11 = sinhx. The inverse transforma
Hon c- s gives the answers obtained from Eqs. (3) by 
replacing l' = sinlL'\' by - l' . 
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We must compute 

Gk;I(X)= .,jk~l! a(Olake(-ix(atat -aa»)(at)llo>a (4) 

=.,jk!l!Hk;l(x). (5) 

Using Eqs. (2)-(5), we obtain 

kHk; 1 (x) = - (l + 1) sinhx &-1; l+l(X) + coshx H k-1; 1-1 (x) 

(6) 

lHk ; I(X) = (k + 1) sinhx Hk+l; l-1 (x) + coshx H k- 1; l-l(X). (7) 

The above recursion relations have the indices k and 
I both increasing and decreaSing. In order to evolve a 
situation where k and 1 are both nonincreasing, we sub
stitute, in Eq. (6), the expression obtained from Eq. (7) 
for H k_1;I+l(X). This gives 

k coshx H k ; 1 (xl = - sinhx H k_2:1 (x) + HH; /-1 (X). (8) 

Similarly 

1 coshx H k ; I(X) = sinhx H k; 1_2(X) + HH; 1-1(X), (9) 

Now from the definition of H k ; 1 (x) it is evident that 
H k ; I(X) = 0 unless k ± I = even, i. e., H k ; I(X) *0 only if k 
and 1 are both even or both odd. Together with the above 
recursion relations this gives 

H_n;l(x) =Hk;_n(x) = 0, 

where n> 0, as should also be evident physically. Thus 
our recursion relations should, in principle, give us all 
the Hk;l(x) in terms of a single starting Ho;o(x). Before 
we show how this is explicitly achieved, we should like 
to mention a special case. Putting k=l= 1 in Eqs. (8) 
or (9), we obtain 

H 1;I(X)= (l/coshx)Ho;o(x). (10) 

By defining the generating function 
., 

H(a, b;x) =.0 &; /(x)akhl, (11) 
k, ,. 0 

Eq. (B) becomes 

coShx~ H(a, bjx) = (-atanhx + bhx)H(a, b;x), (12) oa cos 

which has the solution 

H(a, b;x) = C(bjx) exp( - ia2tanhx + ab/coshx), (13) 

where 

(14) 

using Eq. (11) and H O;21+1(X)=0. 
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To obtain HO;ZI(X) for 1'" 0, let us put k= 0 in Eq. (9). 
This leads to 

(15) 

i. e. 

HO;ZI(X) = (~tanhx)l • (1/1 !)Ho;o(x), (16) 

which gives 

C(b;x) ==Ho:o(x) exp(tb2tanhx). (17) 

Thus Eq. (13) takes the form 

H(a, b; x) ==Ho;o(x) exp[ab/coshx -t{a2 
- b2)tanhx]. 

(18) 

Finally we have to compute Ho;o(x). For this purpose, 
we differentiate the definition of Ho;o(x) with regard to 
x to arri ve at 

d 
dx Ho;o(x)==z;o(x). (19) 

But from Eq. (8) 

Hz;o(x) == -%Ho;o(x)tanhx. (20) 

The above two equations result in 

Ho;o(x) = (coshx)-1/2, (21) 

since Ho;o(O) = 1 by definition. 

Substituting this value of Ho:o(x) in Eq. (18) and ex
panding the generating function in powers of a and b, we 
arrive at4 

Gk;I(X) ==..; kIll li;,(x) 

== (_I)k!Z( k!l! 1 (tanlu:\ (k+ l)/2 
cosItt) 2-) 

:0 (-4/sinh2x)~ for k, 1 even, 
x ~ (2)..) !(tk - >..)! (~l - >..)! ' 

== (-l)(k -1)/2(~) (tanhx\<,..lIf
2

-
1 

cosh3x \" 2 J. 
:0 (-4/sinh2x)~ 

x ~ (2\ + 1)!(t(k -1) ->..)!(t(l-l) ->..)1' 

for k, I odd, 

== 0 otherwise. (22) 

These results are exactly the same as obtained by 
Tanabe using complicated and lengthy mathematical 
techniques. 

III. EXPLICIT DETERMINATION OF THE 
COEFFICIENTS FOR NONZERO MOMENTUM BOSONS 

In this case, the Bogolubov transformation is eT with 

(23) 

where the momentum k* 0 and the operators air' a_Itt a~, 
a!" satisfy the commutation relations 

(24) 

The transforms bIt and bi of these operators are given 
by 
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where 

Ut == U_t = coshx" and v" == v_It == sinhx". 

We have to compute 

Gp,q;r,s(Xt) = Jp I ; ! f a(O I (alf(a_,,)qe T (a~)'(a!l<)S IO)a .q.r.s. 

==v'p!q!r!s! Hp,q;r,s(x,,). 

(25) 

(26) 

(27) 

Following the techniques used in the previous section, 
we first obtain four recursion relations satisfied by 
Hp,.;r,s(Xl<) which have indices both increasing and de
creasing. Exactly the same manipulations as were used 
in the previous section lead to the following recursion 
relations with indices all nonincreasing: 

p coshxtBp,Q;r,sCXt) 

= - sinhx"Hp.l,q_l;r,s(Xt) + H9- 1,q;r-l,s(Xt ), 

q coshxtHJ>,q;r,s(Xt) 

= - sinhx"Hp_1,Q_l;r,s(Xt) + Hp,q-l;r,s-l (xt ), 

r coshxtHp,q;r,s(x,) 

== sinhx"H9 ,.;r_l,s_1(Xt) + !4.1,.;r-l,s(Xt ), 

s coshx"Hp,Q;r,s(Xt) 

(28) 

(29) 

(30) 

== sinhxtHp ,q;r_l,S_l(X,,) + I4,q-l;r,s-l(Xt)· (31) 

From the definition of H's we immediately conclude 

Hp,q;r,s(Xt) == 0 unless p - q = r - s. (32) 

[This result can also be seen as a consequence of mo
mentum conservation, A special case of it is H9 ,q;r,.(xt ) 

== 0 if P + q + r + s == odd.] The above relations now give 
us the phYSical result that an H with any of the indices 
equal to a negative integer is equal to zero. Thus the 
above recursion relations should enable us to compute 
all the Hp, .;r,s(Xt) in terms of a Single starting one, 
i.e., Ho,o;o,o(xt ). We give below this explicit calculation. 

By defining the generating function 
~ 

H(a, b, c, d;Xt) = 6 IIp,q:r,s(xt)aPbQc' as, (33) 
P,Q,T,S_ 0 

Eq. (28) becomes 

~ H(q, b, c, d;xtl == (- b tanhxt + -E--hx )H(a, b, c, d;Xt1, aa cos t 

which has the solution 

H(a, b, c, d; Xk) = C(b, c, d; Xt) exp( - ab tanhx k 

+ ac/coshxtl, 

where 
~ 

(34) 

(35) 

C(b, c, d;xt ) =H(O, b, c, d;xt ) = 0 HO,Q;r,s(XtlbQcrds. 
Q, 1', S,. 0 

(36) 

To obtain Ho,Q;r,Q.r(Xt), we put p -= 0 in Eq. (30), which 
results in 

or 

(37) 
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Similarly from Eq. (31) puttingp==r=O and solving, 
we obtain 

On using Eqs. (37) and (38), we can now compute the 
C(b, c, d;xt ) appearing in Eq. (36) as 

(38) 

C(b, c, d;xtl == Ho,o; o,o(Xt) exp(cd tanhxt + bd/coshxt). 

(39) 

Thus we obtain the generating function in Eq. (35) in 
terms of the only unknown H 0,0; 0, o(xt ) as 

H (a, b, c, d;xt) == H 0,0; 0, o(Xt) 

x exp[ (ac + bd) / coshx" - (ab - cd)tanhxtJ. 

(40) 

To compute Ho,o;o,o(Xt), we differentiate its definition. 
This gives 

d 
dX

t 
Ho,o;o o(x,,) ==H1,l;O,O(Xt ), (41) 

Also from Eq. (28), putting p==q== 1 and r==s == 0, we 
get 

(42) 

Thus 

H 0,0; 0, o(Xt) == (coshxk t\ (43) 

since Ho, 0; 0, 0(0) == 1 from its definition. Our generating 
function is now finally obtained as 
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H(a, b, c, d;Xt) == [ l/(coshxt ) J 

x exp[ (ac + bd)/coshx .. - (ab - cd)tanhxtJ. 

(44) 

On expanding this generating function in powers of 
a, b, c, d, we arrive at 

==(-1)pvpl 1 1 1 (tanhxt)P+T 
q. r. s. (coshxt)q-p+ 1 

X6 (-1/sinh~)X 
x X I(p - X) ! (r - X) ! (q - P + X)! ' 

when p - q == r - s, 

== 0 otherwise. 

(45) 

This extremely Simple result may be compared with 
Tanabe's extremely complicated result containing four 
explicit and two implicit summations. 3 
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It is shown that the five-dimensional formalism of the Einstein-Mayer theory of 1932 can be given a 
new interpretation and used to describe a continuous medium with intrinsic angular momentum. The 
equations of motion of a spinning particle are derived from the generalized field equations and are 
seen to be essentially the same as the Mathisson-Papapetrou equations. Finally the correspondence of 
the new approach with the theories based on Cartan's torsion tensor is established. 

1. INTRODUCTION 

In recent years two possible ways of generalizing the 
field equations of general relativity for the case of a 
continuous medium endowed with intrinsic angular 
momentum (spin) have been developed. The first having 
its roots in Cartan's original suggestionl

-
4 has been 

worked out in detail by F.W, Hehl,s-a A. Trautman,9-11 
and R. L, Clerc. 12.13 Similar results using the tetrad 
formalism were earlier obtained by D. W. Sciama 14 and 
T . W. B. Kibble. 15 A second and more recent approach 
of the first author (M.N.M.)16 uses a five-dimensional 
formalism which was originally developed by A. 
Einstein and W. Mayerl7 in 1932 to describe electro
magnetism and gravitation in a unified manner. It was 
proved that the Einstein-Mayer theory can be rein
terpreted to describe a spinning medium and the equa
tions of motion of a spinning point particle derived 
from it are essentially the Mathisson-Papapetrou 
equations. 18,19 

The complete equivalence of the two approaches (with 
a slight modification in the second) was established by 
the second author (A. S. R.) and a combined account of 
the works of both is presented below. 

2. APPROACH BASED ON EINSTEIN-MAYER 
FORMALISM 

In this formalism 17 at each point of the V4 , side-by
side with the four-dimensional vector space formed 
from contravariant and covariant vectors there is also 
assumed a five-dimensional vector space V;; with a 
metric tensor g"," (greek indices run from 1 to 5 and 
italic indices from 1 to 4). The connection between 5-
vectors in V;; and 4-vectors in V4 is realized by a mixed 
tensor Yak. For example, 

ak = Y;rf1, 
ha = Yakbk + (bT AT)Aa' 

the nonnull vector Aa being defined by 

YokAa =0 

and normalized by the condition 

gpa APAo =1. 

(2.1) 

(2.2) 

(2.3) 

(2.4) 
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Further we identify 

(2.5) 

as the metric tensor of V4 • Then it is easily shown that 

y:y:=o~, 

y:y/=o~-AoN • 

From (201) and (2.7) we get 

dr = y; if + (A"aa)A T • 

(2.6) 

(2,7) 

We shall define covariant derivatives of vectors and 
tensors in V;; with respect to :>:' by analogy with the cor
responding definition in Vto For example, 

(2.9) 
.,i7 

the mixed r symbols being functions of Xi, subject to 
the condition 

The conditions for integrability of the conditions for 
parallel transport of the vector if, viz., 

are given by 

where ~q~o is a Riemann-Christoffel-like tensor de
fined by 

P qp)."= o.r~). - apr~). + r~.r;). - ~.r:).. 

We may also prove the following identities: 

Yok;.;P - Yak;P;. = Y"IRqPk ' ({}) + YPk?"P,," ' 

A,,;p;q -A,,;q;p = ~qa AAp 

(2,13) 

(2,14) 

RqPkl (n) being the Riemann-Christoffel tensor for V4 

with Christoffel brackets n. 
In order to make the above formalism suitable for the 

description of a spinning medium we introduce the fol
lowing hypotheses: 

(1) Y"k;q=Y;Vrkq , 

Vrk• being a covariant tensor of rank 3 in Vt; 

(2) A~. =0. 
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The assumption (2.15) together with 

fi, k ;. = 0 

implies 

Equation (2.1S) together with (2 016) ensures that 

fir: '" (APN + ytyak);. = O. 

(2017) 

(2.1S) 

The identities (2.13) and (2.14) together with the 
hypotheses (2.15) and (2.16) lead to an asymmetric 
Einstein tensor GU, where 

Gii '" pij _ ~Pf?"ii, 

pi} '" p"i /y;yaj 

=Rii + Viti(gklV;kl) + vtik~k i 

+ (fiit Kkl Vi kl );t + VI,ii , 

P=fi jj pii . 

(2.19) 

(2.20) 

(2021) 

For physical application of the above formalism we 
consider an incoherent spinning fluid of the Weyssen
hoff-Raabe type20 with energy-momentum tensor given 
by piUi , pi being the 4-momentum density and ui the 
4-velocity of the fluid. The spin density of the medium 
is represented by the skew symmetric tensor siJ whose 
components are subject to the restriction 

(2022) 

By analogy with coventional general relativity and the 
Weyssenhoff-Raabe theory of spinning fluid for the 
special relativistic case, we propose the following 
system of field equations: 

Gij=Kpiuj (2.23) 

and 

Viii - VW = KSiJUI , (2.24) 

K being a universal constanL Writing (2024) in the 
equivalent form, viz o , 

(2024') 

We may write (2,22) equivalently as 

ffiV,U=ffiV;Ij=O. (2.22') 

In view of (2022') the skew symmetric part of Eq. 
(2.23) yields 

(Siiif);k = piU) - piui . 

Also Eq. (2.23) itself simplifies to 

Gii ooRi} + 1J{2 /4) (slmslm)uiul + Vf/i 

- ~ti[R + (K"/4)(slms'm)(urur)] 

=Kplu; . 

(2.25) 

(2.26) 

For s'm=o, Eqs, (2025) and (2,26) together reduce to 
the Einstein field equations for a spinless incoherent 
fluid, viz., 

(2.27) 

where pi = Paui , Po being the invariant expressing the 
proportionality of pi and ul . 
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To derive the equations of motion of a spinning point 
particle we first get, taking the divergence of (2.26) 
w.r.t. j, 

K(piui );; - (K"/4){(Slms'm)uiui}u - Vi/ii 

+ (K"/S)r;iJ{(Slms,m)(- c2 )hj =0. (2.2S) 

Integration of Eqs. (2.22), (2.25), and (2.2S) over 
the small proper volume Va of the particle leads to the 
following system of equations of motion for the spinning 
particle: 

SiiU j = 0, 

SiJ = piu} _ pjlli, 

iii - (KS /4)u'i +.lu1SmnR i =0 o 2 lmn , 

where the dot represents differentiation w. r. t the 
proper time element dT of the particle and 

S° = fv: sij dVa = total spin of the particle, 
. a 

pi = r pi dVa = total momentum of the particle, 
, Va 

So = Ivo sZmslm dVa, 

(2.29) 

(2.30) 

(2.31) 

which can be shown to be constant over the world line of 
the particle. In deriving (2.31) we have made use of the 
relation (which is easily proved) 

,K , v.IJt , = - _zt'smnR ! 
;1;, 2 Imn . (2.32) 

Equations (2.30) and (2.31) essentially represent the 
Mathisson-Papapetrou equations for a spinning point 
particle. 

3. EQUIVALENCE WITH THE EINSTEIN-CARTAN 
THEORY 

We shall now establish the correspondence of the 
above theory with that of the Einstein-Cartan theory as 
developed in F. W 0 Hehl's papers. 5-8 

From the connection (used by Heht) 

r~j ={/j} +SiJk -5/1 + Ski} 

=tkj} -Ki/' 

where 

(3.1) 

(3.2) 

is the Cartan's torsion tensor and KI/ is the contortion 
tensor, we may form the Ricci tensor RIJ(r) given by 

Rij(r) =RiJ({}) _ K\{' - (fiilK/});/ - K;' ,j(IJm _Ki mi K,Jm. 

(3.3) 

A comparison of (3.3) with (2.20) shows that if we put 

vlJ1 = _Kil', (3.4) 

Then the two expressions are identical and hence the 
Einstein tensors Gii in the two cases become identical. 
Now (3.4) leads to 

Viii _ V'ij = 2SHI. (3.5) 

In the preceding section we set Vlji - Viii equal to 
K Sij u l and made the further assumption (2022). Now we 
deviate from this line and identify 

"I K 'j T" = 2'S! ul , 
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where 

Tiik = Siik + gikSi II _ t;ikSi / • (3.7) 

From (3.5) and (3.6) we get 

(Viii _ Viii) + gil VJ / _ g-JI Vi kk =KSiJUI. (3.8) 

A further contraction of suffixes leads to 
. . K 'J V· k-2S' k __ -s' u 
k - k - 2 J' 

Now (2.22) implies Sikk=O, in which case Tilk and Silk 

become identical and we get 

TiJI =SiJI = ~SiJUI = t(VlJI _ Viii) 

which is the same as (2.24). 

It only remains to replace tsiiuk with the general spin 
tensor Tlik and the asymmetric e-m tensor piUi with 
'[}J, appearing in Hehl's works. Hence by making the 
identifications (3.4) and (3.6) and not assuming (2.22), 
we can have complete identity of all relations in the two 

* approaches after converting the operators "k, "k and 
Vk introduced by Hehl, into covariant derivatives for 
Christoffel symbols. 

A deeper understanding of the correspondence be
tween the two approaches can be gained from the follow
ing considerations: 

Let aa be a 5-vector in V;; and ak the corresponding 
4-vector in V4 where 

if = y:aa. 

Now we may consider two covariant derivatives: 
(1) First we transform if to ak and then take the co
variant derivative. This is nothing but the covariant 
derivative of if w. r. t. to Christoffel bracket HJ (2) 
We may first take the covariant derivative of aa as 
defined by (2.9) and then transform this tensor to ~ 
with help of y:. 

The second procedure is very interesting and we may 
ask: What meaning is to be attached to the tensor so 
obtained? It is very tempting to consider it also to be a 
covariant derivative of ak • But if it is taken to be the 
covariant derivative of ak w. r . t. {tl}' then it means 
that the procedures (1) and (2) lead to the same tensor 
and this would imply that the covariant derivative of Y: is zero. Because 

Yak(a';q) = (y:aa);q - aaY:;q 

= a~ - ifyk. der a~ 
,q fJ,q ,q 

for all aa. Hence 

(3.10) 

This will not lead to any new results at all and we 
might as well work throughout with ~. 

But we may consider the second procedure to lead to 
a covariant derivative of ak but w. r. t. a connection dif
ferent from {tJ} which we denote by r~J' i. e. , 

(3.11) 
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Then it can be shown that 

rk _{k} _ yayk . 
ql - ql I U;q' 

writing out Yak;q explicitly in (3.12), we get 

(3.12) 

(3.13) 

Using this expression for r:
1 

we may compute the 
corresponding Riemann-Christoffel tensor RiJk' (r) and 
after performing the calculations [using (2.3), (2.7), 
and (2.16) 1 we may show that 

Riikl (r) = P iik
l

, 

where 

(3.14) 

(3.15 ) 

P ii/ being defined by (2.12). Equation (3.14) shows why 
the Einstein tensor defined by (2.19) and Gil (r) were 
identical. It Should be noted the explicit expressions for 
the Ricci tensors in the two cases involving Ki/ and 
~j k have not been used. 

We may denote 

Yz"Y:;q = - Vk Iq 

which immediately leads to the results (2.15), (2.18), 
and (3.4). 
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and without a singular perturbation 
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By using Feynrnan's definition of a path integral, exact propagators for a time-dependent harmonic 
oscillator with and without an inverse quadratic potential have been evaluated, It is shown that these 
propagators depend only on the solutions of the classical unperturbed oscillator. The relations 
between these propagators, the invariants, and the Schrodinger equation are also discussed, 

1. INTRODUCTION 

The path integral formulation of Feynmanl provides 
an alternative approach towards solving dynamical prob
lems in quantum mechanics. In this approach the usual 
Schrodinger equation is replaced by the integral 
equation. 

1/J(X" ,t") = J K(x", t" ;x' ,f')1/J(x', t') dx' (t" > t') (1) 

with the initial condition 1/J(x" ,t') = 1/J(x' ,t'); the propaga
tor or the kernel K is defined by a path integral 

K(x" ,t" ;x' , t') = r exp[ (i/Ii)S (x" , t" ;x' , t') jDx(t). (2) 

Here, the integrations are over all possible paths start
ing at x' = x(t') and terminating at x" = x(t") 0 The func
tion S(x" ,t" ;x', t') in the integrand is the classical action 

(" " , ') r IN L ( 0 ) S x ,t ;x ,t = X, x, t dt, 
, I' 

(3) 

L(x, x, t) being the Lagrangian of the system considered. 

Despite its intuitive appeal the applicability of this 
approach has been limited because of analytical difficul
ties and explicit expressions for path integrals are 
available only for a few cases. 2

- 5 Furthermore, sys
tems for which the Lagrangian has explicit time depen
dence have received very little attention. In this con
text, an exact path integral solution is hitherto available 
for the lone case of a forced harmonic oscillator. 2,6 

In this paper we have obtained exact propagators for 
two systems where the Lagrangian is explicitly time
dependent. These are: (i) a time-dependent harmonic 
oscillator7

-
10 in one dimension (harmonic oscillator with 

a frequency which in a function of time) and (ii) a time
dependent harmonic oscillator perturbed by a constant 
inversely quadratic potential. 11 We find that propagators 
for both these cases depend only on the solutions of the 
classical unperturbed oscillator. Further, it is found 
that the propagators admit expansions in terms of cer
tain solutions of the corresponding time-dependent 
Schrodinger equation. These solutions of the Schro
dinger equation (apart from time-dependent phase fac
tors) are also the eigenfunctions of an invariant opera
tor associated with the problem. In Sec. 2 we give the 
formulation and evaluation of the propagators, while in 
Sec 0 3, we discuss the relations between the SchrB
dinger equation, invariants, and the propagators 0 Brief 
derivations of some mathematical results necessary for 
Sec 2 are given in an appendix. 
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2. FORMULATION AND EVALUATION OF THE 
PROPAGATOR 

The path integral in Eq. (2) is usually defined by 

K(x" ,t" ;x' ,t') 

f f ~. N ~N_l 
= lim AN ". exp~6Sj(Xj'Xj_l) n dxj , 
N-~ nj=l j=1 

(4) 

wherexj=x(tj ), xo=x', XN=X", tj-lj_l=(t"-t')/N=E, 
and AN is the normalization factor in the N-th approxi
mation. The action Sj(xj,x j_1 ) over an infiniteSimally 
small time interval I j - t j _1 =0 E may be approximated by 

Time-dependent harmonic oscillator 

This is characterized by a Lagrangian 

LC;, x, t) = tmr - tmw2(t)~, 

where w (t) is assumed to be a regular function of t. 
From Eq, (5) we have 

Sj (xj ' Xj-l) = (m/2E)(x j - XJ-l}2 - (E/2)mw;x~, 

with Wj =0 w(t) and we may write 

K(x" , t" ;x' , t') 

(5) 

(6) 

(7) 

= lim AN f ,~ exp [i2'r:: ((Xj - Xj_l)2 - Ew;X;\l N~l dxj . (8) 
N-~ J=l ~n E 1Jj_l 

Since K has to be unitary AN is given by 

AN= (rn/2lTiliF)NI2. (9) 

Equation (8) may be cast in the following form: 

K(x" ,t" ;x', t') 

( 
'(3)NI2 ('{3 ) = 1i_~ -;IT exp Z2 (X'2 + X"2) 

X f exp[i{a tXf + a2x~ + 0,. + a N-l~-l) J 
N-l 

X exp(- i{3xox 1 ) 0" exp(- i{3XN_1x N) n dx;, (10) 
j=l 

where 

(3=rn/liE, a
j
={3(1-tw;E2), j=1,2, ... ,N-1. (11) 

After performing the integrations by repeated use of the 
formula 

r ~ exp(iax2) exp(- iax) exp(- ibx) dx 
, -~ 

= ,jilT/a exp[- i(a2 + b2)/4a lexp(- iab/2a), (12) 

we obtain 

K(x" , t" ;x' , 1') 
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where 

13 (f 
qN= 2- ~'Y ' 

N-l 

'Yl=~l' Yj=o.j-(32/4'Y,_1' 

J-l f3 
/31=f3, /3,=13 n -2 • 

kol 'Yk 

(14) 

(15) 

(16) 

(17) 

(18) 

It is shown in the Appendix that the limiting values of 
aN' PN' and qN are given by 

. m / y(t")Y(t') )1/2 
~l.?! aN = 1f \sin<1>(t" ,t') , (19) 

~i.?! PN = ;(-stt~t;) + Ht') cot <1>(t" , t'») , (20) 

1i~ qN = ;(!~~:~ + Y(t,,) cot<1>(t" , tf») , (21) 

where the dots over sand y denote differentations with 
respect to time, 

<1> (t" , f' ) = y(f") - y(t'), 

and set) and y(f) obey the differential equations 

§ - C2
S- 3 + w2 (t)s = 0, 

YS2= C, 

(22) 

(23) 

(24) 

where C is an orbitrary constant. In fact, set) and yet) 
represent, respectively, the amplitude and phase of a 
classical time-dependent oscillator [with real w(t)]: 

;jet) + w2 (t)1)(t) = 0, 

l1(t) == s(t) exp[iy(t)]. 

The propagator K thus takes the form 

K(x", f";x', t') 

=(2nili~=-,t,)r/2 eXPE::l::X"2- !:x'~J 
x exp( im [(Y"X"2 + YX,2) cos <1>(f" t') 

2lisin<1>(t", t') , 

- 2v'Y"frX"X'J), 

(25) 

(26) 

(27) 

where the prime and the double-prime denote the quanti
ties evaluated at time t' and f", respectively. It may be 
easily verified that for the case when w(t) is a real 
positive constant, we have s(t)=.Jm!w, y(t)=wt, and 
the propagator of Eq. (27) reduces to the usual expres
sion for a harmonic oscillator with constant frequency. 2 

Harmonic oscillator with a inverse quadratic 
potential 

We now consider a particle of mass m moving in one 
dimension under an external quadratic time-dependent 
potential and a constant inversely quadratic potential. 
The Lagrangian is given by 
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(28) 

where wet) is a regular function of time t and g> _li21 
8m to avoid "the fall to the center. ,,12 We note that the 
Singular nature of the perturbation term prevents any 
transition between the states for x> 0 and x < O. We may 
therefore restrict ourselves to the region x;,. 0; the 
solution in this region can be extended to the x < 0 re
gion without any further conditions on continuity. 

According to Eq. (5), we may write 

S (x x )= m (X j -X,_l):" ~mw2~-~ 
j ",-1 2€ 2 J' X,X,_1 

= ; [(~ + x~_)/e - ew~~J 

where 

_ (mXjXJ-l + li2(aZ - ~)e ) , 
€ 2mxj x j _1 

(29) 

a=t(1 +8mglli2)1/2. (30) 

Thus the integrand of Eq. (4) becomes 

exp(~~1 S,(x" Xj-l») 

_ nN [im (x~ + xi-I _ L2)~ - exp 2'" ew,xJ '=1 n € 

(
mX,X'_1 m(a2 - t >t) Xexp - . 

ilie 2mx,x'_1 
(31) 

Noting that the asymptotic form of [.(ul€), the modified 
Bessel function, for small €, is given by 

[ (~)",(_€_) 1/2 exp(~ -t(aZ _ t)~ + o (e2)\ , 
• € 2nu € u '} 

we may replace the last exponential in Eq. (31) by 

(
2nmXJXj_l)1/2[ (mX,XJ-1) 

ili€ • ilit • 

Hence the path integral becomes 

K(x" ,t";x' ,t') 

J 
N N 

= lim AN n R(x!,xj-1) n fix!, 
N~.. ,=1 J=l 

where 

(32) 

(33) 

(34) 

. R( ) = (211mx,xJ_1) 1/2 lim (x~ +~-l) _ 2-.2\1 
~,Xj_l ilif eXPl)1f € EW,XJ/j , 

~I mxjXJ_l (35) 
a ilfe ' 

and AN is given by Eq. (9). 

Steps involved in the evaluation propagator of Eq. (34) 
are essentially the same as before. We first write Eq. 
(34) as 

K(x", f" ;x' ,f') 

= ";x"x' lim (- if3)N exp(if3 (X,,2 + X'2») 
N~.. 2 

x f exp [i (0' l~ + 0'2~ + ••• + 0' N-l~-l)] 
N-1 

XI.(- i{3XoXl)··· 1.(- i{3XN_1XN) n xJ fix" (36) 
j=1 

where OI J and f3 are defined in Eq. (11). Next, we carry 
out the integrations in Eqo (36) by repeatedly using the 
formula3 
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(ReO' >0, Rev>-O 

(37) 

and finally obtain 

K(x" , t" ;x' , t') 

= - Nx"x' lim aN exp(iPNx,2 + iQNx"2)Ia(- iaNx'x"), (38) 
N'~ 

where aN' PN, qN are determined from Eqs. (14)-24). 
Thus, the propagator K may be written explicitly as 

K(x", t";x' ,t') 

_ mVx"y"x'Y' exp~m(S"X"2_S'X'2~ 
- insincp(t",t') [217 s" s' ~ 

x expt~~ (i" x" 2 + y' X,2) cotcp(t" ,t'») 

(
m f9'Y x" x' ) 

Xla in sincp(t" ,t') , 

where cp, s, and yare as defined by Eqs. (22)-(24). 

3. SCHRODINGER EQUATION. INVARIANTS, 
AND PROPAGATOR 

(39) 

We now consider the expansions of the propagators of 
Eqs. (27) and (39) which we denote by K' and KP, re
spectively. We first consider K', the propagator corre
sponding to the unperturbed oscillator, which may be 
rewritten as 

K'(x" ,t" ;x' ,t') 

(
m)1/2(." .,)1/4 exp(-icp/2) 

= 1117 Y y [1 - exp(- 2icp)]1/2 

xexp~m(s" X,,2 _ s' x,2)l exp(m (Y"X,,2 + Y'X,2)\ 
[217 s" s' JJ 217 1 

xexp( -m [y"X"2+ Y'X,2_2Vy'Y"x"x' 
17[1 - exp(- 2icp)] 

XeXP(-iCP)]). (40) 

If we now use the Mehler's formula13 

exp[ - (x2 + y2 - 2xyz)/ (1 - Z2) 1 
v'T-z2 

= exp[- (x2 + y2)] ~ 2:~! Hn(x)Hn(y), (41) 

and let z=exp(-icp) [cp=y(t")-y(t')], x=vmy"lnx", 
y = Vm"Y' /nx', we obtain 

~ 

K'(x", f";x' ,1')= L I/!~*(x' ,t')I/!~(x", t"), (42) 
11=0 

where 

I/!~(x, t) = (2n~! (::r /2 f2 exp[ - i(n + t)y(t)] 

xexpe;(~ + ir)r]Hn (YmY/1fx). (43) 

Using Eqs 0 (23)-(24) defining sand y, it is easily seen 
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that I/!~(x, t) are normalized solutions of the time-depen
dent SchrBdinger equation 

(44) 

(45) 

Moreover, we may write 

(46) 

where 

O'~(t) = - (n + t )y(t) , (47) 

cp~(x, t) = (2n~! C;/f2f2 exp[i~ (~+iy)r ]HN((~Yr/21 
(48) 

cp~(x, t) are then found to be the normalized eigenfunc
tions of a hermitian invariant operator14 associated with 
the time-dependent harmonic oscillator. According to 
Ref. 8 this invariant operator is given by 

(49) 

where P = - ina/ ax and s(t) is a solution of the equation 

s+w2 (t)S-S·3=0. (50) 

It may be pointed out here that Eo 0 (50) is equivalent to 
Eqs. (23)-(24) because the arbitrary constant C oc
curring in the latter equations may be obsorbed in s, 
(by letting s/ Ie - s so that Y -1/ S2). 

Thus, cp~(x, t) are found to obey the equation. 

flcp~(x, t) = n(n +t)cp~(x, [), (51) 

while the phases O'~(t) satisfy the equation 

ndO'~(t) = /rl-0lin~ _~I ,A (52) 
dt \'+'n ilt '+'n/' 

as is required by the discussion of Ref. 9. 

Next, consider the case of the perturbed oscillator. 
Here the propagator KP may be rewritten as 

KP(x", t";x', I') 

2mvx"Y'x'Y' exp(-icp/2) [im(s""2 S' '2\J 
= 17 [1_exp(_2icp)]exp 2n\s"x - s,x J 

(
-m(. 2 0 2) eXP(-2iCP») 

xexp T y"X" +y'x' [1-exp(-2icp)] 

(
2m..fY'V exp(- iCP)X'X") 

xla 17[1 - exp(- 2icp)] . 
(53) 

We now use the Hille-Hardy formula15 

1 ( (x + Y)Z) (2fXYi) 
(1 - z) exp - (1 _ z) Ia (1 - z) 

~ , 
= L.: r( :. + 1) zn(xyz)a/2L~(x)L~(y) 

n=O n a 
(Izl <1) (54) 

and set z = exp(- 2icp) [cp = y(t,,) - y(t')], 
y = m.y X,2 /17 to obtain 

~ 

KP(x", t";x' ,t') = 6 I/!:* (x' ,t')I/!~(x", t"), 
n=O 

D.C. Khandekar and S.W. Lawande 
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where 

1P,.(x, t) 

( 2(1) )1!2( ',\(a+1)!2 
= Vr(n +:.+1) n;Yj XZ+ 1

!2 exp[-i(2n+a+l)y(t)] 

lim (~ .. ) J (my ,\ 
xeXP[21i s+ZY XJL~ n x2J' (56) 

As before, 1jJ:(x, t) are found to be normalized solutions 
of the time-dependent Schrodinger equation 

(57) 

with 

(58) 

The invariant operator IP corresponding to this prob
lem is given by 

(59) 

where p = - ilia/ ax and s(t) obeys Eq. (50). Nothing that 
2grn =fi2(a2 - t) [according to Eqo (30)] and writing 

1jJ:(x, t) = exp[ia~ (t)] cP.,(x, t), 

where 

a!(t) = - (2n + a + 1 )y(t) , 

and 

(60) 

(61) 

(62) 

we may easily verify that cP.(x, t) are eigenfunctions of 
IP, and that 

IP ¢';, (x, t) = 1i(2n + a + 1) <I>~ (x , t) , (63) 

while the phases a~(t) are determined by 

Ii dad~t(t) = ~ I iii :t -H p I <I>~>. (64) 

These examples bring out an interesting observation. 
Consider a system with a time dependent Hamiltonian 
H(t) and assume that there exists a Hermitian invariant 
operator 1(1) which does not involve time differentiation. 
Assume that {<I>n (x, t)} form a complete set of normalized 
eigenfunctions of I(t) with eigenvalues {An}' Then the 
propagator K(x", t";x', t') for the system admits an 
expansion 

K(x" , t" ;x' , I') =L exp{i[a n(t") - an(t') rr<l>~ (x' ,t' )<I>n (x" , t"), 
n 

where the phases an(t) are determined from the 
equation 

and 
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(65) 

(66) 

(67) 

An are time-dependent since the operator I(t) does not 
involve time differentiation. In particular, if the 
Hamiltonian H(t) is a time-independent operator H, the 
invariant operator I may be taken as H itself and both 
<Pn and An are time-independent. In fact, in this case 
An are the energy eigenvalues En and the phases OI n, as 
determined by Eq. (66), are given by 

(68) 

within an arbitrary constant; and hence the propagator 
K assumes the usual form of expansion2 

K(x" , til ;x' , t') =6 exp[ - (i/fi)En (I" - t') ]<p~ (x' ) <pn(x") . (69) 
n 

APPENDIX: DETERMINATION OF THE COEFFICIENTS 
aN' PN' AND qN, AS N -+ 00 

We first define 

(AI) 

(A2) 

and express the coefficients aN' PN, qN in terms of (3 
and Ak : 

aN = f3A N_l' (A3) 

PN=~{3(l- II AjAj-l) , (A4) 

qN=~{3(l-ANjAN-2)' (A5) 

Now from Eqs. (11) and (17) it follows that Aj satisfy the 
recurrence relation 

A j = 2(1 - ~W~E2) -1/AJ _1 • 

Let us write 

Aj=QJ+/QJ , 

so that Qj satisfy the recurrence relation 

QJ+l = 2(1 - ~W~E2)Qj - Qj-l' 

which may be written as 

(Qj+l - 2Qj + Qj_l)/E2 = - w;QJ , 

(A6) 

(A7) 

(A8) 

(A9) 

which in the limit as < - a reduces to the differential 
equation 

(Ala) 

with 

(All) 

The latter condition follows from Eqs. (A 7) and (A8) 
when j is set equal to 1. 

A solution of Eq. (Ala) satisfying Eq. (A11) is given 
by 

Q(t) == s(t) sin[y(t) - y(t')], (AI2) 

where s(t) and y(t) obey the Eqs. (22) and (23), re
spectively. We may now proceed to determine the limit
ing values of aN' PN , qN as N-oo. First, all these co
efficients are expressed in terms of {3 and Qk: 
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Noting that f3 = til mE, we find that in the limit N - 00 

(E - 0), 

and 
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Calculation of moments in the harmonic oscillator basis 
P. C. Joshi 
Nuclear Physics Section. Department of Physics. Banaras Hindu University, Varanasi 221005, India 

(Received 27 November 1973) 

The matrix element of r k between the eigenstates of harmonic oscillator potential is generally 
calculated by using the value of an integral listed in available literature for certain specific 
conditions. Recently, while calculating the matrix elements of deformed spin-orbit potential in the 
harmonic oscillator basis for nonspherical nuclei, we found that the evaluation of this integral is 
needed under more general conditions than discussed previously. We discuss the results of the 
evaluation of this integral for these additional cases. 

The three-dimensional harmonic oscillator potential 
has been extensively used in practically all the branches 
of physics. The eigenfunctions describing this potential 
contain Laguerre functions (or confluent hypergeometric 
functions), The radial part of these wavefunctions is 
written as l 

(1) 

Generally one comes across the problem of calculating 
the matrix element of yk for integer k (or the moments) 
between these wavefunctions, which are 

where 

Z = r, p = ~ (l' + 1 + k + 1), 

N=2n+l, N'=2m+l', 

p - Il = l' + ~, p - v = 1 + ~. 

The value of integral in Eq. (2) is given by2 

1= (_l)",+nr (p + m - J.1+ l)r (p + n - v + 1) Il! v! 

6 r(p+a+l) 
x a a!(m-a)!(n-a)!(a+ Il-m)!(a+v-n)!' 

where m, n, Il, v are integers or zero and a takes on 
integral values such that 

m -/1 

n-v 

(2) 

(3) 

(4) 

(5) 

It is clear that condition (5) is not satisfied for nega
tive values of Il and/or v; the evaluation of this integral 
corresponding to such values has not been reported so 
far. Recently, we came across a physical problem 
where the value of Il and/or v becomes negative. We 
have evaluated the integral (2) for these cases, starting 
with the definition of generating functions of Laguerre 
functions and the results are given below. 

Case I: If one of the parameters, say Il is negative, 
the value of the integral is as follows: 

I
_ r (p+m- ll +l)r(p+n-v+l) , 
- r(- 11) v. 

X6(-I)n-a r(m-a-Il)r(p+a+l) () 
a (m-a)!(n-a)!(v+a-n)!a! 6 
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where 

(7) 

Case II: If both /1 and v are negative integers, then we 
obtain the value 

1- r::......!.1( p::....+-:..:..m=-=-~Il_+...,.,I=-)r~(p:...,.+_n:.:...---'-v_+_l~) 
- r(- Il)r(- v) 

;,r(p+a+l)r(m- a-Il)r(n- a -v) 
X;; a!(n-a)!(m-a)! (8) 

where a can have values from 1 to m or n (whichever is 
smaller), 

The physical problem investigated in our case con
cerns the introduction of deformations3 in the spin-orbit 
coupling term in the Nilsson mode14 Hamiltonian for the 
case of deformed nuclei, Assuming the nucleons to be 
Dirac particles one follows the analogy with the elec
trons and writes the spin orbit term as 

VS• D• = A(VUXp' (7). 

while calculating the matrix elements of this operator 
in the oscillator basis we came across a term of the 

form ( 
J5 =N J Z(/'+1+3)/2e-Z LI'+l/2(Z)V+l / 2(Z)dZ 

",lorI±2 n' n 

(9) 

- (l + 1) J Ztl+I'+l) /2e-Z L~:+l/2(Z)L~+l /2(Z) dZ 

+ 2(n + I)J Ztl+I'+l) /2e-Z L~:+l/2 (Z) 

x L~~~/2(Z)dZ) 51',1 orl±2 

=Jl +J2 +J3 , (10) 

Thus the integrals (10) are to be evaluated for these 
three cases, i. e., l' = l', l' = 1 ± 2. These integrals 
are of the form (2) and (6), On establishing identification 
of labels p, Il, and v, we find the values of these 

TABLE I. The values of Il and v for possible values of l' in the 
integrals (10). 

l' n For J 1 For J2 For J 3 
Il v Il v Il v 

l- 2 n+ 1 2 0 1 -1 1 0 
1 n 1 1 0 0 0 1 
1+2 n-1 0 2 -1 1 -1 2 
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parameters as given in Table 1. We see that three of the 
integrals in Eq. (10) are to be evaluated using Eq. (6) 
and the rest can be evaluated using Eq. (4). Thus, the 
value of integral J (using the proper normalization con
stants) is found to be: 

( 
n )l/Z-

- n+l+3/2 °1'.1+2' (11) 
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Disproof of a conjecture of D. Muhlerin and I. Zinnes 
John D. Dollard 

Department of Mathematics. University of Texas. Austin. Texas 78712 
(Received 28 January 1974) 

It is shown that the operator Ui:)(t) defined by Muhlerin and Zinnes' in their account of Coulomb 
potential scattering theory is not an isometry when the Coulomb potential is weak enough. It is 
opined that for this reason their account of Coulomb potential scattering theory does not have a 

straightforward physical interpretation. 

INTRODUCTION 

Notation: In this paper, the boldface letters x and k 
denote elements of three -dimensional Euclidean space 
R3

, while x and k denote the magnitudes of x and k. All 
integrals occurring are over all of R3 unless otherwise 
specified. We denote by H the Coulomb Hamiltonian 
given by 

~ A 1 
H=--+--, (1) 

2m m x 

where ~ is the Laplacean operator, m is the mass of the 
particle we shall consider, and iI. is a constant repre
senting the strength of the Coulomb potential. Finally, 
in this introductory section of the paper, the notations 
<1>01 and f are used interchangeably for identically the 
same function in L2(R3). This is done because Muhlerin 
and Zinnes1 do it, and the author wishes to make his 
equations easily comparable with theirs. After the in
troductory section, this practice is discontinued, except 
in the summary of results occurring in the ConcluSion 
of the paper. 

The work of Muhlerin and Zinnes: Muhlerin and 
Zinnes1 have given an account of time-dependent Cou
lomb potential scattering theory in which a new kind of 
asymptotic state is introduced. In their notation, let 
<1>01 (this function is also interchangeably denoted by f) 
be a normalized function in L 2(R3

) with Fourier trans
form j, so that 

1 f -<l>oix) =f(x) = lim (27T)3/2 exp(zk· x)f(k)dk. (2) 

Then the asymptotic states <I>~i) are defined by 

<I>~i)(x)=(21Tt3/2.f <t>~±)(k,x)j(k)dk, (3) 

where 

<t>~±)(k, x) = exp{i[k. x:F (iI./k)ln(kx ± k· x)]}o (4) 

Because <t>~±) is a bounded function. it is clear that the 
integral in (3) exists at least for j E L 1(R3 ), except at 
the point x = 0, where it is undefined. Muhlerin and 
Zinnes discuss definition (3) for functions f belonging to 
a certain setln dense in L2(R3), and such thatfE/f! im
plies j E L 1 (R3

). They define the "free Coulomb propaga
tor" U~±)(t) by 

[U~±)(t)<I>o/J(X) = (27T)-3/2.f <t>~±)(k, x) exp(- ik2t/2m)j(k)dk 

(5 ) 

and prove that U~±)(t)<I>of converges strongly for fE/f! as 
t - ± 00 to solutions exp( - iHt)'P~i) of the Schrodinger 
equation with interaction. That is, 

H~II exp(- iHt)ljJ~i) - U~±)(t)<I>ofll =0 for fE/f!. (6) 

The M¢ller wave matrices n~ can then be found in the 
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usual way: 

( 7) 

It is not stated explicitly in the paper that Uc(t)(t)<I>ol is 
to be thought of as representing the state of the particle 
at large positive and negative times. However, the 
reader familiar with the subject cannot help but wonder 
whether or not this is a correct view. If not, then while 
(6) is an interesting mathematical fact, it is not capable 
of the interpretation that is usual in scattering theory, 
namely that it represents the asymptotic agreement of 
two descriptions of a moving particle. If ~±)(t)<I>ol is to 
be thought of as representing the state of the particle, 
then we must have 

(8) 

an equation which represents the conservation of prob
ability. By taking into account the definitions of U~±)(t) 
and <I>~i) = u~t)(O)<I>Qf' it is easy to show that (8) will hold 
for all f E L Z(R3

) if and only if we have 

(9) 

for allfE L2(R3). [The same statement holds with L2{R3) 
replaced by /J1 .J Muhlerin and Zinnes in fact conjecture 
that (9) holds for all fE L2(R3). However, they are able 
to prove only 

(10) 

It is the purpose of the present note to prove that (9) is 
false, at least for a certain class of functions f for 
which <I>~~) can be defined (the functions in question be
long to the class In), and for small enough (but nonzero) 
values of the constant A representing the strength of the 
Coulomb potential. The present author believes that 
there is then no reason to expect that (9) should hold for 
large values of iI.. Muhlerin and Zinnes remark: 
"Whether one can give the asymptotic states ... (<I>~f»" . 
objective significance depends to some extent on the 
validity of the conjecture ... «9) above) .... " In the 
present author's view, the situation is this: U~±)(t)<I>ol 

does not represent the state of a particle, It is part of 
a mathematical prescription which does not have a 
straightforward physical interpretation but whose end 
result is a rederivation of the known Coulomb M¢ller 
wave matrix. 2,3 

I. RESULTS, AND THE IDEA OF THE PROOF 

To economize on notation, we use new symbols. We 
define for all fE U(R3) the function TJby the equation 

(TJ)(X) = (27T)"3/2 J <t>~(k,x}j(k)dk, (11) 

with 

<t>~(k, x) = exp{i[k. x + (iI./k)ln(kx -k· x) n. (12) 

Copyright © 1975 American Institute of Physics 391 



                                                                                                                                    

T J is the function q, ~f of the last section. (We will deal 
only with q, ~f in order to avoid clutter. As the reader. 
should be able to see, a corresponding discussion for 
<f>~f would not look much different and would lead to the 
same sort of results.) We wish to decide whether or not 
the equation 

IITdll=llfll (13) 

holds. In other wordS, we are asking whether or not T, 
is an isometry. Now To is the identity operator, which 
is isometric. We shall show that, for small A*O, T, 
is not isometric. The idea of the proof is as follows: 

(a) Find a function f (actually a one-parameter family 
of such functions) for which the function T d is a strong
ly differentiable function of A. Then liT d W will be a 
differentiable function of A. 

(b) Prove that 

:A IITJI12*0 for A=O 

(c) Conclusion: For small enough A * ° we have 

IITJW* 1ITofl12 = IlfW. 

(14) 

(15) 

This apparently roundabout approach is adopted because 
of the formidable difficulty of a direct attack, some
thing which can only be appreciated by attempting such 
a direct attack. The execution of (a) and (b) above re
quires a straightforward, though grim, application of 
the theory of integration. This execution is presented 
in outline in Sec. II. In order to preserve the reader's 
sanity, we do not give full details. The author will be 
pleased to supply them on request. 

II. OUTLINE OF THE PROOF THAT h IS NOT 
ISOMETRIC 

We consider a function f whose Fourier transform f 
has the following properties: 

(il j(k) depends only on the magnitude k of k. So we 
shall write j(k) instead of j(k). 

(ii) j(k) is three times continuously differentiable as 
a function of its argument (this condition makes our work 
correspond more closely with that of Zinnes and 
Muhlerin. Two derivatives would be enough for our 
proof. ) 

(iii) j(k) vanishes in a neighborhood of k = 0. 

(iv) j(l,) and its derivatives to order three die off 
faster than any reciprocal power of k as k - "". 

Eventually, we will specialize our considerations to 
the case 

(16) 

where !l is any positive real number, and C 5 (k) is a 
three times continuously differentiable function vanish
ing in a small sphere about k = ° and equaling 1 outside 
a slightly larger sphere about k = O. 

If 1 satisfies conditions (i)-(iv), then J is in [1 (R3) , 
and so the definition in (11) certainly makes sense for 
all x * 0. We will now outline the proof that T d is 
strongly differentiable with respect to A. For this pur
pose, first write the integration variable k in parabolic 
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coordinates ~, 17, 'p, with the z direction in k-space 
chosen along the vector x (x* 0): 

~=(kx+k·x)/x, k=(~ +17)/2, 

17=(kx-k·x)/x, k·x=(~-17)/2, (17) 

'p = tan-1(k1/k2), 

where k1 and k2 are the projections of k on a pair of 
orthogonal unit vectors perpendicular to x. Then for x* ° 
we have 

(18) 

where the factor of 271 results from doing the trivial 
'jJ integration and the factor (~ +17)/2 in the integrand is 
part of the volume element in parabolic coordinates. 
The derivative of the integrand with respect to A is 
(for 17 * 0) 

i ln17 xexp{i [(~ ; 17j x + ~ :~ In17~ }j(~ ; 17). (19) 

(The point ~ +17 = ° causes no trouble because 1 vanishes 
in a neighborhood of this point.) For each 17 * 0 the abso
lute value of the function in (19) is bounded as follows: 

Iln(17x)l(~ ;17) I ~ (lln171 + Ilnxl) Ij(~ ;17) I· (20) 

Thus for 17*0 the differentiated integrand (19) is bounded 
by a function independent of A, and easy estimates using 
the properties of 1 show that this function is integrable 
over the integration region of (18). It follows 4 that for 
x* ° the derivative (d/dA)(T d)(X) exists at each poinl x, 
and equals (271)-1/2 times the integral over the integra
tion region indicated in (18) of the function in (19). We 
have also for x* ° 

d 
d

' (TJ)(X) = limAh(x), (21) 
1\ h-O 

where 

(22) 

We wish to show that actually Ah converges strongly to 
(d/dA)T d as h - 0. To do this, using Lebesgue's domi
nated convergence theorem and some elementary mani
pulations, it suffices to show that I Ah(X) I is bounded 
almost everywhere by a fixed square-integrable function 
of x. We proceed as follows to show this: We have 

(1 + x2)Ah(X) 

= ~;;);;~ l~i~ ¢,(k'X)[exp(~2!h17ln17x)-IJ 

xj(~ ;17) ~ ;17 d~d17. (23) 

We now remark that ¢,(k,x) contains the factor 
exp{i[(~ -17)/2Jx} [see (18)J and that 
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and use this fact in (23). Two integrations by parts and 
some technical arguments concerning boundary terms, 
combined with estimates of the type made in (20), lead 
to the result 

(1 +x2)1 ~h(x)1 ~A +Bllnxl +Cllnxl 2 +Dllnxl 4 (25) 

for all x* 0, where A, B, C, and D are constants. 
Equation (25) shows that I ~h(X) I is bounded almost 
everywhere by a fixed square-integrable function of x. 
Thus the strong derivative of T d exists and is given 
for x * 0 by (21Ttl / 2 times the integral of the function in 
(19). We denote the value of this strong derivative at 
A = 0 by KI. Thus 

(K/)(X) =(d~ Td)(X) I ~=O = (2:)1/21~!a ~ ln1]x exp~ [~~ ;1)~ x] 

(26) 

Because the strong derivative of T d exists, it follows 
that IITdl12 is differentiable as a function of A, and 

(27) 

In particular, we have 

~IITJII21 =2Re(KI, To/)=2Re(KI,/), (28) 
dA ~=O 

We now choose 1 to be a function 16 whose Fourier 
transform 16 has the form 

10 (k) = C 6 (k) exp( - j.J.k), (29) 

where j.J. >0, 0 <6 <1, and CoCk) is a function satisfying 
the conditions: 

CoCk) is three times continuously differentiable, 

C6(k)=0, for O~k~ 6, 

C o(k)=l, for k~ 61
/
2, 

(30) 

For 6 <k <61
/
2, CoCk) is a polynomial of degree 7. 

These conditions specify C 6 (k) uniquely. The last 
condition is a convenience intended to simplify calcula
tions. It would be easy to write down the coefficients of 
the polynomial mentioned in this condition explicitly, 
but there is no point in doing so. It should be clear that 
with this choice of CoCk), the function 16(k) of (29) satis
fies conditions (i)-(iv) at the beginning of this section, 
so that T A 10 is strongly differentiable with respect to A, 

Because j 6 (k) converges pointwise almost everywhere 
as 6 - 0 to the function exp(- j.J.k), it is plausible to think 
that the function KI6 =(d/dA)T~/61 .=0 defined as in (26) 
converges as 6 - 0 to the function g defined by 

g(x)= (2:)1/2 i~i~ In(l1x)exp{{(~ ;11)~} 
x exp[- j.J.(~ +11)/2ld~dl1. (31) 

This is in fact true, and furthermore the convergence 
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is strong convergence, as a detailed estimate shows. 
Since the function/6(k) also converges strongly as 6- 0 
to the function/(k)=exp(- j.J.k), it follows that 

lim(KI6 ' 16} = (g, I). (32) 
6-0 

The rest of our argument consists in showing that 

(33) 

In fact, a rather involved calculation shows that 

16j.J.4f tan'1(x/j.J.) 
2 Re(g, I) = """"iT2 (j.J.2 + x2)3 dx > O. (34) 

We can now assemble the pieces: Because of (32) and 
(34) we have 

2 Re(KI6,/6) >0 for small enough /j >0. (35) 

Thus for small enough /j >0 we have, using (28), 

:A liT d6 W I hO = 2 Re(KI6, 16) > O. (36) 

and hence for small enough 6 > 0 and small enough A * 0 
we have 

IITd6 W > I! To/o W = 11f6 W if A > 0, 

IITJ6W <IIT%I12= 11/6 W if A <0. 
(37) 

Thus T A is norm-changing for small enough A * 0 on the 
class of functions considered. This class is rather large 
because of the arbitrariness of j.J.. As a special applica
tion, it follows that T A cannot be isometric on the set 
In of Muhlerin and Zinnes, because an elementary argu
ment involving a partition of unity shows that each of 
the functions 16 conSidered, for any value of j.J., belongs 
toln. (Rather than give the definition of In here, we re
fer the interested reader to the paper of Muhlerin and 
Zinnes. ) 

CONCLUSION 

We have shown that for an appropriate class of func
tions 1 in In and small enough nonzero values of the 
parameter A representing the strength of the Coulomb 
potential we have 

(38) 

Thus U~±)(t) is not an isometry, and Muhlerin and 
Zinnes' expression U~±)(t)q,Of cannot in general repre
sent the state of a quantum-mechanical particle. In the 
view of the author, their prescription for calculating 
the M~ller wave matrix therefore does not have a 
straightforward physical interpretation. It might per
haps be hoped that an interpretation could be salvaged 
if at least U~±)(t)* were an isometry. However, it is not. 

lD. Muhlerin and 1. Zinnes, J. Math. Phys. 11, 1402 (1970). 
2W. Gordon, Z. Phys. 48, 180 (1928). 
3J. D. Dollard, J. Math. Phys. 5, 729 (1964). 
4R. G. Bartle, The Elements of Integration (Wiley, New York, 
1966), Corollary 5.9, p. 46. 
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The problem of embedding a semisimple Lie group in a linear semisimple Lie group [where one (or 
both) may be noncompact] is investigated in detail. The analysis is based on a previous set of papers 
dealing with the corresponding problem for real Lie algebras. 

I. INTRODUCTION 

In a previous series of papers (Cornwell,1-3 
Ekins and CornweIl4.5), hereafter referred to as I to 
V, a detailed investigation was carried out on the 
problem of embedding a semisimple real Lie algebra 
L' in another semisimple real Lie algebra L, one or 
both of these algebras being noncompact. In the present 
paper this study is complemented and completed by 
examining the corresponding problem for semisimple 
Lie f(roups. 

The previous analysis was based on the work of 
Cartan6 ,7 and Gantmacher8 ,9 in which noncompact semi
simple real Lie algebras are generated from their 
compact forms by involutive automorphisms of the com
pact forms. This construction again plays a vital role 
in the present problem. 

In Sec. II the relevant part of the theory of linear 
semisimple Lie groups is reviewed and extended, the 
essential details for each of the real groups being 
summarized in the Appendix. In Sec. III the embedding 
problem for linear connected semisimple Lie groups is 
examined in detail, and an explicit method of construc
tion is given. An example illustrating this construction 
is described in Sec. IV. 

II. LINEAR SEMISIMPLE LIE GROUPS 

It is well known that all the locally isomorphic con
nected Lie groups C; corresponding to the same real 
Lie algebra L can be obtained from a single unique 
group g, the univ!rsal covering group of L , by taking 
factor groups of C; with respect _to all possible_discrete 
central normal subgroups /f1 of C;; that is, C; "'C; 1111. If 
C; possesses at least one faithful finite linear represen
tation, then C; is said to be a linear Lie group. There do 
exist semisimple noncompact Lie groups that are not 
linear, but these have not yet found application in physi
cal problems. Therefore attention will be concentrated 
on the linear groups. 

The following basic theorem on linear Lie groups is 
due to Mal'cev10 : "Among the locally isomorphic con
nected linear semisimple Lie groups having real Lie 
algebra L there is one, denoted by g and called the 
universal linear group of L, which is unique up to iso
morphism, such that all the others are isomorphic to 
factor groups of C;. That is, for every connected linear 
selllisimple Lie group q there exists Aa subgr~up N o! 
z (q), the center of C;, such that q ""C; IN. If C; 1 and C; 2 

are the universal linear groups corresponding to the 
real Lie algebras L 1 and [2' then the universal linear 
group corresponding to the dir~ct sum L 1 EP L 2 is iso
morphic to the direct product q /i?! C; 2'" Clearly this 
theorem shows that a complete knowledge of the con-
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nected linear semisimple Lie groups can be obtained 
from the simple universal linear groups q and their 
centers ZU;). 

Dynkin and Oniscikll have studied the universal linear 
groups and tbeir centers for the compact simple Lie 
groups C; C' g c and r; c being isomorphic in this case. 
The generalization to the non-compact groups was made 
by Sirota12 ,13 and Solodovnikov,14 and reviewed in a 
survey article by them. 15 The present section is devoted 
to summarizing the results on universal linear groups 
that are essential for dealing with the subgroup prob
lem. Some of these results are given explicity in the 
papers just mentioned, others merely appear implicitly, 
while some are new. The notations and conventions 
will be taken to be those defined in papers I to V. 1-5 In 
particular C; will denote a linear connected simple Lie 
group, L its real Lie algebra, L the complexification of 
L ,H th~ Cartan subalgebra of L , L c the compact real 
form of L, and C; c a connected compact Lie group 
having L c as its Lie algebra. 

There are four cases to be considered: 

(i) L compact, 

(ii) L noncompact and generated from L c by an inner 
involutive automorphism (cf. 1). 

(iii) L noncom pact and generated from L c by an outer 
involutive automorphism, with [simple (cf. Il,III, V), 

(iv) L noncompact and generateg fr~ L c by aE outer 
involutive automorphism, but I =L Ef'L 2 , where Ll and 
l2 are isomorphic simple complex Lie algebras (cf. IV). 

The groups corresponding to cases (i), (ii), and (iii) 
are often called real Lie groups, while those corre
sponding to (iv) are referred to as complex Lie groups. 

As Z(g) is necessarily finite and Abelian, Z(g) must 
be a finite cyclic group or a direct product of a finite 
number of finite cyclic groups. The cyclic group of or
der n generated by exph will be denoted by Zn(exph). 
Using the results of Dynkin and OniscikIl ~nd Sirota and 
Solodovnikov,1s the generators exph of Z(C;) may easily 
be found by the following argument. Suppose that l is 
the rank of l, that hp h2 , ••• , hi form the canonical 
basis of H (cf. Jacobson16), and that L is obtained from 
L c by the chief involutive automorphism S. 1,2,8 Then S 
maps H into H, so that if the basis of Leis chosen so 
that the first l elements are ihl' ih2 , • •• , ihl , then the 
elements h~, h~, ... , h; provide a basis for H 'I L , where 

h; =t(-IS)jk ihk' (1) 
k=l 

and 

(2) 
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I being the identitY.. transformation. Clearly, if exph is 
a generator of Z(q), then hEHn L, so h=L:~=1 Kjh;, 
where the Kj are all real. [In particular, for cases (0 
and (ii), Sj,,=Oj/l' j,k=1,2, ... ,l, so that h; 
=ih;,j=1,2, ._ .. ,l.] Using the explicit matrix repre
sentations of L in which h j is represented by a matrix 
h j (as given in Appendix A of I for the classical Lie 
algebras and Sec. 2 of V for the exceptional Lie alge
bras) then 

(3) 

for some y, where I is the unit matrix. Condition (3) 
allows the determination of all the possible values of 
K

j 
and hence all the possible generators of Z(q) (even 

when the representation of q obtained from the hJ by 
exponentiation is not a faithful representation of ~). 
For later use it may be noted that when q is of type (i) 
or (ii), condition (3) becomes 

exp (t/KjhJ) = yI. (4) 

In the subsequent sections a vital role is played by 
the representations of q that are both single-valued and 
faithful, so that a criterion is needed to distinguish 
these representations. Suppose that r is a representa
tion of q, and Kerr is defined as the kernel of r in q. 
i. e., exph E Kerr if and only if expr(h) is the umt 
matrix. Obviously Kerr is a subgroup of Z(q). Then it 
is clear that the required criterion is 

r provides a Single-valued and faithful representation 
ofq, 

where (A) 

C; "'q / N, if and only if N = Kerr, 

This implies that each representation of q (and hence 
each representation obtained by exponentiation from L ) 
provides a single-valued and faithful represeAntation of 
one and only one group q that is a factor of q. If r is 
reducible, and r 1

, r 2
, •• , are its irreducible con

stituents, then 

Kerr = Kerr1n Kerr 2n ... , 

so that the only problem remaining is that of determin
ing Kerr when r is irreducible. 

Suppose that exph E Z(q), where h=L:~dKjh~ (as 
above). Then expr(h) must be a multiple of the unit 
matrix I, and as the diagonal element of expr(h) cor
responding to the highest weight A (h) of the I.R r in l is 
exp{A(h)}, it follows that 

expr(h) = [exp{A(h)}]I. (5) 

Then the element exph of Z(g) is a member of Kerr if 
and only if exp{A (h)} = 1,:.. If A1 (h), A

2
(h) . .. ,A, (h) are the 

fundamental weights of L , and 
I 

A(h)=~mjAj(h), 
J=l 

where (m" mv .•. ,m, ) is a set of f\Onnegative integers. 
then, as Aj(hk ) =OJ/l' it follows that 
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I I 

A(h) =i~ "'£ mjK,JIS)kj' 
j:1 k=1 

Thus exph E Kerr if and only if 

I I 

"'£ '6m j K,,(vS)kj = 0 (mod 21T). 
1=1 ,,= 1 

For cases (i) and (ii), (6) Simplifies to give 
I 

'6m j K j =0 (mod 21T). 
1=1 

(6) 

(7) 

By virtue of condition (A), rA provides a Single-valued 
and faithful representation of g if and only if Kerr con
sists only of the identity. Of course such a representa
tion provides an expliq.,it realization of g. As shown in 
the Appendix, for all q [except those corresponding to 
C; =SO(4n - 2p, 2p),p =0, 1, ... , [nl, to C; =ND4n and to Ij 
= SO(4n, C)], there exists ~n irreducible single-valued 
faithful representat~on of g. For the exceptional cases 
the realizations of q are reducible. 

In case (ii) Sirota and SolodovnikovI5 have shown that 
zcg)=Z(qc)' This follows}romAthe fact that the condi
tions (4) are identical for C; and qc' The same is true 
of the conditions (7), so that if r 1 and r 2 are the repre
sentations of q and qc that are obtained by exponentiation 
of representatio12s of Land L c which coincide when 
complexified to L, then Kerr 1 = Kerr 2' 

In case (iii), consider a set of nonisomorphic real 
Lie algebras L generated by chief outer automorphisms 
S=Zoexp(adh lf ) from the same Lc and with the same 
Zo, but with different hlf. [The set of Lie algebras cor
responding to the groups 50(2l- 2p -1, 2p + 1), P 
= 0,1, ... , [i lJ, provide an example (cf. III) J. As 
exp(adh lf

) acts as the identity on II, for aU such Lie 
algebras (.g)j" = UZO)jk' j, k =),2, ... ,l. independently 
of hlf. Hence, by (3), all the gbelonging to real Lie 
algebras L of this set have identical centers. Moreover, 
by (6), if r 1 an~ r 2 at;.,e representations of two universal 
linear groups q1 and q2 of this set that are obtained by 
exponentiation of representations 0[' real Lie algebras 
that coincide when complexified to L. then Kerr I 
= Kerr2 • 

A A 

The universal linear groups q, their centers Z(g), 
and the kernels Kerr of irreducible representations are 
listed in the Appendix for all the connected linear simple 
real Lie groups. 

For the complex simple Lie groups q [io e., those of 
type (iv) J some further analysis is required 0 Mal'cev io 

showed that for th~se groups g",q. It will now be dem
onstrated that Z(q) and Kerr are essentially deter
mined by the corresponding quantities belonging to the 
maximal compact simple subgroup of q 0 

Suppose then that q is a connected complex simple Lie 
group whose real Lie algebra L is generated by a chief 
outer involutive automorphism S from the semi-simple 
compact Lie algebra L c = LIC !+l L 2C' where L IC and L 2C 

are isomorphic simple compact Lie algebras, and that 
K is a simple compact Lie group having L1C as its Lie 
algebra. (Then K is homomorphic to the maximal com
pact subgroup of g). It is conveni~nt to change the pre
vious convention and assume that L has rank 2l (instead 
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of 1 as previously), so that the complexification L of "10 has rank 1. [As an example, for q = SL (1 + 1, C), 
L =Az(l'lAz, and K =SU(l + 1)]. 

Let ih1, ih2 , ••• , ihz be the basis of H n L 1C and 
ihl +1, ih l +2 • •• , ih2Z be the basis of fI n L 2C' As shown in 
IV, 

Shj=hJ+I , ShJ+z=hi , j=I,2, ••• ,1, 

so that the generators h; (j = 1 ,2, ... ,2l) of H n L are 
given according to (1) and (2) by 

h~ = t (1 + i}ihJ + t (1 - i)ihi+1 I 
hi+Z = HI - i}ih, + HI + i)ihi +1 ( , 

j==1,2, ... ,1. (8) 

Consider the representation r of L ==L. $ L2 that corre
sponds to the direct product representation r 10 r 2 of 
the direct product Lie groups corresponding to L C == 
L 1C EP L 2C' In this representation 

~r1(hi)0~, j=1,2, ••• ,Z, 
r(hj)=)1 <0. r (h ) (9) 

{ 1'<Y 2 i-z , j = 1 + 1, ... ,21, 

where 11 , ~ are unit matrices of the dimensions of r 1 
and r 2 respectively. An explicit matrix reprEtsentation 
of L of the same dimension as that given for L. in I and 
V can now be obtained as follows. In the special case of 
(9) in which r 2 is the trivial one-dimensional represen
tation in which r 2(hJ_I ) = (0) and in which r 1(hj )=hj , (8) 
and (9) imply that 

jt(l +i)ih" j=1,2, ... ,1, 

r(h;)== 1(1 ')'h . 1+1 2Z (10) 
"2 - Z Z '-I' J = , ... , . 

Every element of Z(g) must have the form exp~~~lK,h;), 
where K l' K2 , ••• , !£21 are all real. Clearly 
exp(L:~!1KJh;)E Z(q) if and only if exp~~!1Kir(h;» is a 
multiple of the unit matrix. 

From (10), 

where 

,(j =HKj + KHI ) +ti(Ki - KJ+l ), 

so the condition is that exp(L:~=li"7hj) must be a multiple 
of the unit matrix. However, this is precisely the con
dition (4) for exp<L:~'I~hj) to be a member of Z(/<.), 
where K is the universal linear group of K. Moreover, 
(4) only has solutions for KT real, so 

and consequently 

Thus we have proved thf.1t Z(g) is isomorphic to ZU{), 
and the elements of Z(q) are all of the form ~ 
exp[L:~=li,(j(hj +hJ+l )], where the elements of Z(K) are of 
the form exp(L:~'1i,(j hj ). These latter elements are 
listed explicitly in the Appendix. 

As an example consider the connected complex simple 
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Lie group G=SL(l + 1, C). Then K ==SU(l + 0, and, as 
shown in~the Appendix, Z(K)=Z/+1(expL:~.127Tijh/(l+1». 
Thus Z(q) = Z,+l (expL:}.127Tij(hj + hj • , )! (1 + 1»). Moreover, 
it is~easily verified directly that Z(q)=Z(q), and so 
q .. q. 

Every irreducible representation of a connected sim
ple complex group q can be obtained from (8) and (9) 
by exponentiation. Suppose that r 1 and r 2 are irreduci
ble representations of L. with highest weights A1 (h) and 
A2 (h), respectively, and that 

I / 

A1(h)==~ m 1j ll)h), A2(h)=~m2/'j(h), j.1 J.1 

where AJ (h) are the fundamental weights of l. and 
(m ll , ••• , mll) and (m21 , .•• , m 21 ) are two sets of non
negative integers. Then 

exp [r(t iKT(hj + hj +/»)] 

== exp(~ iKr[r 1(h,)0 ~ + 110 I'2(hJ )]. 

But as exp(L:~'liKfh,)E Z(K), then, as in (5), 

exp(~iK7r ~(hJ») 

== [exp(~i,(j Ak (h,»)] Ik , k = 1,2, 

and hence 

exp[ r(Ei,(j (h, + h,+/»)] 

==[ exp(Ei,(j [A1 (h,) + A 2 (h,) V] 112 , 

where 112 is the unit matrix of the dimension of r. 
Thus the element exp[L:J.1iIfl(hJ + hJ+.)] of Z(q) is a 
member of Kerr if and only if 

I 

~Kf(m1J +m2j )=0 (mod21T). 
J=l 

Thi~ should be compared with the condition (7) for Kerr 
inK. 

III. CONSTRUCTION OF SUBGROUPS 
Suppose that q and ql are two connected linear semi

Simple Lie groups, that Land L I are their real Lie 
algebras, and that Z and II are the complexifications of 
Land L '. Clearly a necessary condition for q' to be a 
subgroup of q is that L' is a subalgebra of L. The con
ditions for L' to be a subalgebra of L have been investi
gated in great detail in Papers I to V 0 In I the general 
criterion was derived, and theory was developed for 
the case in which both Land L I were simple classical 
Lie algebras generated from their compact forms oy 
inner involutive automorphisms. In Paper II the theory 
was extended to the case in which L or L ' was a real 
form of A, that was generated by an outer involutive 
automorphism. The corresponding case with A, re
placed by DI was considered in Paper IIJ, while in IV 
the situation was investigated in which L or L' was 
semisimple (but not simple). The study was concluded 
in Paper V by an examination of the exceptional Lie 
algebras. 
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Obviously the condition that L ' be a subalgebra of L 
is not a sufficient condition on its own. However, it 
can be complemented by the following construction: 

(1) Let q be any connected linear semisimple Lie 
group having L as its real,!-ie algebra, an~ suppose 
that N is a subgroup of~Z(q) such that q "'q/N. Choose 
a representation r of q such that Kerr =N . 

(2) Construct the representation r of L such that 
r(expa)=expr(a) for all aEL. (There will be no con
fusion in denoting this representation of L by the same 
symbol as that used for the corresponding representa
tion of ci). 

(3) Assuming L ' to be a subalgebra of L, construct 
the representation r' of L' such that r'(a') =r(a') for 
all a' E L'. 

(4) Construct the representation r' of the universal 
linear group ci' of L' such that r'(expa')=expr'(a') for 
all a' EO L'. 

(5) Then 

q' ",q' /Kerr' 

is a subgroup of q that corresponds to the embedding of 
L ' in L. For a set of conjugate embeddings of L' in L 
the subgroup q' is unique (up to conjugacy). 

{The proofs of the statements in (5) are straight
forward. They depend on the fact that the representa
tion r of q constructed in stage (1) provides [by condi
tion (A) of Sec. II] a faithful and single-valued repre
sentation of q" 

Suppose first that q' is a subgroup of (j" Then the 
representation rq' of q' defined by r c' lu') =r(u') for 
all u' EO q' is a faIthful and single-vahfed representation 
of q'. Define rq' on L ' by rC (expa') = exprq' (a') for 
all a' EO L'. Then rq' is idenflcal to r' on L'. However, 
by condition (A) of section 2, r' provides a faithful and 
single-valued representation of only one group having 
Lie algebra L " namely q' /Kerr'. Thus q' =cj' / 
Kerr'. 

Conversely, if L'· is a subalgebra of L and q' "'(j' / 
Kerr', then r' is a faithful and single-valued represen
tation of q'. By construction the matrices of the repre
sentation r' of q' are a subset of the matrices of the 
representation r of q. As the former group of matrices 
is isomorphic to q' and the latter group of matrices is 
isomorphic to q, q' must be a subgroup of q.} 

For a given set of conjugate embeddings of L ' in L , 
this process can be repeated for every group q having 
L as its real Lie algebra. A different choice of q will 
correspond to a different N, which may then lead to a 
different r' and thence to a different q' "'ci' /Kerr'. 

If L ' has more than one set of conjugate embeddings 
in L, then the above process can be repeated for each 
such set. Different sets of subgroups may emerge be
cause the reduction in stage (3) may not be the same 
for different sets of conjugate embeddings. The sim
plest example of this behavior is provided by the em
bedding of compact groups corresponding to Al in com
pact groups belonging to A 2 " There are two non-con
jugate embeddings of Al in A 2 , one of which leads to the 

397 J. Math. Phys., Vol. 16, No.2, February 1975 

embedding of SU(2) in SU(3) and the other to the embed
ding of SO(3) ("'SU(2)/Z(SU(2» in SU(3). 

In stage (3) of the above construction it is easily 
demonstrated that if the representations rand r' are 
extended from the reatLie algebras Land L' to the 
complex Lie algebras Land L' in the usual way, then 
r'(a')=r(a') for all a' EO L' if and only if r'(b')=r(b') 
for all b' E l'. Thus stage (3) reduces immediately to 
an application of the branching rules for irreducible 
representations of simple complex Lie algebras, which 
have been very extensively studied, particularly by 
Strauman,17 Whippman, 18 Navon and Patera, 19 Delaney 
and Gruber, 20 Devi, 21 Stone, 22 Wong, 2g and Patera and 
SankofL 24 The other nontrivial stages (1) and (5) simply 
involve the application of the information given in the 
appendix. 

It should be noted that every subgroup q' of C; con
structed by the above process is topologically closed in 
q. This follows from the theorem of Sirota and 
Soiodovnikov15 (p. 93) that an arbitrary connected semi
simple subgroup q' of a Lie group q is closed in q if 
the center Z(q) is finite, which it is if q is linear. 

IV. AN EXAMPLE: L' = C2 , L = A3 

This simple but nontrivial example is included merely 
to give an explicit demonstration of the construction of 
Sec. III, some of the results in this example being very 
obvious from other considerations. To avoid confusion, 
the real Lie algebras corresponding to the groups 
Sp(2), NSp~, Sp(2,R), SU(4), SU(2,2), Q2' and SL(4,R) 
will be denoted by sp(2), nsp~, sp(2,R), su(4), su(2,2), 
q2' and sl(4,R) respectively. As shown in Paper I, Sec. 
7.3, and Paper II, Sec. 6.3, the only real Lie algebra 
embeddings corresponding to C2::- Ag are sp(2) c su(4), 

nsp! c su(2, 2), sp(2, R)c su(2, 2), sp(2) C Q2' nsp~ C Q2' 
and sp(2,R)C sl(4,R), there being only one set of con
jugate embeddings in each case. 

A. Group embeddings corresponding to 
sp(2)Csu(41. nspi Csu (2,2), and sp(2,R)Csu(2.2) 

ConSider first embeddings in C; =(j /{ e}. Application 
of the formula given in Sec. A(l) of the Appendix shows 
that for the IR (0,0,1) Kerr={e}, so in stage (1) r may 
be taken to be (0, 0,1). Then (cL Patera and Sankoff24) 
r' is (1,0), so by Sec. C of the Appendix Kerr'={e}. 
Thus the embeddings in q = C; /{e} are 

Sp(2)c SU(4), NSp~c SU(2, 2), Sp(2,R)c SU(2, 2). 

Now consider embeddings in q =q/ Z2 (exp1Ti (hI + 2h2 
+ 3hg». As Kerr = Z2(exp1Ti(hl + 2h2 + 3hg» for the IR 
(0,1,0), this is the appropriate choice in stage (1). 
Then r' is (O,l)ffi (0,0), so that Kerr'=Z2(exp1Tih

1
), 

and the corresponding embeddings are 

SO(5) "'Sp(2)/ Z2(exp1Tih 1 ) 

c SU(4)/ Z2 (exp1Ti (hI + 2h2 + 3h3 » '" SO(6), 

SO(4, 1) '" NSp~/ Z2(exp1TihI ) 

c SU(2, 2)/ Z2(exp1Ti(h l + 2h2 + 3h) '" SO(4, 2), 

SO(3, 2) "'Sp(2, R)/Z2(exp1Tih1 ) 

c SU(2, 2)/ Z2 (exp1Ti (hI + 2h2 + 3h) '" SO(4, 2). 
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Finally, consider embeddings in (j =g/Z4(expt1Ti(h1 

+ 2h2 + 3h3». As Kerr = Z4(exphi(h1 + 2h2 + 3h3» for the 
IR (1, 0,1), this is the appropriate choice in stage (1). 
Then r' is (2,0)Efl (0,1), so that Kerr'=Z2(exp1Tih1), 

and the corresponding embeddings are 

SO(5) '" SP(2)/Z2(exp1Tih1 ) 

c: SU(4)/Z4(exphi(h l + 2h2 +3h3)), 

SO(4,O"'NSp;/Z2(exp1Tih1 ) 

c SU(2, 2)/Z4(exphi(h1 + 2h2 + 3h3)), 

SO(3, 2) '" Sp(2, R)/ Z2 (exp1Tih1) 

c: SU (2, 2)/Z4(exphi(h1 + 2h2 + 3h3». 

B. Group embeddings corresponding to 
sp(2)CQ2,nSPl C Q2, and sp(2,R)Cs/(4,R) 

First consider embeddings in (j =q /{e}. Application 
of the formula given in Sec. A(3) of the Appendix shows 
that Kerr={e} for the IR(O,O,l), so this is again an 
appropriate choice for r 0 Then, as above, r' is (0,1) 
and Kerr' ={e}, so that the embeddings in g are 

Sp(2)c Q2' NSp~c Q2' Sp(2,R)c SL(4,R). 

For embeddings in (j=q/Z2 (exp1Ti (h 1 +h3», as Kerr 
=Z2(exp1Ti(h l +h3» for the IR (0,1,0), and as r' 
(O,l)m (0,0), so that Kerr'=Z2(exp1TihI ), the corre
sponding embeddings are 

SO(5):::: Sp(2)/ Z2(exp1Tih I) 

c Q2/Z2(exp1Ti(hl +h»"'SO(5,1), 

SO(4, 1) :::: NSp~/ Z2 (exp1Tih I ) 

c Q/ Z2 (exp1Ti (hI + h):::: SO(5, 1), 

SO(3, 2) '" Sp(2, R)/ Z2(exp1Tihr> 

c SL(4, R)/ Z2 (exp1Ti (hI + h3) '" SO(3, 3). 

APPENDIX: THE UNIVERSAL LINEAR GROUPS 
q, THEIR CENTERSZ (q), AND THE KERNELS 
Ker r OF IRREDUCIBLE REPRESENTATIONS r 

A ~ 

IN q FOR THE CONNECTED LINEAR SIMPLE 
REAL LIE GROUPS 

The notations for the simple real Lie groups (j are 
those given in Sec. 4 of Paper P and in Secs. 3 and 4 
of Paper V. S In every case only the connected part of 
the group is being considered. The conventions for the 
elements h j of H are as given in Appendix A of Paper I 
for the classical Lie algebras and in Sec. 2 and the 
Appendix of Paper V for the exceptional Lie algebras. 
The trivial group consisting only of the identity will be 
denoted by {e}. The expression [a 1 denotes the largest 
integer not greater than a. 

A. Groups for which r = A, 

(1) (j =SU(Z + 1) or SU(Z + 1 - p,p), P = 1,2, ... , 
[t(l+ 1)]: 

Z((:) = ZI+! ~xpt!21Tijh/(Z + 1)):::: Z«(j), 

so that (j ""(j. The element exp[sL:J=l21Tijh/(Z + 1)] is a 
member of Kerr if and only if sL:~=!jm/(Z+l) is an 
integer. 
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(2) (j=SL(Z+I,R) for Z even: 

Z«(j)={e} "'Z«(j), 

so that (j "'q and Kerr ={e}. 

(3) q =SL(l + 1 ,R) or Q 11+1)(2 for Z odd: 

Z«f) = Z2 (exp~d1Tihj) '" Z«(j), so that (j "'0'. 
Then .. 

Kerr = A iodd l {e}, if 6 mj is odd. 

Z«(j), if 6 mj is eveno 
Jodd 

B. Groups for which r = 8, 

(j=SO(2Z+1) orSO(2Z+1-2p,2p), p=1,2, ... ,Z: 

Z(q)=Z2(exP1Tihz) while Z«(j)={e}, 

so that (j "'g / Z(g). 

Then 

~ {e}, if m l is odd, 
Kerr=) A 

{Z«(j), if m z is even, 

so that an explicit realization of q is provided by the 
IR (0,0,0,"0,0,1). 

C. Groups for which 7. = c, 
(j=Sp(Z), NSp~~, p=1,2, ... ,[tZ], orSp(Z,R): 

Z(g>=Z2(eXPj~d 1Tih~"'Z{(j), so that (j"'g 0 

Then 

){e}, 
Kerr = (Z(q), 

if 6 mj is odd, 
Jodd 

if 6 mJ is even. jodd 

D. Groups for which l = D" I> e 

(1) (j=SO(2Z), SO(2Z-2p,2p), p=1,2, ... ,[tZ], or 
ND2Z : There are two cases: 

(i) Z odd: 

.Z(g)=Z4(exPh) and (j::::~/Z2 (~xp2h), where h 
= 1Tl(h l + h3 + hs + ... + hZ_2 + 2h l _I - 2hz)' Also Z«(j) 
= Z2(- I). Then 

l
{e}, if ¢(m) '* integer, 

Kerr= Z2(exp2h) , if ¢(m) is odd, 

Z4(exph) , if ¢(m) is even, 

where 

¢(m) = m 1 + m3 + ms + •• 0 + m
Z

_2 + tm, _1 - tm z• 

Thus the IR (0, 0, ... , 0,1) provides an explicit realiza
tion of q. 

(ii) Z even: 

Z(g) = Z2(exph)0 Z2(exph') and (j::::g / Z2(exph') , 

where h=1TiL:
Jodd

h
J 

and h'=1Ti(hz_1 +hz)' Also Z(g) 
=Z2(-I). 

Then 
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if 6 m. is even and (ml-l +m,) is odd, 
jadd J 

if 6 m. is odd and (ml-l +m,) is even, 
jodd J 

if 6 mj is even and (m/-l + m,) is even. 
jodd 

if 6 m J is odd and (ml-l +m,) is odd. jodd ~ ____________________________________________ ___ 

As Kerr ;fie} for any irreducible representation, no ~ 
irreducible representation provides a realization of (j • 
However the reducible representation that is the direct 
sum of the IR's (0,0, ... ,0, 1) and (1,0, ... ,0) provides 
a realization. 

(2) (j =50(2l- 2p -1, 2p + 1), p=O, 1, ... , [~lJ: 

Z(Q) = Z2(exprri(hz_1 + h,», while Z«(j) ={el (as - I is 
not in the connected group (j). Thus (j ""(j / Z«(j), and 

l{e} , if ml-l + m, is odd, 

Kerr = Z(?)'f + . 
'::I ' 1 m'_l m , IS even. 

Thus the IR (0, 0, ... , 0,1) provides an explicit realiza
tion of go 
E. Groups for which L = G2 

(j = CG2 or NG 2 : 

Z(g) ={e}"" Z«(j), 

so that 

(j ""g and Kerr ={e}. 

F. Groups for which L = F4 

(j = CF4 , NF!, or NF!: 

Z(g) ={e}zZ«(j), 

so that 

(j =q and Kerr ={ e}. 

G. Groups for which L = E 6 

(1) (j = CE6 , NE~, or NE~: 

Z(g) = Z3(exptrri(h1 + 2h2 + 4h4 - hs»Z Z«(j), 

so that 

Thus 

(2) (j =NE~ or NE:: 

Z(g) ={e} '" Z«(j), 

so that 

(j-:::g and Kerr={e}. 

H. Groups for which I = E7 

399 J. Math. Phys., Vol. 16, No.2, February 1975 

I 
so that 

Thus 

~{e}, 
Kerr =~ Z«(j), 

if m 4 +m6 +m7 is odd, 

if m 4 + m6 +m7 is even. 

I. Groups for which I = E 8 

so that 

(j zg and Kerr ={e}. 
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The representation of the SO (4,1) group in four·dimensional 
Euclidean and spinor space 

R. Bogdanovit and M. A. Whitehead 

Department of Chemistry. McGill University, Montreal, Canada H3C 3Gl 
(Received 27 September 1974) 

An explicit representation of the SO(4,1) group in both SO(4) spin or space and four-dimensional 
Euclidean space has been found. The two spaces are related by linearly transforming the variables. It 
has been shown that the four-dimensional hyperspherical harmonics in both four-dimensional polar 
coordinate systems transform in accordance with the W = 0, Q = 2 representation of the SO (4,1) 
group. A ,et of new recursion relations is derived for the SO (3) group reduced rotational matrices, 
together with a set of standard recursion relations for the Legendre and Gegenbauer polynomials, all 
of which are obtained by transforming both forms of the S 0(4) group basis states in spinor space 
into four-dimensional space. The matrix elements of the noncompacl SO(4,1) group generators are 
given in the (j ,m) basis. 

1. INTRODUCTION 

The de Sitter 50(4,1) groupl is an important subgroup 
of the full dynamical group of the Coulomb potential 
0{4,2). The importance of the 50(4,1) group lies in the 
fact that when a basis is chosen for which the 50(4) sub
group is diagonal, then two classes of its unitary irre
ducible representation (hereafter called the representa
tion) contain the bound states of the Coulomb potential. 
These bound states belong to the special class of the 
50(4) group representations called "square", 2 which are 
characterized by j+ = r = O)n, where n = 0,1,2, .. " and 
n + 1 is the energy quantum number of the Coulomb po
tential bound states; the standard notation for the se re
presentations is [0, n + 1]. 

In three-dimensional coordinate space, the bound 
states are the solutions to the nonrelativistic Coulomb 
Hamiltonian, the hydrogenic wavefunctions. The solu
tions to the same Hamiltonian in three-dimensional mo
mentum space are related to the hyperspherical har
monics in four-dimensional space through Fock' s trans
formations. 3 These hyper spherical harmonics are basis 
states for the square representations of the 50(4) group. 

The main concern of this paper is the relation of the 
hyperspherical harmonics to the representation of the 
50(4,1) group in four-dimensional space. Since the non
compact generators of this group act as ladder opera
tors for n the energy quantum number, this represen
tation of the 50(4,1) group has two important 
applications: 

(i) It can be used to study the transformation proper
ties of the radial parts of the hydrogenic wavefunctions, 
which are still not fully understood. 4 

(ii) The representation is relevant to a group theoreti
cal description of an atom in an external magnetic field, 
when the 50(4) symmetry is broken. The group which 
leaves the ma{';lletic quantum number, m, unchanged is 
the SO(2, 1)x50(2) group in the 50(4,1) group frame
work; if the full dynamical group 50(4,2) is conSidered, 
then the required subgroup is 50(2,2)XO(2). Thus in
stead of the usual reduction for the field -free case, 
50(4, I); 50(4), the reduction 50(4,1); 50(2, l)X 0(2) is 
more appropriate when a field is applied. The represen
tation of the 50(4,1) group established in this paper will 
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facilitate this reduction. Interest in (i) and (ii) motivated 
this research. 

A. Preliminaries 

The unitary irreducible representations of the 50(4,1) 
group were derived by Thomas. 5 The representations 
are labelled by two invariants (p, q) which are related to 
the Casimir invariants (Q, W)o Thomas also calculated 
the matrix elements of the generators 0 5 The list of re
presentations was later corrected by Newton who label
led the representations with (Q, W).6 Additional repre
sentations have been added by Dixmier 0 7 

The square representations of the 50(4) group are 
contained in two unitary irreducible representations of 
the 50(4,1) group, Table I. The minimum number of 
dimensions of space to carryall irreducible represen
tations of the 50(4,1) and 50(4) groups are six and four, 
respectively. 8 Therefore, a representation of 50(4,1) 
group in four-dimensional space is admissable only if 
both Casimir invariants are specified; four-dimensional 
space has only three independent dimensions with re
spect to the 50(4) group, since the four-coordinates are 
linked through an invariant Hermitian form, and conse
quently one Casimir invariant has to be specified; this 
is usually the second invariant, q or W, and is set to 
zero. Therefore, only square representations occur. 

TABLE I. Comparison of the notations for two classes of the 
80(4,1) group representations. The Eigenvalue spectrum of the 
two Casimir invariants for two classes of 80(4,1) group repre
sentations relevant to the Coulomb problem, are shown in the 
notations of Thomas5 and Newton6• Representation 1 contains 
all bound states; representation 2 contains only states for n '" s. 

Representation Thomas Newton SO(4) Content 

q=O c lass I 
-~<p<1 W=O no;? 0 

1 
p+~=irr 0< Q<i 
(J rea I 

l"" Q < 00 

c lass II 

2 
q=O W=O 

n? s 
P=5 Q=- (S-1)(5+2) 

s=l~ .. .3... '-~.' 
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There are two ways to label basis states in an irre
ducible representation of the 50(4) group; each corre
sponds to a different linear combination of the genera
tors. One uses the homomorphism of the 50(4) group to 
the group 50(2) x 50(2): The basis states and relevant set 
of generators are then in the (m+, m -) scheme. The 
other uses the physical 50(3) subgroup, and the basis 
states and the corresponding generators are in the 0, m) 
scheme. Both schemes are used. 

The basis for the square representations of the 50(4) 
group in three-dimensional space are hydrogenic wave
functions; in addition, there are two other bases for 
both 50(4) schemes: one in spinor space2 and one in 
four-dimensional Euclidean space. 9 

B. Method and results 

The notation is established in Sec. 2. The matrix 
elements of the generators of Thomas, 4 which are in 
the (m+, m-) scheme, are reformulated in terms of their 
tensor properties and then are reformulated in the 0, m) 
scheme (Sec. 3). 

In three-dimensional space the representation of the 
50(4) group generators has been found in spherical co
ordinates, the 0, m) scheme, 10 and in parabolic coordi
nates, the (m+, m-) scheme. 11 

The spinor space and four-dimensional space are ex
plicitly connected through a linear transformation of the 
variables. In addition to the already known compact gen
erators of the 50(4,1) group, the relative simplicity of 
spinor space permits four-noncompact 50(4,1) group 
generators to be constructed. These generators togeth
er form a representation of the 50(4,1) group in spinor 
space. The basis states in this spinor space transform 
according to representation 1 of Table I, with 

q=o and p=O (1. 1) 

or 

W=O and Q=2. 

These basis states and generators will be transformed 
into four-dimensional Euclidean space, when the states 
become hyperspherical harmonics in the 0, m} scheme, 
and functions related to the 50(3) reduced rotational 
matrices in the (m+, m -) scheme. The transformed 
states are the bases for the square representation of the 
50(4) group in four-dimensional space. 9 The transfor
mation properties (1.1) remain the same: The noncom
pact 50(4,1) group generators assume comparatively 
simple forms. A similar but different method of using 
spinor space has been employed to study certain repre
sentations of the Lorenz group and the U(2, 2) group. 12,13 

This representation, with the matrix elements of the 
50(4,1) group generators from Sec. 3, permit deriva
tion of the set of standard recursion relations for the 
Legendre and Gengenbauer polynomials and a set of new 
recursion relations for the 50(3) reduced rotational 
matrices, and prove the validity of (1. 1) and of the re
presentation of the 50(4,1) group based on (1.1), Sec. 
4. 
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C. Remark 

While preparing the manuscript, our attention was 
drawn to the paper of Han14 where the representation of 
the 50(4,1) group generators in four-dimensional space 
is found which corresponds to the representation 1 in 
Table I with 

q=O and p=-1/2 

or (1.2) 

which differs from the representation in the present 
work which uses (1. 1). With Han's generators, the hy
perspherical harmonics in both the 0,m) and (m+,m-) 
schemes do not transform correctly, but their linear 
combination should. This further indicates that the 
choice of (1. 1) for the values of the 50(4,1) group Casi
mir invariants is natural for the hyperspherical harmo
nics and consequently for the hydrogenic wave functions. 
The relation betweeen Han's generators and the ones 
used herein, is given in Appendix A. 

2. THEGENERATORSOFTHESO(4,1) GROUP 

As an attempt to promote a unified notation for conti
nuous groups, the notation for the 0(4,2) group15 has 
been truncated to give the notation for the 50(4,1) group. 
The compact axes are labelled 1,2,3, and 5, and the 
noncom pact axis is labelled 0. 

The generators of the 50(4,1) group commute between 
themselves 

where 

i=W, 
j,k,1,s=O,1,2,3, or 5, 

gl1 =g22 =g33 = g55 = 1, goo = -1, 

and zero otherwise. 

The compact generators can be represented by 

(2.1) 

Llj=-i(x,oxJ-x/Jx,) with 1,j=1,2,3, or 5 (2.2) 

and the noncompact generators by 

LOJ'=x~o +x,o, with j=1,2,3, or 5, 
Xj Xo 

where 

Xo = ix~ and x~ is a real variable. 

A. The generators for the(m+, m-) scheme 

(2.3) 

In the (m+, m-) scheme the generators are given by, 

j; = t[(L23 ± iL31 ) + (LiS ± iL 25)}, j~= i(L12 + L 3S)' 

j: = i[ (L23 ± i L 31 ) - (L15 ± iL25)}, j~ = i(L12 - L 35 ), (2.4) 

P±=*(L03 ±iL05 ), S±=± A (L 01 ±iL02 )· 

The O;, j~) and O:, j~) constitute two mutually commuting 
50(3) subgroups with respect to which P± and 5± trans-
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forms like t tensor; namely, 

[j:,sJ=P+, [j:,pJ=S+, 

[j~,pJ=S_, [j:,SJ=P_, 

[j~,SJ=±tS., [j~,pJ=±tp .. 

U:, pJ = [j~, pJ = [j:, SJ = [j:, sJ = 0, 
[j:, SJ =P_, 

[j:, pJ =S_, 

[j:, pJ=S+, 

[j:, SJ = P+, 

[j~,sJ=±ts., [j~,pJ=±tp., 

[j~, pJ = [j:, pJ =[j:, SJ =[j:, SJ = 0. 

(2.5) 

From these com mutational relations it is seen that the 
pairs (P., SJ and (S., PJ form the 1/2 and - 1/2 compo
nents of a 1/2 tensor with respect to the r subgroup, and 
that the pairs (P_,SJ and (S+,P.) form the 1/2 and -1/2 
components of a 1/2 tensor with respect to the r 
subgroup 0 

B. The generators for the (j,m) scheme 

In the (j, m) scheme the generators assume the stan
dard form, 

L. = L 23 ± iL3U Lo= L 12 , 

K. = L 15 ± iL25 , Ko= L 35 , 

1 
L03 = -f2 (P+ + PJ, 

iLo5 = A (p+ - PJ, 

and Sp 

The L+, L_, and Lo are generators of the SO(3) sub
group with respect to which the generators K+, K_, and 
Ko form a vector, the noncompact generators S+, S_, 
and L03 form a spherical vector and L05 is a scalar 0 

3. THE MATRIX ELEMENTS OF THE GENERATORS 
A. The matrix elements in the (m+, m-) scheme 

The matrix elements of the generators have been cal
culated by Thomas5 in the (m·, m-) scheme for the whole 
range of eigenvalues of two Casimir operators for uni
tary representations of the SO(4, 1) groupo 16 

To make the notation consistent with the tensor pro
perties of p. and S., and for future reference, the ma
trix elements are reformulated as 

Similarly, for P., 
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The p and q are the eigenvalues of two Casimir invari
ants which specify an irreducible representation of the 
SO(4,1) group and < 0 0 10 ) are Clebsh-Gordon coeffi
cients and < ·1111 0) are reduced matrix elements o The ma
trix elements are different from zero only in four cases: 

B. The reduced matrix elements 

For these nonzero cases in the Clebsh-Gordon coeffi
cients, the reduced matrix elements are 

<r + tr + tpqIIS.lllrpq) = <r + tr + tpqIlP.llj+fpq) 

_ [(j+ + r - p+ 1)(j++ r + p+ 2 )(j+ + r + q+2)]1/2 

- 2(2r + 2)(2r + 2) , 

(j+ + tr - tpqIIS.llj+fpq) = <r + tr - tpqIIP.lljypq) 

_ [(j+ -r -p)(j+ -r +p+ 1)(j+ - f - q)(j+ -f +q+1)l1/2 
- 2(2j· + 2)(2f + 2) J ' 

(3.4) 
<r - tr + tpqlls.lllrpq) = (j+ - tr + tpqIIP.IIj+rpq) 

= _ [(j+ -f - p - 1) (j+ - r + p) (j+ - r - q - 1) (j+ - r + q )J 1 12 
2 (2j+)(2j-) , 

0+ - tr - tpqIIS.lljypq) = (j+ - if - tpqIIP.IWfPq) 

__ [(j+ + r -p)(j+ + r + p+1)(j+ +r+ q+ 1)J1 /2 
- 2 (2j+)(2r) 0 

Because the representations are unitary, the genera
tors (Lij) are Hermitian, therefore (P+ and pJ are 
Hermitian conjugates of each other, and (:?+ and SJ are 
an anti-Hermitian conjugate pair. 

c. The matrix elements in the (j, m) scheme 

In the (j, m) scheme, the reduced matrix elements 
(3.4) are unchanged o Applying then the Wigner-Eckart 
theorem to the tensors (2.6), the matrix elements are 
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(3.6) 

~
l 1 I~( 1)1/2+J-Jt-r 22 - a a [(2j;+1)(2j;+1)}1/2 

X .!. .!. 0 {2 
2 - 2 

(3.7) 

x W(j;J;j-;J~; ba)(j;JJ1qlliLo51Ij:j~pq), 

where 

and W(···) is a Racah coefficient. The results can be 
verified directly by inserting the expansion 

j 
j> r\ I j> j-\ /r J-j j\ 

m+ m-;=fm m+ mf\m+ m- m/ 

into Eq. (3.1). 

(3.8) 

The generators L03 and Los leave m unchanged, and 
together with L35 they constitute the SO(2, 1) subgroup 
which commutes with L 12 • This subgroup is of interest 
in calculations involving and external magnetic field. 
The generator Los also leaves j unchanged. 

4. THE REPRESENTATION OF THE SO(4,l) GROUP 

In this section the known forms of the square repre
sentations of the SO(4) group are extended to include the 
SO(4,1) group representation. 

A. The representation of the SO(4,l) group in the 
(m+,m-) scheme, and a method of constructing noncompact 
SO(4,l) group generators 

The basis states for the square representation of the 
SO(4) group in the (m., m-) scheme have been obtained 
by Sharp by superimposing two orthogonalized SO(3) 
states in spinor variables (JJ., 8) and (~, ~). 2 For a square 
representation j+ = r = in, the basis states are 

I 
J" r), = l n ), = [{in+m+)!(in-m+)!(in+m-)I(in-m-)!]1/2 

m+ m m+ m nl 

1J" /4+m+ /2+m' e" /4+m+/2-m' ~"/4-m+ /2-m' 1:" /4-m+ /2+m' 

x 22, (in + tm+ + m')1 (in + tm+ - m ')t(in - tm+ - m') I (in - tm+ - m- + m')! 
(4.1) 

where -/.s m± .sj±, and m' is restricted to nonnegative 
factorials. 

The square representations of the SO(4) group appear 
in the representations of the SO(4, 1) group only with 
q = 0 (Table I), and only two matrix elements of the non
compact generators differ from zero, {3.1} and (3.3) 
for nb=na±l. For the noncompact generators to com
mute with the compact ones according to (2.5) they have 
to contain at least first derivatives with respect to the 
spinor variables, (4.1). In addition, the noncompact 
generators change the n of the operand states, (4.1) to 
n± 1. Therefore, the following form of the noncompact 
generators is proposed: 

(4.2) 

where i,j,kand l=1,2,3 or 4, i'i is the spinor variable, 
/l, e,~, or ~, and Gt is a noncompact generator. The At 
and Bt are coefficients. 

From the identity, 

I
n) I n+ 1) j n-1) Gt =C t +Dt 

m+ m- m; m; m; m; , 
(4.3) 

where m~ is related to m% by the operation of a partic
ular generator Gt, (3.1). With a noncompact generator 
in the form (4.2), and the states (4.1), the solutions for 
the At and Bt, which do not depend on n, can be found, 
as well as the solutions for C t and Dt. The results of 
this lengthy straightforward calculation for the coeffi-
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cients is 

(4.4) 

The noncompact generators appropriate for the (m', m-) 
scheme, (2.3) or (2.4) are 

1 1 
S+ = T21J(1 + 1Ja~ + eO B + ~a () + {'2(e~ -1)ot, 

1 1 
S_ = ,fI ~(1 + ~oc + eO B + ~o() +72(e~ -1)0", 

(4.5) 

and 

1 1 
p- = .f2 ~(1 + ~o ( + ~o t + 1J 0") + .f2 (1J1: + 1)oB· 

For completeness, the set of six compact SO(4) gener
ators2 is 

j:=1Jo(+eo t , j:=~o"+1:0B' j;=~(1Jo"+eiJe-~iJ(-1:iJc)' 

j:=~o( + eo", j:= ~iJc +1Joe, and j~=i(~iJ( +1JiJ" - 1:iJc - eOe). 

(4.6) 

Direct calculation verifies their commutational laws 
(2.1) and (2.5). 
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The appearance of nl in (4.4) is because the four
dimensional space is too small to carryall unitary ir
reducible representations of the SO(4, 1) group. This can 
be seen from the following considerations: 

The norm of the basis states with respect to n can be 
determined in two ways: 

(i) the norm of the next highest state can be generated 
from the norm of the next lowest state using the 
matrix elements of the noncompact generator; or 

(ii) the norm can be determined by dividing the state 
with the square root of its length. But the form of 
a generator has to depend on p, q and n in order to 
produce the correct matrix elements of the non
compact generator. 

The simplest solution is to adopt the norm for the 
states as determined from (i), when the form of a gen
erator will remain free of the representation indices, 
and the basis is orthogonal, but the length of the basis 
states is (nl)1/2 instead of 1. Therefore, the set of gen
erators (4.5) and (4.6), together with the basis states 

! 
n \=(n!)1/2\ n '\', 

m+ ml m+ mj 
(4.7) 

constitute the representations of the 50(4,1) group in the 
(m., m-) scheme in spinal' space, with p and q equal to 
zero (Table I). 

This representation is now transformed into four
dimensional Euclidean space by a change of variables 
effected by a matrix T1 : 

Where (4.8) 

T -(-: =:: :) d T -1_ !.T t - !.(/: ::) 1- an 1-2.1-2. 
001i 0011 

o 0 1 - i 0 0 -i i 

For example, by this transformation, the compact 
generators (2.4), when expressed as differential opera
tors (2.2), are brought to the form (4.6). 

To arrive at a convenient form of the representation 
of the SO(4, 1) group in four-dimensional space in the 
(m., m-) scheme, it is necessary to express the basis 
states, and the generators in polar variables defined by 

and 

Xl =exp(-p)coswcosa, 

X 2 = exp( - p) cosw sinO', (System A) 

X3 =exp(- p)sinw cosa, 

Xs =exp( - p) sinw sini3. 

The volume element of this system is gA defined by 
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(4.9) 

gA = (1!2)exp(-4p) sin2w. 

The spinor variables are linked with these polar vari
ables through Eq. (4.8). The noncompact generators 
(4.5) become in these polar variables 

S.= ~ exp(± iO'){± coshp coswo p% sinhp sinwo w 

and 

. sinhp } -1--0 ,,± exp(- p) COSW 
cosw 

p.= Jz exp(± iM{- coshp sinwil p + sinhp coswil OJ 

.sinhp" ().} ±l-.-vs+exp -p smw 
Sinw 

(4.10) 

The compact generators assume the familiar form17 

j~ = ~exp(± i(a' + (3)]{± il OJ - i cotw(i d + i tanwil J, 
j~=-i{il,,+il.J, 

j; = t exp[± i(O' - 13) 1{± il w + i cotwil B + i tanwil J, 
and 

j~ = - -H a or - il .J . 

The basis states (4.7) become after a little 
manipulation: 

I n )=(_l)"/2+m+ exp(-np)[exp(ia)}m+.m
(m- m 

x [exp(il3)]m+-m- d",J~-(2w), 

(4.11) 

(4.12) 

where d:. (2w) is an SO(3) reduced rotational matrix as 
defined in Ref. 18. The range of parameters is 

O<p<oo, 0<w<1T!2, 0<0' and (3<21T, 

The length of these states in system A, (4.9) is 

I n _\ n y/2 = [2(n+ l~n+ 2)Jl /2' \m- m m+ mj 
(4.13) 

Since the p appear explicitly in the noncompact genera
tors (4.9) and in the basis states (4.2), the integrals in
volving these states will diverge unless the exponential 
radial dependence, exp{-p}, is used in system A, (4.9), 
instead of the usual linear dependence on p. 

Applying the noncompact generators (4.10) to the 
basis states (4.12) gives a set of eight new reCUrsion 
relations for the SO(3) group reduced rotational ma
trices. Reducing the general matrix elements of the non
compact generators (3.1) and (3.2) to the case l =F 
= tn, and replacing w by %W so that the reduced SO(3) 
group rotational matrices depend on a single argument, 

S. gives 

[tn(l + cosw) ± (m+ + m-)] d",J~-(w) - sinwil wd"m'~-(w) 

2[( " +)(' -)}1/2 :::"d"/Z-1!2 () = 2"n± m 21l± m cos 2 ""'m-/2U/2 w , 

p. gives 

[~n(1 - cosw}± (m+ - m-)] £f'm~~-(w) + sinwil wd"~;'-{w) 

2[( " +)(' -)11 / 2 ' W r!'l2'1/Z () = ± 2"n± m zn± m SIn 2' m+.",-/Zil f2 W , (4.14) 
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s~ gives [~(n+2)(I+cosw)±(m++m-)]1/2rl';.~;'_(w) 

2[( 1 + 1)(1 - + 1)]1/2 W d"/2+1/2 (). = 21l±m + "2n±m COS2 "'+~m-/2~/2 W , 

and 

- sinwo w d"m~~-(w) 

2[( 1 ++1)(' -+1)]1/2' W-"'/2+1/2 () =± Z"n±m "2n±m sln2";;'+~m-/2>l/2W, 

and the compact generators become 

L.=.f2(SOC+1)08)' L_=.f2(/:Io~+to), L o=7jo,,-too 

K+=.f2(ao~-7jaCt)' K=.f2(to",-ao~) Ko=aoll+fjo",. 

(4.18) 

By analogy with Sec. 4A the representation is trans
formed into four-dimensional Euclidean space 

where S. and p~ are the particular generators which lead where (4.19) 
to the recurrence relations. 

B. The representation of the SO(4,1) group in the (j,m) 
scheme 

The basis states and the set of generators for the 
(j, m) scheme are obtained from those for the (m+, m-) 
scheme by substitution: 

a = (l/.f2)(e - 0 
(4.15) 

(:l=(I/.f2)(e+ ~) 

The basis states become 

In \=(2l+1)!(n-l)!(n+l+l)!)1/2 
l m/ nlll2n - 1 

(4.16) 

-l "" m "" l, 0"" l "" n 

where l replaces j, which is always an integer in a 
square representation. The set of noncompact genera
tors (2.6) in the (j, m) scheme become, after substitu
tion of (4.15) into (4.5), 

and 

405 

1 1 
S+= rn7](1 +7jo,,+cxo a +(3o) - _(a 2 -J32+2)oc. 

v2 2{2 

1 1 
S_= ",/:(I+toc+ao",+/308)- m(a2-i32+2)o", 

v2 2v2 

1 1 
L03= 12-$(1 + tae + 7]0,,) + 2.,{2 (a 2 +(32 + 21)t + 2)0", 

1 
+.,{2a(:l°Il' (4.17) 

iLOs =rra (1 + I:o~ + 1)0,,) + 2~ (a 2 + (32 - 21)/: - 2)0 '" 

1 
+ .J2 a(:l°ll 
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1 i 
----00 

.[2 .[2 

1 1 
-.,{2-.[200 

o 0 

o o 0 i 

1 1 
---00 

.[2.[2 

i 
.J2.f2 00 

o 0 1 0 

o 

and the basis states and the generators are expressed in 
polar variables appropriate to the (j, m) scheme: 

Xl =exp( -p)sinx sine cos4>, 

x2 =exp(-p)sinx sine sin4>, 

x3=exp(-p)sinx cose, 
(System B) (4.20) 

and 

X5 =exp( - p) cosx. 

The volume element of this system is gB 

gB =exp( - 4p) sin~ sine. 

The range of parameters is 

and 

o "" e "" rr, 0 "" 4> "" 2rr • 

The noncompact generators (4.17) become 

S~= texp(± i4»{±(eP+ 2e-P) sinX sinOa p± (e P - 2e- p) 

_ cose 
XcosxsinOox±(eP-2e P)-. -ae smx 

(4.21) 
1 

L03 = r.; {- (e P + 2e-P) sinx coseo p + (e P - 2e-p)cosx cos eox 2v2 . 

_ (e P _ 2e-P) s~nO 0e+4e-Psinx cosO}, 
Slnx 

Los = ;.. {- (e P + 2e-P) cosx o P - (eP - 2e-P) sinxox 
2v 2 

+4e-Pcosx}. 

The compact generators (4.18) take the usual form, 17 

L. = exp(±i4>)(± 0 e + i cotOo ",), Lo = - io "" 
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K*=exp(± irj>)fi sinBox +icotx cosBoe ± c?tx 0<1>\' 
'\ smB 1 

(4.22) 
and 

The basis states (4.16) become, after manipulation 
(Appendix B), the hyperspherical harmonics, 

\ 

n \=(i)n_I(2
n

+
2/

(n-l}!(ZI)2(2l+1)(Z-m}I)1 /2 
lm/ (n+l+l}l (l+m}l 

(4.23) 

exp( - np)(sinx)IC~:~(cosX}P7(cosB) exp(imrj», 

where C~:~(COSx) is a Gegenbauer polynomial, and 
P~(cosB) is an associated Legendre polynomial as de~ 
fined in Ref. 19. The same state, apart from normali~ 
zation, has been derived on group theoretical grounds 
by Sharp. 2 

The length, the norm of the states (4.23) is 

~nml,nmr ~ (- 1)'-' (in :::;n + 2»)"'· 
Similarly, as in Sec. 4A, the known matrix elements 

in the U, m) scheme (3.4), the set of noncompact oper~ 
ators (4.10) and the states (4.23), allow the recursion 
relations for the hyperspherical harmonics to be de~ 
rived. All of them will not be written explicitly, be~ 
cause the functions of two variables are involved; in~ 
stead, several examples will be considered in which 
only one function appears. The following recursion re~ 
lations are all known; nevertheless, they will be derived 
because they establish the representation given in (4.10) 
for noncompact generators and the basis states (4.23). 

The operation of the generators S., on a basis state 
for which m = 1 is 

S \ 1 )=/ 1 + 1 Is Il)1 1+1 \ 
± 1 m ~+1 m±l '11 m 11+1 m±y 

/ 1+1 1 \ 1 \1 1+1) 
+~-1 m±l S., 1 ~/ l-l m±l 

(4.24) 

/ 1-1 1 11)1 1-1 \ 
+ \l - 1 m ± 1 S, 1 m 1 -1 m ± y. 

The identity (4.24), with the representation of the non~ 
compact generators (4.21) and the states (4.23), sputs 
into two equations, one for each exponent exp[ - (n ± l}p], 
after the matrix elements have been calculated from 
(3.4)and(3.5)forthecasep=0, q=O, andj+=r=~. 

This procedure gives four standard recursion rela~ 
tions for the associated Legendre polynomials of a real 
variable (five are actually found, but two are identical), 

(21 + 1) sinBP~(cosB) = ~:ll(cosB), 

1 sinep,'(cosB) + coseoeP~(cose) - ~ LJ ~(cosB) 
SIn" 

= P,:ll(Cose) , (4.25) 

(21 + 1) sin BP';'(cos B) = (1 - m + 1)(1 - m + 2)p;:;1(cosB) 
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- (1 + m)(l + m -l)P~:f(cosB), 

and 

-lsineP~(cosB) -cosBoeP~(cosB) - ~ a P';'(cos B) 
SIn" 

Another two recursion relations can be derived from 
the identity 

L \ 1 )_ / 1 + 1 \ L \ 1 \ \ 1 + 1\ 
03 1 m - 'y + 1 m 03 1 mJ 1 + 1 m/ 

/ 1 + 1 I L 11)1 1 + 1) 
+ Y _ 1 m 03 1 m 1 -1 m 

(4.26) 

/ l-1 ttl )1 1
-

1 
\ 

+ \l-l m L03 1 m 1-1 m/ 
This gives 

(2l + 1) cosBP~(cos8) = (1 - m + l)P';'.l (cos B) 

+ (1 + m)P';'_l (cos e), 
(4.27) 

1 cosBP~(cose) - sineaeP~(cose) = (1 + m)Pr'_l (cos e) . 

Thus six out of eight possible19 recursion relations ap~ 
pear. The remaining two recursion relations can be de ~ 
rived by applying the compact SO(4, 1) group generators 
(4.22) to the states (4.23). In particular, from the 
identity 

L'I,'~~~ ~J L.j,'m) I , ~±~. (4.28) 

the two remaining recursion relations follows: 

oeP';'(cose) - m cotep,;, (cosB) =Pf +1(COS 8), 

and 

o r,(cos8) + m cot8P;"(cos 8) = 

- (l + m)(l- m + l)P;""l(cosB). 

(4.29) 

The K, gives the second recursion relation of (4.25); the 
Ko gives the second recursion relation of (4.27); Lo 
gives a trivial result. The recursion relations (4.25), 
(4.27), and (4.29) are in a form which corresponds to 
that of the generators. The relations easily reduce to 
their standard form as in Ref. 19, by eliminating the 
derivatives with respect to B. 

Thus to obtain all the resursion relations group theo~ 
retically, the SO(4, 1) group representation has to be 
used. It is of interest to note that, if it is assumed that 
all the recursion relations for the Legendre polynomials 
are known, and contained in (4.25), (4.27), and (4.29), 
then consideration of the full dynamical group of the 
Coulomb potential 0(4, 2) cannot give new recursion re
lations. A representation of the SO(4, 2) group in four
dimensional space, with the hyperspherical harmonics 
as basis states, has to coincide with the representation 
of the SO(4, 1) group. In this sense, it is sufficient to 
use the SO(4, 1) group as the dynamical group for this 
system, instead of the more complex SO(4, 2) group. 
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The corresponding recursion relations for the Gegen
bauer polynomial is most easily derived from the oper
ation of the noncompact generatol'-s {)n the basis state 
with m = l. From 

(4.30) 

two standard recursion relations are obtained, after 
changing the indices 

IJ = 1 +1, k = n - l; 

namely, 

(k + 2 IJ)C~(COSX) - cotx axC~(COSX) = 2IJC~+1(COSX) 
and 

(4.31) 

(4.32) 

The operation of the generators S. and L03 does not lead 
to a different recursion relation in this case. As iL05 
does not change either lor m, it can be applied to an 

;~:,lr~):¢:lliL"'I,n~I::l) 
+(n,-~liL"'I,nm) In, ~> 

to give two more recursion relations: 

(4.33) 

k cosX C~ (COSX) - sinx axC~(COSX) = (k + 2v -1)C~.1 (COSX) 

(4.34) 
and 

(k + 2v) cosx C~(COSX) + sinxaxC~(cosX) = (k + 1) C~+1 (COSX). 

Equations (4.32) and (4.34) give four recursion relations 
for the Gegenbauer polynomials. The remaining recur
sion relation can be derived by applying any of the gen
erators K., K., and Ko to the basis states (4.23) with 
m = 1, m = -l, and m = 1, respectively. The result is 

(4.35) 

The last recursion relation is the only one which can be 
derived by use of the compact generators. Similarly, 
as in the case of the Legendre polynomials, the full set 
of recursion relations for the Gegenbauer polynomials 
is contained in a representation of the SO(4, 1) group. 

5. CONCLUDING REMARKS 

Two pOints of interest emerge. 

First, the connection between the space of the 0(4) 
spinors and four-dimensional Euclidean space; apart 
from the theoretical interest, it is an advantage in prac
tical calculations, since various operations are far more 
easily performed in spinor space than in Euclidean 
space; by the coordinate transformations (4.8) and 
(4.19), one can always arrive at the corresponding set 
of operations expressed in the appropriate coordinates 
in four-dimensional space from those in spinor space. 

Second, the explicit representation of the SO(4, 1} gen-
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erators found, should facilitate reduction of the SO(4, 1) 
group with respect to its different subgroups. 

As mentioned in the introduction, it is known that the 
radial part of the hydrogenic wavefunction is linked with 
the basis for a unitary irreducible representation of the 
SO(2,1) group. 4 The radial wavefunctions depend on n 
and l. The wavefunction dependence on m can be elimi
nated by considering the SO(4, 1) group generators which 
leave this quantum number m unchanged, namely, the 
L 35 , L 05 , and L03 which constitute the Lie algebra of the 
SO(2,1) group. 

This suggests that in the reduction of SO(4, 1)::1 
SO(2, 1)X SO(2) in which L12 generates the SO(2) group, 
the radial wavefunctions are contained in a basis in 
which the subgroup SO(2, 1) is diagonal. The same re
duction is of interest in considering the group theoreti
cal description of an atom in a magnetic field where 
SO(4, 1)::1 SO(2, 1)XSO(2). 

The noncompact generators (4.10) and (4.21) can be 
transformed into three-dimensional "physical" space by 
reversing the procedure in Ref. 3. It will be of interest 
to compare such transformed generators with the ex
isting representations of the SO(4, 1) group in three
dimensional space, 12,13 or with the representations of 
the SO(4, 2) group in three-dimensional space. 20 

The representations of the SO(4, 1) group found in this 
paper for q=O and p=O, representation 1 of Table I, 
fall within the chain of reduction of certain important 
classes of the 0(4,2) group representations 0(4,2)::1 
SO(4, 1)::1 SO(4), the subclass (1) of Ref. L 

In this paper the representation of the generators of 
the SO(4, 1) group has been found for which the hyper
spherical harmonics are basis states, belonging to the 
representation 1 of Table I with p= 0 and q= D. 

The recursion relations of the SO(3) reduced rotation
al matrices, the Legendre polynomials and the Gegen
bauer polynomials have been derived by group theoreti
cal arguments alone, consequently they are of intrinsic 
interest in the study of the connections between these 
functions and the group representations. 
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APPENDIX A 

Han has obtained a representation of the SO(4, 1) group 
in four-dimensional space by constructing an E4 algebra 
relevant to the problem. 14 His noncompact generators 
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are expressed in terms of a 4-vector PI, called a 
"Shirokov operator" which transforms irreducibly with 
respect to the 50(4) group. The relation between Han's 
noncompact generators (B, S) and those found in this pa
per (B/, L 05 ) (B' has components Lou L 02 , L

03
) in the no

tation of this paper is 

iB=v'2B/+2(L x x)+(9/2)x- (x.p)x- (1/2)p, 

is = - v'2 L05 + (x 'P)X5 - (5/2)x5 + P5' 
(Al) 

The two vectors x and p have components (xu X 2 , x 3) and 
(OX1'OX ,ax) and P5- ox. 

2 3 5 

The difference arises from the arbitrariness in deter
mining the 4-vector pI; i. e., any vector which trans
forms irreducibly with respect to the 50(4) group can 
be identified with four noncompact generators of the 
SO(4,1) group. Han's choice is P- x; compared to that 
in this paper which is given in (Al). 

When expressed in spinor coordinates using (4.8) for 
example, Han's generators do not contain the term 
which lowers n to n - 1. Therefore, the hyperspherical 
harmonics in their normal form (4.23) cannot be the 
basis states for Han's generators (although a linear 
combination with respect to land m may possibly trans
form correctly). 

APPENDIX B 

After the spinor variables in the basis states in 
(4.16) have been replaced by the spherical Ones of 
(4.20) via (4.18), the two sums in the expression for the 
basis states of (4.16) take the following form, without 
the normalization factors, 

and 

" (_1)S(l + s)! (COSXY-I-2S(sinX)2, 
Ss=~ s!(n-l-2s)!(2l+2s+1)! 

By developing 

(sin"-x)s=(1-cos2X)S 

into the binomial series we find for 5s 

Ss=B {E(n -l-2s)! ~~7:)~s + l)l(s - P)!} 

(-1 )P 
x --,- (COSX r 2P

• p, 

(B1) 

(B2) 

(B3) 

The coefficient in curly brackets may be calculated as 
follows: First, the index s is replaced: 

s = t + p. 

Then, two identities21 for the gamma functions are used: 

(n -l- 2p)! 
(n -l - 2p -2t)! =22t[(_n+ Z)/2 + pL[(- n+ 1 + 1)/2 + P1t 

and 

(2)21+2s+1 
(2Z+2s+1)!=r(2l+2s+2)= J

rr 
r(l + s + l)r(Z + s + i). (B4) 

After the last replacements, the coefficient in (B3) 
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becomes 

{} J7i 1 
• (2 )21+2$+ 1 ..,-(n----:-l---=2,....p .. ) ,"", r'""'(:-:"z-+""'p-+--"-:-% ) 

(- n + 1 - n + 1 + 1 3) 
X 2Fl ,-2-+ p, 2 1+p+2;1. (B5) 

From the well-known formula for the value of the hyper
spherical function, 2Fl ( ••• ), for the argument 1, and 
using the duplication formula of the gamma functions 
once more, 

:0 (l+s)! 
s=p (n -l- 2s) t (2l + 2s + 1)! (s - p)! 

(2)n-, (n-p)t 
= (2)21> (n-l-Zp)1(n+Z+1)! (B6) 

and 

S 1 ~ (-1)I>(n- p )!(2 ).-1-21> 
'=(n+1+l)! I> p!(n-1-2p)! cosX 

1t C1+l ( ) -:"(n-+-Z-+""'l) ! n-I cosX , (B7) 

where C~~~(COSX) is a Gegenbauer polynomial, and the 
sum is restricted to the nonnegative factorials. 

Similarly, the sum (B2) leads to 

St (Z ~:)! (_l)mp;" (cosB). (B8) 

Substitution of these sums, (B7) and (B8), into (4.16) 
together with the normalization factors give the basis 
states (4 0 23). 
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The J -matrix method introduced previously for s -wave scattering is extended to treat the I th partial 
wave kinetic energy and Coulomb Hamiltonians within the context of square integrable (L '), 
Laguerre (Slater), and oscillator (Gaussian) basis sets. The determination of the expansion coefficients 
of the continuum eigenfunctions in terms of the L' basis set is shown to be equivalent to the 
solution of a linear second order differential equation with appropriate boundary conditions, and 
complete solutions are presented. Physical scattering problems are approximated by a well-defined 
model which is then solved exactly. In this manner, the generalization presented here treats the 
scattering of particles by neutral and charged systems. The appropriate formalism for treating many 
channel problems where target states of differing angular momentum are coupled is spelled out in 
detail. The method involves the evaluation of only L 2 matrix elements and finite matrix operations, 
yielding elastic and inelastic scattering information over a continuous range of energies. 

1. INTRODUCTION 

In two previous publications1,2 (referred to as I and 
II) the J-matrix (Jacobi matrix) method was introduced 
as a new approach for solution of quantum scattering 
problems. As discussed in I, the principal characteris
tics of the method are its use of only square integrable 
(L2) basis functions and its ability to yield an exact 
solution to a model scattering Hamiltonian, which, in 
a well-defined and systematically improvable manner, 
approximates the actual scattering Hamiltonian. The 
method is numerically highly efficient as scattering in
formation is obtained over a continuous range of ener
gies from a single matrix diagonalization. 

The development of the J-matrix method as presented 
in I is based primarily upon the observation that the s 
wave kinetic energy, 

1 d2 

Ho = - "2 dr2 (1. 1) 

can be analytically diagonalized in the Laguerre 
(Slater) basis: 

CPn(Ar) = (Ar) exp(- Ar/2)L!(Ar), n = 0,1, ... ,00, (1. 2) 

where A is a scaling parameter. This follows from the 
fact that the infinite matrix representation of (Ho - k2/2) 
in the above basis is tridiagonal (i. e., J or Jacobi 
matrix) and that the resulting three-term recursion 
scheme can be analytically solved yielding the expansion 
coefficients of both a "sine-like" S(r) and a "cosine
like" C(r) function. The J-matrix solutions S(r) and C(r) 
are used to obtain the exact solution of the model scat
tering problem defined by approximating the potential V 
by its projection V N onto the finite subspace spanned by 
the first N basis functions. That is, the exact solution 
'It of the scattering problem, 

(Ho + VN 
- k 2/2)'It = 0, (1. 3) 

is obtained by determining its expansion coefficients in 
terms of the basis set {cpJ subject to the asymptotic 
boundary condition, 

'It - S(r) +tan5C(r), (1. 4) 

where 5 is the phase shift due to the potential VN. 

This paper is intended to generalize the formalism 
developed in I in three areas. First, the results of I are 
extended to all partial waves, in which case the uncou
pled Hamiltonian becomes the lth partial wave kinetic 
energy operator, 

H = _ .! £ + 1 (l + 1) 
o 2 dr2 2r2' 

(1. 5) 

which has a Jacobi representation in the Laguerre basis, 

¢n(Ar) = (Ar)l+l exp(- Ar/2)L~I+l(Ar), n=O, 1, ... ,00. 

(1. 6) 

Secondly, a similar analysis of the Hamiltonian of Eq. 
(1. 5) is presented within the context of the oscillator 
(Gaussian) basis, 

CPn(Ar) = (Ar)l+l exp(- A2r2 /2)L~+1 !2(A2r2), n = 0,1, ... ,00, 

(1. 7) 

which preserves the Jacobi representation and is also 
analytically soluble. The third generalization involves 
the analysis of the lth partial wave Coulomb 
Hamiltonian, 

H = _ .! ~ + 1 (l + 1) + .:. 
o 2 dr2 2r2 r 

(1. 8) 

in the Laguerre function space of Eq. (1. 6), which again 
yields a Jacobi form and is subsequently analytically 
soluble. It is noted that the analysis of the Coulomb 
Hamiltonian in the oscillator set of Eq. (1. 7) does not 
lead to a Jacobi form. 

For the solution of these problems, a general tech
nique is developed which reduces the solution of the in
finite recurrence problem for the asymptotically "sine
like" J-matrix eigenfunction to the solution of a linear 
second order differential equation with appropriate 
boundary conditions. An asymptotically "cosine-like" 
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solution which obeys the same differential equation with 
different boundary conditions is then constructed. The 
fact that both J-matrix solutions obey the same recur
rence scheme is essential to the success of the method 
as an efficient technique for solVing scattering 
problems, 1 

The program of the paper is as follows: In Sec. 2 A, 
the generalized Ho problem is considered and a general 
procedure for obtaining the expansion coefficients of the 
sine-like and cosine-like functions in terms of the basis 
sets is outlined. In Sec. 2 B, the general method is 
illustrated in detail for the case of the radial kinetic 
energy in a Laguerre basis. The analogous results for 
the oscillator baSis and for the Coulomb problem are 
outlined in Secs. 2 C and 2 D, respectively. The details 
of the Coulomb derivation are given in the Appendix. 
Section 3 contains the application of the results thus ob
tained to potential scattering problems. This section 
presents a formula which allows for the computation of 
phase shifts. Section 4 presents the natural generaliza
tion of the J-matrix method to multichannel scattering. 
Finally, Sec. 5 contains a brief discussion of the over
all results and suggestions for applications and areas 
of further theoretical interest. 

2. THE Ho PROBLEM 

The problem examined in this section is the "solU
tion" of the equation, 

(2.1) 

within the framework of the L2 function space {oI>,J, in 
such a manner as to obtain both an asymptotically sine
like and asymptotically cosine-like function. The two 
J-matrix solutions, S(r) and C(r), form the basis for 
the asymptotic representation of the scattering wave
function associated with the full problem. It will also 
be required that the expansion coefficients of both S(r) 
and C(r) satisfy the same three-term recursion scheme, 

A. Generalized Ho problem 

The basic differential equation 

(Ho - k
2
/2)'l'° ~ ° 

possesses both a regular and an irregular solution 
which behave near the origin as 

(2.2) 

'l'0 ~ rl+1 (2, 3a) 
reg r ... O ' 

'l'~rreg ~ r- I (2.3b) 
r-O 

and asymptotically as 

'l'~eg ~ sin~, 
r-~ 

'l'~rreg N cos~, 
r-~ 

(2.4a) 

(2.4b) 

where ~ ~ kr - rrl/2 in the free particle case and ~ = kr 
+tln2kr-rrl/2+u 1 in the Coulomb case. In the above, 
the definitions t = - z/k and u1 =argr(l + 1- it) have been 
used. 3 

Since the basis set {¢n} is complete for functions 
regular at the origin, 'l'~eg can be expanded as 

~ 

'l'~eg '" S(r) ~ 6 Sn¢n(Ar) 
n=O 
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(2.5) 

with the expansion coefficients sn being formally given 
by4 

sn~(¢n(Ar) IS(r) (2,6) 

with ¢n satisfying (1)n I ¢m) = on ... A differential equation 
satisfied by the set of coefficients {sJ can be construct
ed in the following manner. Since the basis set {¢n} 
tridiagonalizes the operator (Ho - k2/2), the {s,J satisfy 
a three-term recursion relation of the form, 

[aln+a2ng(1])]Sn+a3nSn_l +a4ns n+l =0, n> 0, 

[alO + a20g(1]) ]so + a40s l = 0, n = 0, 

(2.7a) 

(2.7b) 

where 1] is the energy variable defined by 1] ~ k/A and 
g(1]) is a function dependent upon the particular choice 
of {¢n} and Ho. Differentiating Eq. (2.6) with respect to 
x, where x is a function of the energy variable 1] ap
propriate to the particular case, leads to a differential 
difference equation of the form 

dx dSn 
1]d1] dx =blnsn+l +b2nSn+b3nsn_l> n> ° (2.8a) 

dx dso 
1]d1] dx ~blOsl +b20s0, n=O. (2.8b) 

For the case of the Laguerre function space, b2n = 0, 
while for the oscillator function space the general form 
of Eq. (2.8) is appropriate. Combining Eqs. (2.7) and 
(2.8) yields a linear second order differential equation 
of the form 

(2.9) 

with two linearly independent solutions Xl and X2 and a 
general solution of the form 

(2. 10) 

Equation (2. 7b) determines sn to within a normalization 
constant. The advantage of the differential equation ap
proach is that a cosine-like solution C(r), whose ex
pansion coefficients will also satisfy the differential 
equation (2.9), can be readily constructed. 

The cosine-like J-matrix solution, 
~ 

C(r) = 2:; Cn¢n(Ar), 
n=O 

(2.11) 

is constructed to be (1) regular at the origin like 'l'~eg, 
so as to be expandable in the basis set {¢J, (2) behave 
asymptotically as 'l'~rreg, and (3) to have its expansion 
coefficients {en} satisfy Eq, (2.7a). This immediately 
means that C(r) cannot satisfy the homogeneous dif
ferential equation (2.2). By choosing C(r) to satisfy the 
inhomogeneous differential equation 

(Ho - k 2/2)C(r) = (3¢O(Ar), 

the Green's function5 

G = 2'l'~eg(r<)'l'~rreg(r»/W('l'~eg, 'l'1rreg) 

may be used to obtain the solution5 

C(r) = -;'(3 ('l'1rreg ir dr''l'~eg¢O(Ar') 

(2.12) 

(2.13) 

+ 'l'~eg I~ dr' 'l'1rreg¢0(Ar'~' (2.14) 

where W('l'~eg, 'l'1rreg) is the Wronskian of the two indepen-
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dent solutions W~eg and w1rreg and is independent of rand 
(3 is a free parameter. 6 C(r) as given by Eq. (2. 14) is 
regular at the origin and with the choice 

{3=- W/2so (2.15) 

goes asymptotically as W~rreg. The fact that the inhomo
geneity of Eq. (2. 12) is orthogonal to the set {<Pn}, for 
n = 1, 2, ... , 00, implies that, for n> 0, the {en} satisfy 
the same three-term recursion relation as the {s.}, Eq. 
(2. 7a). The n = ° case has the form 

(a10 + a2og(1]»c 0 + a40c 1 = l (1) *- 0, (2. 16) 

where l(1]) is a function which depends upon the form of 
(3 and upon any terms that were divided out in the deriva
tion of the homogeneous recursion relation, Eq. (2.7). 
Equation (2.16) is to be contrasted with the homogeneous 
initial condition 

(2.7b) 

which occurs in the sine-like J-matrix solution. It may 
be shown from Eqs. (2. 14) and (2. 15) that the set {en} 
satisfies a differential difference equation analogous to 
Eq. (2.8), which when combined with Eqs. (2.7a) and 
(2. 16) leads to the differential equation (2. 9). The ap
plication of the inhomogeneous initial condition given by 
Eq. (2.16), and an additional boundary condition 
specific to the case being considered, determine the 
two integration constants Yl and Y2 in the solution 

(2.17) 

B. Radial kinetic energy: Laguerre basis 

For the case of the radial kinetic energy and a La
guerre basis, the detailed construction of the J-matrix 
solutions is given following the general technique out
lined in Sec. 2 A. The Hamiltonian is 

Jt! __ .! ~ + l(l + 1) 
1- 2 dr2 2r2' (2.18) 

while the L2 expansion set is given by 

<Pn(Ar) = (Ar)/+! exp(- Ar/2)L~/+l(Ar), n = 0,1, ... ,00. 

(2.19) 

In essence the infinite matrix problems 

(<Pm I (Hi-k2/2) IS(r» =0, m=0,1,2, ... ,oo, (2.20a) 

and 

(<Pm I (Hi - k2/2) I C(r» = 0, m = 1,2,3, ... , 00, (2.20b) 

are solved where 
00 

S(r) = 6 Sn¢nCAr), 
n=O 

00 

C(r) = 6 Cn<Pn(Ar), 
n=O 

subject to the asymptotic boundary conditions 

S(r) ~ sin(kr-17r/2) 
r- OO 

and 

c(r) r"::oo cos(kr -l1T/2). 

(2.5) 

(2.11) 

(2. 21a) 

(2. 21b) 

These solutions have the appropriate asymptotic forms 
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to allow for the formulation of partial wave scattering 
problems for potentials falling off faster than l/r2 at 
infinity, where the solution of the scattering problem 
will have the asymptotic form3 

W r"::oo sin(kr -l1T/2) + tan Ii cos(kr -l1T/2), (2.22) 

1) being the scattering phase shift. 

From the boundary conditions of Eq. (2.21), S(r) is 
designated the "sine-like" J-matrix solution, and C(r) 
the "cosine-like" J-matrix solution. The sine-like solu
tion is discussed in Sec. 2 B 1, where the recurrence 
relation for the coefficients {s.} is solved explicitly, 
giving closed form expressions. The discussion of e'er) 
is somewhat more complex: In Sec. 2 B 2, a function 
C(r) with the appropriate cosine-like behavior is con
structed such that, for n> 0, the expansion coefficients 
{cn} obey the same recursion scheme as the set {sJ; a 
fact that is an essential ingredient of the J-matrix 
method as will be seen in Sees. 3 and 4 and has been 
discussed in I and n. 

1. Sine·like solution 

One of the linearly independent eigenfunctions of the 
radial kinetic energy, 

Jt! = _ .! ~ + 1 (l + 1) 
I 2 dr2 2r2 

(2. 18) 

may be taken to be regular at r = ° and sine-like asymp
totically, that is, 

Wreg(r) r"::O rl+l, 

wreg(r) r"::oo sin(kr-l1T/2), 

(2. 23a) 

(2. 23b) 

where the eigenfunction satisfying Eq. (2.23) is referred 
to as the regular solution. 3 A J-matrix solution, 

00 

S(r) '" wreg(r) = 6 Sn<Pn(Ar), 
11=0 

(2.5') 

satisfying the boundary conditions of Eq. (2.23), is 
easily found within the context of the Laguerre set of 
Eq. (2.19). 

The matrix 

(2.24) 

may, upon application of the orthogonality and recursion 
properties of the Laguerre functions <Pn(r),4 be reduced 
to the Jacobi (J-matrix) form 

J =_ ~ r(n+2l +2hl 
nm 2 nl sinO 

x [2x(n + 1 + 1)Ii".n - nlim,n_l - (n + 2l + 2)1im, n+d, 
where 

x = cosO = (1]2 - t)/(1]2 + t) 

and 

1] = k/A = t cot(O/2). 
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The expansion coefficients {sJ which satisfy the 
matrix equation J. s = 0 may be determined by the solu
tion of the three-term recursion relation 

2x(n +l + l)un(x) - (n + 21 + l)un_l (x) - (n + 1)un+l (x) = 0 

with the initial condition 

2x(1 + l)uo(x) - ul (x) = 0, 

where 

sn(x) = [n !/r(n + 21 + 2)]un(x). 

(2. 27a) 

(2. 27b) 

(2. 28) 

Formally, of course, the {uJ are given by the Fourier 
proj ection4 

un(x) = j~ ~ dr'l!reg(-T/r)¢n(r)/r. (2.29) 

Rather than obtaining the {uJ by the direct evaluation 
of the integral, Eq. (2.29), a linear second order dif
ferential equation for the {uJ is derived. This differen
tial equation formulation will be utili~ed for the con
struction of the cosine-like solution C(r), where the 
analog of the projection of Eq. (2.29) does not exist. 

Differentiation of Eq. (2.29) with respect to x, 
utilizing the fact that 'l!reg is a function of (1]r), gives, 
after application of the chain rule, integration by parts, 
and application of the Laguerre recursion relations, 4 

2 d n + 1 () (n + 21 + 1) 
(x - 1) dx un(x) = -2- Un+1 X - 2 un_l (x) (2.30a) 

with the initial condition 

(x2 -1) :XUO(X) =iu1(x). (2.30b) 

Combining Eqs. (2.27) and (2.30) gives the differential 
equation 

(1 - x 2)u: (x) - xu~(x) - [x21 (l + 1)/(1 _ x 2
) 

- (n2 + 2nl + 2n+l + l)]un(x) =0, 

where the differentiation is with respect to x. 

Equation (2.31) is easily solved. Letting un(x) 
= (1 - x 2) (1+1) 12vn (x) gives 

(2.31) 

(1 - x2)v~(x) - (21 + 3)xv~(x) + [n(n + 21 + 2) ]vn(x) = 0, (2.32) 

which is the differential equation satisfied by the Gegen
bauer polynomial C~+I(x). 6 The general solution of Eq. 
(2. 31) is then6 

u~·n(x) =A nlXl (x) +BnI X2(x), 

where 

XI (x) = (sinO)I+1C!+I(cosO), 

X2(x) = [(cosO/2)1+1/(sin8/2)1] 

X 2F j (n +1 +%, - n -l- t; t -l; sin28/2), 

(2.33) 

(2. 34a) 

(2. 34b) 

where again x = cos 8 and 2F1 (a, b; c; z) is the Gauss 
hypergeometric function. 7 The coefficients Ani and Bnl 
can be determined to within an 1 dependent factor by 
substitution into Eq. (2.27a), resulting in 

(2.35) 

The form of u~en(x) appropriate to the initial cOMition 
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2x(1 + l)uo(x) - ul (x) = 0 

may be determined from Eq. (2.34) as 

un(x) = a 1Xl(x) 

since4 

(2. 27b) 

(2.36) 

(2.37) 

while X2(x) does not satisfy Eq. (2. 27b). 7 Substitution of 
Eq. (2.36) into Eq. (2. 5) gives 

(2.38) 

where the requirement that 

lim (S(kr) - ,preg(kr)] =0 (2.39) 
r-O 
k -0 

determines al as 21r(Z + 1) and thus that 

sn(x) = [21r(l + l)n! /r(n + 21 + 2) ](sin8)1+1C!+1(cos8). 

(2.40) 

The coefficients {sJ of the regular, Sine-like, eigen
function of the radial kinetic energy have now been de
termined by the solution of a linear second order differ
ential equation followed by the imposition of the appro
priate boundary conditions. 

2. Cosine-like solution 

The cosine-like eigenfunction of the radial kinetic 
energy, which is irregular at the origin and defined by 
the conditions 

'l! irreg(r) ;'::0 r- I
, 

'l! irreg(r) T"::~ cos(kr - 1TZ/2), 

(2. 41a) 

(2. 41b) 

will be referred to as the irregular solution. 3 For the 
construction of a cosine-like J-matrix solution 

~ 

C(r) = L; cn¢nU,r) 
n=O 

(2.11) 

with the asymptotic boundary condition, 

C(r) ~ cos(kr-1TZ/2) (2.42) 
T-~ 

it is seen that C(r)"*,p irreg(r) since C(r) r--:O r ' +
1 as follows 

from Eq. (2.11). Thus, the expansion coefficients {cJ 
cannot be written as a Fourier projection of the form 

10 ~ dr,pirreg(1]r)¢n(r)/r (2.43) 

in analogy to Eq. (2.29). A cosine-like J-matrix solu
tion C (r) must thus be constructed with the following re
qUirements: (1) C(r) should have a cosine-like asymp
totic form; (2) C(r) should be regular at the origin; and 
(3) the coefficients {en} should satisfy the same three
term recursion relation as the set {sJ for n> O. Actual
ly, from I it is seen that the most general condition in 
requirement (3) is n ~ N + 1, where N is the number of 
functions in the subspace onto which the potential V is 
projected in the formulation of the model problem. For 
the purposes of the J-matrix method, however, it is 
sufficient to consider the condition n> 0_ It is im
mediately seen that C(r) will not satisfy (¢m I (H~ - k 2/2) I 
xC(r) = 0, m = 0,1,2,. " ,co, as the cosine-like eigen
function of ~ which is linearly independent of ,p reg is 
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'V irreg, which is not regular at the origin. 

The function C(r) satisfying the above conditions is 
given by the solution of the equation, 

subject to the boundary conditions 

C(r) ~ rl+l 
r-O ' 

C(r) ~ cos(k1'- 7Tl/2), 
r*ro 

(2.44) 

(2. 45a) 

(2. 45b) 

where ¢o(Ar) = ¢o(Ar)/rr(2l + 2).4 It is noted that the 
particular choice of the inhomogeneity in Eq. (2.44) 
gives the infinite matrix problem 

(¢m I (Ifl- k2/2) I C(r» = f3omo, m = D, 1,2, ... ,00, 

(2.46) 

immediately implying that, for n> D, the {en} and {s.} 
satisfy the same three-term pure recurrence relation. 
The parameter (3 is determined from a Green's function 
construction of the solution to Eq. (2.44) building in the 
boundary conditions of Eq. (2.45). Using 'V reg and 'Virreg 
as the two linearly independent solutions of the homo
geneous equation (Ifl- k 2/2)C\r) = D, the solution of the 
inhomogeneous problem of Eq. (2.44) may be written 
as 5 

C(1') = -;f3('Virreg i r 

dr''Vreg¢o(Ar') 

+ 'V reg i oo 

drl'VirregrpO(Arl»), (2.47) 

where W is the Wronskian and is equal t03 (- k) for the 
radial kinetic energy case. By taking the r - 00 limit, 
B is determined as 

f3= - w = 2
I
kr(1+i) 

2so -!1T(sine)1 +1 , (2.48) 

where So is the zeroth expansion coefficient of S(rl. 

To demonstrate that the {e~} satisfy the same differen
tial equation as the {sn}, the equation 

u (x) = r(n + 2l + 2) e (x) =Iro 

rlr C(r/A) ¢n(r) 
n n! nor' 

(2.49) 

where C(r) is given by Eq. (2.47) with f3 given by Eq. 
(2.48), is differentiated with respect to x. Applying the 
same procedures that were used in going from Eq. 
(2.29) to (2. 3D) yields the differential difference equa
tion of Eq. (2.3Da), which, when combined with the 
previously derived recursion relation, Eq. (2. 27a), 
gives the differential equation (2.31). The solution un(x) 
satisfying the initial condition 

2x(l + 1)uo(x) - ul (x) = - 21+1 r(l + i)/{1T(sine)I (2.5D) 

is given by 

r(l + i) 11! 
c n(x)=a I Xl(x)- ITT r(n+2l+2)X2(X), (2. 51) 

where Xl(x) and X2(x) are given by Eq. (2.34). From the 
explicit expressions for S(r) and C(r) in terms of 'Vreg 
and 'V irreg, it follows that 
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C n(- e) = (-llen(e), 

sn(- e) = (- )Z+lsn(e), 
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(2. 52a) 

(2. 52b) 

immediately establishing that a l = D and giving 

- r(1 + ~)n! (cos6/2)I+l 
cn(x) = v''1iT(n + 2l + 2) (sine/2)' 

X 2F 1(n+l +i, - n-l- i; ~-l; sin26/2). 

A useful alternative form of en(x) is given by7 

- 2zr(l+ ~)n! 1 
cn(x) = .fTfr(n + 21 + 2) (sine)! 

X2Fj (- n - 21- 1, n + 1; ~ -l; sin2e/2), 

which is a finite polynomial in (sin2e/2). 

C. Radial kinetic energy: Oscillator basis 

Within the framework of the oscillator basis 

(2.53) 

(2.54) 

¢n(Ar) = (Ar)l+j exp(- A2r2 /2) L~+1 /2(A2r2), n = D, 1, ... ,00, 

(2. 55) 

the J-matrix defined by 

J nm =(¢n' (H~ - k 2/2) , ¢m) 

(00 I 1 d2 l(I+1) k2) 
= J

o 
elr ¢n(Ar) ,- '2 elr2 + 2r2 - 2' ¢m(Ar) (2.56) 

is a tridiagonal (Jacobi) matrix leading to the fundamen
tal recursion relation 

- (2n + l + % _1)2)un(1)2) + (n + l + i)Un_1 (1)2) + (n + 1)un+1 (1)2) = D, 

n> D, (2.57) 

where again 1) = k/ A, for the solution of the infinite 
matrix problems 

(¢m I (H~ - k 2/2) , S(r» = D, m = 1, 2, ... , 00, 

<¢ml(H~-k2/2)IC(r» =0, m=1,2, ... ,00, 
(2. 58a) 

(2. 5Sb) 

for the sine-like and cosine-like J-matrix solutions. 

The set {un} satisfies the differential equation 

u;(1)2) + (4n+2l +3)_1)2 - l(l;21»)Un(1)2) =D, (2.59) 

where the differentiation is with respect to 1). Equation 
(2. 59) has the general solutionS 

u~en(1) =Anl exp(_1)2/2)1)Z+IL!+1 /2(1)2) + Bnz exp(- 1)2/2)1)-1 

(2.6D) 

where lFj(a, c, z) is the confluent hypergeometric func
tion. 7 The sine-like solution is deduced from Eq. (2.6D) 
by substitution into Eq. (2. 57), impOSition of the initial 
condition 

(2.61) 

and normalization in the manner of Eq. (2.39), giving 

2 _ (_)nnl 2) 
Sn(1) ) - r(n + l + t) Un (1) 

= V21T(_)nn! (_ 2/2) 1+1LI+1I2( 2) 
r(n + l + ~) exp 1) 1) n 1), (2.62) 

where 

S(r) '" ij sn(1)2)¢n(Ar). 
"=0 

(2.63) 

Substitution into Eq. (2.57), imposition of the initial 
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condition appropriate to the construction of a cosine
like solution, 

(1 + t _1)2)uO{1)2) - ul (1)2) = r{l + t)(2/1T)1/2 exp(1)2/2)1)-I, 

(2.64) 

and use of the symmetry conditions given in Eq. (2. 52) 
give 

( 2) (2) 1/2 r(l + ~)(- )"n! ( 2/2)-1 
c,,1) =- r{ 1 3) exp-1) 1) 1T n + +2 

(2.65) 

where 

'" 
C{r) = 6 cn (1)2)cf>n(Ar). 

n=O 
(2.66) 

~(r) and C{r) are real, regular at the origin, and have 
sine-like and cosine-like asymptotic forms, 
respectively. 

D. Radial Coulomb Hamiltonian: Laguerre basis 

Within the framework of the Laguerre basis, Coulomb 
J-matrix solutions S{r) and C(r) are constructed, which 
are regular at the origin and behave asymptotically as3 

S{r) rr::'", sin(kr + tln2kr - 1T1/2 Hl I ), (2. 67a) 

C{r) r'":::'''' cos{kr + tln2kr - 1T1/2 +0" I)' (2. 67b) 

The Coulomb J matrix 

J nm =(cf>" I (RL- k2/2) I cf>m) 

('" ( 1 d2 1(1+1) Z k2) 
= Jo dr cf>,,{Ar) -"2 dr2 + 2r2 + r - 2" cf>m(Ar) 

(2.68) 

is a tridiagonal form, yielding the recurrence relation 

[(n+1 + 1)(x2;1)_ it(x2; 1)J v,,(x) 

- {n + l)vn+t (x) - (n + 21 + l)vn_t (x) = 0, n> 0, 

where 

x = exp(iO) = - [(t - i1)/{~ +i1)] 

and 

S" = r{n + 21 + 2)r{21 + 2) exp(- 1Tt/2) vn 

for the solution of the infinite matrix equations 

(2.69) 

(2.70) 

(2.71) 

<cf>ml (Rt,,-k2/2) IS(r» =0, m=l,2,3, ... ,oo, (2.72a) 

<cf>ml (Hi.,,-k2/2) IC(r» =0, m=l,2,3, ... ,oo, (2. 72b) 

for the sine-like and cosine-like J-matrix solutions. 

The {v,,} satisfy the differential equation 

(x2 -l)v~{x) + X2; 1 v~(x) _[ (x2;; 9(n2 +2nZ +2n+Z + 1- t2) 

(x2 +1) 2 • 11 
+ x 2(x2 _1) ({x +1)1(1+1)-2zt{n+l+1)(x2-1)~ 

Xv~fx) = ° (2.73) 

where the differentiation is with respect to x = exp{itJ) 
and where too - z/k is considered to be independent of 
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x. The derivation of this equation is discussed in the 
Appendix. The general solution of Eq. (2.73) is7 

v~en(x) =A"lt(sinO)'+l exp{Ot) exp(- inO) 

x 2F t (- n, Z + 1- it; 21 + 2; 1 - exp(2iO)) + Bnlt(sinO)i t 

xexp[- i(n+Z +1)0] 

x 2Ft(-1- it,l + 1-it;n+l + 2- it; 1/(1- e2i9». 

(2. 74) 

The sine-like solution is determined from Eq. (2. 74) by 
substitution into Eq. (2.69), imposition of the initial 
condition 

(2.75) 

and by application of a normalization procedure dis
cussed in the Appendix, giving 

sn(O) = [2'n! [r(Z + 1- it) [/r(n + 21 + 2)] 

xexp[(1T/2 +E1T)t] exp{Ot)(sinO)/+t 

x p~+t (cosO; 2Z/A; - 2Z/A), 

where 

_ {(-) for 0(0, 1T] 
E - (+) for erO, - 1T] 

(2. 76) 

(2.77) 

and J{(z;a;b) is the Pollaczek polynomial4 as discussed 
in the Appendix. The cosine-like solution is determined 
by substitution into Eq. (2. 69), imposition of the initial 
condition 

r, (x2 + 1) (x2 - 1)~ ~1 + 1) -x- - it -x- ~vo{x) - vl (x) 

_ -(r(21+2)]2 
- 221 exp(Ot) I r(l + 1 - it) 12(sinO)1 (2.78) 

and application of a limiting procedure as discussed in 
the Appendix, giving 

. -n! exp(iO",)exp(1Tt/2)exp(- et)exp[-i(n+1)0] 
C +zs = . . 

n n r(n + Z + 2 - zt)2' (smB)' 

x 2F t (-1- it, n + 1; n + 1 + 2 - it; exp(- 2iO». (2.79) 

The functions S(r) and C(r) are real and reduce to the 
radial kinetic energy results when z = 0. 

3. POTENTIAL SCATTERING 

In this section, it will be assumed that the potential V 
does not couple angular momentum eigenstates; the gen
eralization to the case where coupling occurs is straight
forward and will be considered in the multichannel case 
discussed in Sec. 4. Thus, the good angular momentum 
quantum number I will be suppressed, it being im
plicitly assumed that a definite partial wave is under 
consideration. The aim of this section is then to deter
mine the phase shift caused by the potential V with 
respect to the uncoupled Hamiltonian R o, which may be 
taken to be the 1th partial wave kinetic energy or 
Coulomb Hamiltonian. 

As alluded to in the Introduction, and motivated in I, 
the potential V is approximated by truncating its rep
resentation in the function space {cf>n} to a finite, NXN, 
representation VN defined by 
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The problem is then to solve 

< <1>", I (Ho + V
N 

- k 2/2) ! q, E > = 0, 

where 
~ 

q, E = 6 dn<PnCAr). 
n,O 

n,m""'N-1, 
otherwise. 

HI = 0,1,2, ... , co, 

(3. 1) 

(3.2) 

(3.3) 

The form of VN as defined in (3.1) is such, however, 
that it only couples the first N functions <Pm, m 
= 0, 1, 2, ... , N - 1, in the infinite function space. Thus, 
outsi.cte the space spanned by these N basis functions 
the generalized sine-like and cosine-like solutions as
sociated with the generalized Ho problem discussed in 
Sec, 2 are valid. This leads to the following form for 
the w~v~fltnction q, E(r), 

q, E(r) = <1>(r) + S(r) + tc (r) , (3.4) 

whp.re 

(3. 5a) 

~ 

Sir) = 6 Sn<Pn(Jcr), 
n-::-N 

(3.5b) 

~ 

C(r) = 6 Cn<Pn(Ar), 
n;::::.N 

(3. 5c) 

and t is the tangent of the phase shift caused by VN with 
respect to lio• Note that the first N terms in the expan- I 

(J + V)o.o 
(J + V)1.0 

(J + V)N-2.0 
(,J + V) N-l. 0 

o 

(J + V)o, N-2 
(J + V)1.N_2 

(J + V)o. N-l 
(J + V)l.N_l 

o 
o 

(J+V)N_2.N_2 (J+V)N-2,N_l1 0 
(J+V)N_l.N_2 (J+V)N-l.N_l 1 I N_1• NCN 

- - - - - - - - - - - - - - - -1- - - - - -
o J N, N-l 

Equation (3.7) can be immediately solved for t by 
standard techniques. In particular, an expression for 
l = tano can be obtained by prediagonalizing the inner 
NXN matrix (Ho + VN - k 2/2)mn with the energy indepen
dent tran~formation r defined by 

[r(Hn + VN - k2/2)r]n, m = (En - E)on, m, (3.8) 

where {EJ are the Harris eigenvalues. Augmenting r to 
be the (N+l)x(N+l) matrix, 

r A = [~ ~], (3.9) 

and applying it to Eq. (3. 7) gives 

1= tano = _ SN_l + r(E)(J N, N_l)SN 
C N-l + r(E) (J N. N_l)c N 

where 
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(3.10) 

(3.11) 

sions of SIr) and C(r) have been incorporated into the 
<1>(r) term, the remainder of the expansions being 
designated as S(r) and C(r), respectively. The sets of 
coefficients {sn} and {cn} are just those that were deter
mined in Sec. 2 and are dependent upon the particular 
Ho and basis set {<Pn} being considered. The solution 
given in (3.4) contains N + 1 unknowns, (t, {an}, 
n=0,1, ... ,N-1). 

By returning to Eq. (3.2), it is immediately estab
lished that it is satisfied for m?c N + 1: Since VN is de
fined to be zero in this region of the function space and 
due to the tridiagonal representation of (Ho - k2/2), 

(<Pm! (Ho + V
N 

- k 2/2) !'l1E) 

=(<Pm! (Ho - k 2/2)! S + tC) 

=(<Pm!J!S+IC) 
~ 

= 6 Jmn(Sn+tcn) 
n=O 

= o. 

(3.6a) 

(3.6b) 

(3.6c) 

(3.6d) 

(3.6e) 

Equation (3. 6e) follows from the recursion relation 
satisfied by both sn and cn. The remaining N + 1 condi
tions corresponding to the cases m = 0, 1, ... , N are 
sufficient to determine the N + 1 unknowns, and by fol
lowing the analysis presented in I the resulting system 
matrix is obtained: 

o 
o 

o 
- I N-1• NSN 

(3.7) 

At the positive Harris eigenvalues En, 8 tanli reduces to 

(3.12) 

Also, at the positive energies EI"' where r(EJ = 0, tano 
becomes 

tano(E,,) =- SN_l (1]1" VCN_l (1]1")' 1]" =k,jA, (3.13) 

Equations (3.7), (3.10), (3.12), and (3.13) are the 
generalizations of the corresponding results obtained 
in I. 

4. MULTICHANNEL SCATTERING 

The potential scattering results of the previous sec
tion will now be generalized to include collisions with 
targets having internal states. Due to the generaliza
tions developed for solving the Ho problem, the results 
of which are given in Secs. 2 B, C, D, collisions with 
charged, as well as neutral targets, can be considered, 
while employing the appropriate basis set (Laguerre or 
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oscillator in the neutral case, and Laguerre in the 
charged case) to describe the projectile wavefunction. 
Since the method is formulated in terms of the close
couplingS equations, exchange can be treated by the in
clusion of the appropriate nonlocal potential followed by 
its truncation in the J-matrix sense as was done in II. 

The target will be described by the collective co
ordinate p, and its dynamics by Ht(p). It is assumed 
that the target possesses a discrete set of L2 eigen
functions Ry(p) and, further, that the collective quantum 
number y includes the total orbital quantum number of 
the target, Lh its projection on some specified direc
tion (the z axis), M t , in addition to the quantum num
bers jJ. that are needed further to completely define the 
target states. IT the target has a dense or continuous 
spectrum, the method of pseudotarget states may be 
employed. 2,10 It then follows that 

Ht(p)Ry(p) =E""LtRy(p), 

where Y={jJ.,Lt,Mt}. 

(4.1) 

The wavefunction 8 describing the projectile-target 
system satisfies the following Schrodinger equation: 

(Ht(p) +Ho(r) + VCr, p) - E)8(r, p) = 0, (4.2) 

where r is the projectile coordinate, Bo(r) = - ~V; +z/r, 
its Hamiltonian in atomic units, and V(r, p), the inter
action between the proj ectile and the target. In the 
neutral case z is equal to zero. 

For most cases of interest, such as the scattering of 
electrons by light atoms, the total angular momentum 
of the system, L, its projection along the z axiS, M, 
as well as the parity, IT, are conserved in the collision 
process. Therefore, it is more convenient to use a 
representation which is diagonal in these quantum num
bers. Coupling the proj ectile with the targetS in a pic
ture with definite total L and total M leads to defining 

Xr(r, p) = 6 C(lLtL, mMtM)Y,m(r)Ry(p), (4.3) 
m,Mt 

where C(lLtL, mMtM) is the Clebsch-Gordan coefficient, 
r, the channel index {jJ.LtlLM}, and Y,m(r), the spherical 
harmonic functions. It is noted that Xr is an eigenfunc
tion of Land M, satisfying the same equation as Ryo 
namely, 

Ht(P)xr(r,p) =E",.LtXr(r,p), (4.4) 

where L satisfies the triangular relations, 1 L t -ll ~ L 
~ L t + l. Since the function Xr is composed of L2 functions 
and is an eigenfunction of Ht(p), the set hr} may be 
taken to be orthonormal, 

<Xr/Xr,)=/5rr,=/5",,,,,/5L L,/5I1', t t 

where r = {ILL JLM} and r' = {jJ.' L? I LM}. 

(4.5) 

Within a definite LM picture, the Hilbert space of 
the system is spanned by the set 

(4.6) 

for all IL, L t , l, and for n '" 0,1, ... ,"". For neutral 
targets the set {cp!,.r)} can be either the Laguerre 
functions 

cp~l.r)(Arr) = (Arr)'+1 exp(- Arr/2)L~'+l(Arr), 
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n=O,I, ... ,oo, (4.7) 

or the oscillator functions 

cp!'.rJ(Arr) = (Arr)l+l exp(- A~r2/2)L!+1I2(A~r2), 

n=O,I, ... ,oo, (4.8) 

while for charged targets the set {cp~'.r>} can only be the 
Laguerre functions. Note that the projectile basis can 
be made channel dependent through the channel depen
dent scaling parameter Ar. 

In general it is not possible to solve Eq. (4.2) for 
8(r,p) exactly in the Hilbert space of Eq. (4.6). By 
following the procedure in I, the interaction potential 
V is approximated by iT, which is defined by the follow
ing truncation scheme: 

v~,r = <Xr cp~" r> I V(r, p) / Xr,cp~!,r'» 

for r, r' ~ Nc , n ~ Nr_1> n' ~ N r '_l, 

= 0, otherwise. (4. 9) 

where N r is the truncation limit in the channel rand Nc 
is the total number of channels that are allowed to cou
ple through the potential. 

It is now proposed to solve the model equation 

(Ht(p) +Ho(r) + VCr, p) - E)e(r, p) = ° (4. 10) 

exactly in the Hilbert space of Eq. (4.6). There will be 
as many independent solutions 8 r as there are open 
channels. By following the approach taken in I, 8 r is 
expanded as 

8 ( ) 
_ ... ( ) Xr(r, p)Sr(r) ~ Xr' (y, p)Cr,(r)Rr'r 

r r, p - "'r r, p + ,,- + LJ ~ , 
vk r r' vkr' 

r=I,2, ••• ,No, (4.11) 

where No is the number of open channels. The scattering 
matrix 5 LM is related to the reactance matrix elements 
by the relation, 

SLM =e ia (1 +i[R])(I- i[R])-le ia, (4. 12a) 
where [RJ is the No XNo open-channel part of Rand 

(eia)rr' = eia, /5rr" (4. 12b) 
In Eq.(4.1l),the quantity kr is the wavenumber of the scat· 
tered electron and is given by 

k r =(2/E-E",.Lt l)1I2. (4.13) 

Furthermore, for an open channel r, 
ro 

Sr(r) = 6 sn(kr)cp!/.rJUtrr), (4. 14a) 
n=Nr 

ro 

Cr(r) = 6 cn(kr)cp~'·rJ(Arr), (4. 14b) 
n=Nr 

where {sn} and {en} are given by the results of Sec. 2, 
while, for a closed channel r, the cosine-like term 
Cr(r) is replaced by the linear combination 

(4.15) 

and evaluated at kr =i Ikr I. The resulting function cor
rectly describes the exponentially decaying closed 
channel asymptotic behavior. In the neutral case, the 
function of Eq. (4.15) is related to the spherical Hankel 
function of the first kind, h~1)(z), evaluated at z = i 1 kr 1 r. 
The internal function, iPr(r, p), which describes the 
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scattering process at close distances, is written as 
Ne Nr'-1 

<pr(r,p)= 6 6 a~·rXr.(1:·,p)¢~/·,r·)(Ar.r). 
r l n:::Q 

(4.16) 

The remainder of this section briefly demonstrates 
that the wavefunction e is capable of being an exact 
solution of the model Hamiltonian in the Hilbert space. 
This is accomplished by uniquely determining the un
knowns {a~·r,Rr'r}. It is required that all projections by 
<Xr .. cf>~r, r") I from the left-hand side of Eq. (4.10) 
vanish: 

(XrH cf>~H, r") I (Ht(p) +Ho(r) + V(r, p) - E) I 8 r (r, p) = O. 

(4.17) 

For the case of r=l, 2, ... ,No, r" =1, 2, ... , Ne, and 
nil = 0,1, ... ,NrH, NoCZ:fi=1 (Nr .. + 1» equations are ob
tained which is equal to the total number of unknowns: 
NoCZ~f=INr') of the a's and NONe of the R's. It only re
mains now to show that for all other cases Eq. (4.17) 
is satisfied. The assertion is clear when r" > Ne• Sup
pose now that r" ~ Ne, but than n" ~ NrH + 1. Then 
V;;.:;;.: = 0 by definition and Eq. (4. 17) reduces to 

r(A.. (1",rH
) I ( 1. ~ l"(l" + 1) ~ (E E )~ I 

L~Jn" - 2 dr2 + 2r2 + r - - ",,,,L't') 

Nr " .. 1 

X 6 a~''r cf>~/", r") + Sr
H Orr" + Cr .. Rr"r) = o~ (4.18) 

n=o ,;r;;;; VkrH ~ 

where Z = 0 in the neutral target case. Since the opera
tor appearing in Eq. (4. 18) is tridiagonal in the 
{cf>~I .. ,r")} representation, the contribution of the Sand C 
functions vanish since their expansion coefficients {sn} 
and {en} satisfy the resulting three-term recursion rela
tion. Since nil ~ NrH+ 1 while n ~ N r .. - 1, the contribu
tion of the sum term in Eq. (4.18) vanishes, proving 
that Eq. (4.18) is identically true. 

As in I, the nontrivial equations can be arranged such 
that the L2 matrix elements of (Ht+Ho+ V) appear in an 
inner block. Additionally, one extra row and column 
are added to this block for each channel r ~ Nc• The 
right-hand side driving term and the solution vector, 
containing the a~r' and Rrr., have as many columns as 
open channels. The R matrix can then be extracted by 
solving the resulting linear equations by standard tech
niques. After having done so, the SLM matrix is con
structed via Eq. (4.12), from which physical quantities 
are then obtained: e. g., the cross section for the 
transition (lloL~ ~ IlL t ), averaged over Jw<1 states and 
summed over M t states, is given by 

(4.19) 

Other physical quantities of interest can be similarly 
constructed. 9 

5. DISCUSSION 

The discussion in I compared the J-matrix approach 
with the R-matrix, separable kernel, and Fredholm 
methods. The remarks were of such a general nature as 
to apply to the extensions made in this paper. In particu
lar, there are two points that should be stressed. First, 
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no Kohn-type pseudoresonances are expected to appear 
in the computed cross sections. This can be demon
strated by bounding these quantities for all energies. 11 

Secondly, since Ho is solved analytically within the 
function space, it is expected that small basis sets 
would be adequate to account for the addition of the ap
proximate potential. The resulting physical quantities 
contain first order errors; however, the analytic nature 
of the solutions allows for variational correction. This 
can be accomplished through the application of the Kato 
correction12 as discussed in I, and results in reducing 
the errors to second order. 

Presently, work is being done on some of the more 
mathematical aspects of the J-matrix method. These 
include the sense of convergence of the expansions for 
the sine-like and cosine-like functions, possible analytic 
approaches to the second order Kato correction, and 
the generality of the solution scheme for the Ho prob
lem. In addition, the J-matrix method is being applied 
to the e-He+ scattering calculation. 
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APPENDIX: THE COULOMB J-MATRIX SOLUTIONS 

The Coulomb J matrix of Eq. (2.68) leads to the 
fundamental recursion relation 

2[(n+Z + 1 +2Z/A) cose - 2Z/A]Vn - (n+2l + 1)vn_l 

-(n+l)v n+1 =0, n>O, 

which may be cast into the form 

2[(17 +Z + 1) cose +tsine]vn- (n+2Z + 1)vn_1 

(Al) 

-(11+1)1I n+1 =0, n>O, (A2) 

where t = - z/k = (- 2Z/A) tane/2 for - 'IT < e < 'IT. Since 
\{Ireg for the Coulomb case has the formS 

1 1+1 (.) (t/)lr(Z+1-it)1 
\{I reg(k, r) = "2(2kr) exp zkr exp 'IT 2 r(2l + 2) 

the Fourier projection of Eq. (2.29) has the general 
form 

Vn = J '" dr <p[1Jr, t(k) ]cf>n(r)/r. o 

(A3) 

(A4) 

Since the k dependence in >¥ reg appears in both the 
variable and the order parameter of the confluent 
hypergeometric function, a differential equation for vn 
cannot immediately be constructed as in the radial 
kinetic energy case. 4 However, since the only require
ment is to satisfy a pure recurrence relation and not 
any differential properties, the procedure of Sec. 2 A 
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can be applied after making one modification. Noting 
that Eq. (A2) can be viewed as a recursion relation, 
where t and 8 are independent of one another, t is taken 
to be independent of 8 (or k) in Eq. (A4), resulting in 
the form 

(A5) 

and the procedure to obtain a differential difference 
relation can be carried through as before. Only at the 
end of the procedure is t set equal to - z/k: The dif
ferential relations derived will then no longer hold; 
however, Eq. (A2) will become Eq. (AI), and the 
original problem will be solved. 

It is then straightforward to derive the differential 
equation 

[
(x2 -1) 2 1 2) ( (x

2 +1») 
- \~ (n +2nl+211+l+ -t + x2(x2-1) 

X [(x2 + 1)l(l + 1) - 2it(n +l + 1)(x2 -1)~ Vn = 0, (A6) 

which can be solved by standard techniques to give7 

Vn =Anl t(sin8)I+l exp(8t) exp(- in8) 

x 2F 1(- n, 1 + 1- it;2l + 2;1- exp(2i8)) 

+Bnlt(sin8)it exp[- i(n +l + 1)8] 

x 2F 1 (-l - it,l + 1 - if;11 + 1 + 2 - it;l/[1 - exp(2i8)]). 

(A7) 

Substitution into Eq. (A2) followed by the imposition of 
the homogeneous initial condition determines sn to with
in a factor dependent upon land t, alt. Due to the cut 
structure of the solutions, a lt must be determined in 
two normalization steps, one corresponding to k - 0 
for 8[0, 1T] and other to k - 0 for 8[0, -1T]. Applying Eq. 
(2.39), first in the limit r - 0, k - 0+ corresponding to 
8[0, 1T], and then in the limit r - 0, k - O· corresponding 
to 8[0, - 1T], finally yields 

211 rel + 1 - it) I 
sn = r(2l +2) exp[(1T/2 +E1T)t] exp(8t)(sinB)z+1 exp(- in8) 

(AB) 

Letting t = - z/k recovers the original recursion rela
tion and noting the definition of the Pollaczek 
polynomials, 4 

P~(cosB;a;b) 

= [{2'\)n/n!] exp(- inB) zF1 (- n, ,\ - iw;2'\;l - exp(2i8», 

(A9) 

where w=(acos8+b)/sin8, gives 

2In!lr(l+l-it)1 / .1+1 
Sn = r(n + 2l + 2) exp[ (1T 2 +E1T)t] exp( 8t)(sm8) 

(AlO) 

Three properties of {Sn} will now be verified. Since 
'lTreg is real3 and the basis set is real, {sJ must be 
real. Application of the linear transformation 7 
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2Fl (a, b;c;z) = (1- z)-a zF1(a, c - b;c ;z/z - 1) (All) 

to Eq. (AB) immediately establishes the reality of {sn}. 
Since 'lT reg transforms as3 

'lT reg (- k, r) = (_)1+1 exp(-1Tt)'lT reg(k, r), (A12) 

the set {sJ should transform as 

sn(- k) = (_)1+1 exp(-1Tt)Sn(k). (A13) 

The transformation k - - k implies B - - B, ~ - - E, and 
t - - t, which when combined with the reality property 
immediately establishes Eq. (A13). Finally, in the 
limit as z - 0, the radial kinetic energy in a Laguerre 
basis results should be recovered. Noting that4 

.F,;(cosB;O;O) = C~(cosB) (A14) 

immediately establishes the reduction. 

Substitution into Eq. (A2) followed by the imposition 
of the inhomogeneous initial condition, in the derivation 
of which the result 

W(k) = - k exp[(1 H)1TtJ, (A15) 

as can be derived from the results in Ref. 3, is em
ployed, yields 

c n+ a(l, t)sn 

_ n! exp(iuI)exp(1Tt/2)exp(- Bt)exp[-i(n+l)B) 
- - 2' r(n + l+ 2 - it)(sin8) I 

x 2F 1(-l - it, n + l;n +l + 2 - it;exp(- 2iB». (A16) 

The coefficient a(l, f) is determined in three steps. 
EnforCing the reality of {CJ through the application of 
the linear transformation 7 

2Fl (a, b;c ;z) = [r(c)r(b - a)/r(b)r(c - a) J(- z)-a 

x ZF 1(a, 1- c +a;l- b +q;l/z) 

results in 

+ [r(c)r(a - b)/r(a)r(c - b) J(- Z)"b 

X ZF 1 (b, 1 - c + b;l - a + b;1/ z) 

a(l, t) =p(l, t) +i, 

(A17) 

(AlB) 

where p(l, t) is a real function. Enforcing the symmetry 
condition analogous to Eq. (A13) , 

c n(- k) = (_)1 exp(- 1Tf)cn(k) , (A19) 

results in the fact that p(l, f) is an odd function of f, 

p(l, - t) = - p(l, f). (A20) 

Since p(l, f) is independent of n, it is sufficient to con
sider n = 0 in Eq. (A16), which takes the form 

Co +iso = [- exp(iu l)exp(1Tf/2) exp(- el) 

x exp(- iB)/2 1 r(l + 2 - it) (sine)1 

x 2F 1(-1- if, 1; 1 + 2 - it; exp(- 2itl» - p(l, f)so. (A21) 

The lhs of Eq. (A21) corresponds for k > 0 to the 
zeroth expansion coefficient of the function 

- .- _ exp(1Tt/2) exp(- 8t)'\ 
C(r) + zS(r) - 211 r(l + 1 _ it) 1 (sinB)I+l 

Xf.T. ..T.);: r, ¢o(,\r') 
'" irreg + Z'" reg dr 'IT reg--, -o ,\r 
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,T. r~d '('" .) CPO(Ar')} 
+ "'reg Jr r "'trreg+ z>J1reg Ar' . (A22) 

The coefficient is thus 

. 1 ( ~ - / .- ¢o(r) 
CO+lSO= r(21+2) Jo dr[C(r A,f)+zS(r/A,t)]-r-

(A23) 

Now, letting k - ik in Eqs. (A22) and (A23), and cor
respondingly letting 1) - i1) in Eq. (A21), and taking the 
limit 1) - t -~, gives for Eq. (A21) two terms of order, 

(A24) 

As 1i - 0, for (I + 1 + Imt) > 0, the p(l, t) term is the 
dominant term in Eq. (A24). The oddness property of 
p(l, f), Eq. (A20), removes the restriction imposed by 
the inequality. By referring to the expansions given in 
Eqs. (2.3) and (2.4), it is seen that the integral in Eq. 
(A23) is convergent in the limit taken above. Thus, in 
that limit, Eq. (A23) goes as 0 (6'+I-i t), implying that 

p(l, t) = 0 (A25) 

and thus that 

. - n! exp(io/) exp(1Tt/2) exp(- et) exp[ - i(n + 1)e] 
C +zs = . . 
"" 2/r(n+I+2-lt)(sme)1 

x 2F 1 (-l- it, n + l;n +Z + 2 - it;exp (- 2ie». (A26) 

That Eq. (A26) reduces properly in the limit of z - 0 
can be established from the theory of Legendre func-
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tions. T Taking the limit z - 0 in Eq. (A26) and applying 
formula 3.2 (30) of Ref. 7 establishes the reduction 
to the radial kinetic energy case. 
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The scattered field is found when a time harmonic acoustic wave is incident upon a finite object 
characterized by a density and wavenumber different from that of the surrounding medium. The 
interface is assumed to be either Lyapunoff or piecewise Lyapunoff. The problem is cast as a pair of 
coupled surface integral equations for the total field and its normal derivative on the interface. The 
Neumann series obtained by straightforward iteration is proven to be convergent for ranges of density 
and wavenumber. and specific bounds on these ranges are given. For small enough wavenumbers. the 
series converges for all values of the interior density. The iteration appears simpler than the usual 
Born approximation. which involves volume as well as surface integrals. The method is illustrated in 
the case of a spherical interface. 

1. INTRODUCTION 

In this paper, we consider the time harmonic three
dimensional diffraction problem for two homogeneous 
media with a Lyapunoff or piecewise Lyapunoff interface 
S, which separates all of 3-space into two disjoint 
regions, one of which is finite in extent. The acoustical 
properties of each medium are characterized by two 
real parameters k and p, the wavenumber and density, 
respectively. 

The mathematical formulation of this problem in
volves Helmholtz equations with different wavenumbers 
for each media and transition conditions at the interface 
(see Sec. 2 below). Separation of variables can be con
veniently used to solve this problem only if S is a 
sphere. For a general surface, the well-known Born ap
proximation can be applied. I However, this method in
volves the iteration of integral equations not only over 
the surface but also over the interior volume. This 
makes the computation of the iterates so involved that 
seldom is more than the first order iterate ever 
employed. 

Integral equations for the total field not involving a 
volume integral can be obtained, but these involve the 
normal derivative as well as the total field, both of 
which are unknown. The integral equations in the Born 
approximation involve only the total field. However, an 
additional surface integral equation for the normal 
derivative of the field may also be derived resulting in a 
pair of coupled surface integral equations for the two 
unknown quantities, the total field and its normal deriva
tive on the surface. 

These have been derived by Maue,2 Koringa,3 
Mitzner,4 and, for special values of PI and Pe , 

Kupradze. 5 Analogous integral equations for electro
magnetics are given by Muller. 6 

Only Mitzner proposes a constructive method of solu
tion of these equations in the same generality as con
sidered here. He derives weakly singular integral equa
tions for the total field and its normal derivative for a 
"sufficiently smooth" (i. e., Lyapunoff) surface, and he 
elegantly avoids higher order singularities in his deriva
tion. To solve these equations, Mitzner proposes an 

iteration method wherein a sequence of boundary value 
problems have to be solved successively to obtain the 
iterates. He claims that the iteration must be valid for 
sufficiently small values of the ratio of the densities of 
the media (i. e., for greatly different densities). How
ever, his example shows that the convergence of the 
iterates also depends on the wave numbers. 

Ahner and Kleinman1 derived a direct iterative bolu
tion of a surface integral equation formulation of the ex
terior Neumann problem, and this method was success
fully extended to problems in linear elasticity by Ahner 
and Hsiao. 8 In the present paper, we generalize this 
method to the acoustic scattering problem for penetra
ble objects. We derive regularized integral equations 
which differ from Mitzner's in that the singularity of 
the integrands is reduced. Moreover, the regularized 
equations are valid for a wider class of surfaces than 
the weakly singular formulation. Both the weakly 
singular and regularized equations are solved directly 
as Newmann series (convergent for overlapping but not 
identical ranges of the parameters) without the need to 
solve associated problems for each iterate. The con
vergence of the Neumann series is proven for suffi
ciently small Ipl- Pel and Ik l - kel thereby establishing 
the existence of the solution. 

2. STATEMENT OF THE PROBLEM 

Let S be a simply connected closed piecewise Lyapu
noff surface9 in 1R3 (or the union of a finite number of 
such surfaces) with surface area~. In some instances 
specifically noted, S is further restricted to be 
Lyapunoff rather than piecewise Lyapunoff. We also as
sume that S satisfies a modified cone condition. 1 Let 
Vi be the region interior to S(Vi = Vi U S) and Ve be the 
region exterior to S(Ve = Ve US). Erect a coordinate sys
tem with the origin in Vi and denote by R(P, PI) the dis
tance between any two points P and pl. 

The unit vectors normal to the surface at P and pI 
will be denoted by n and ii', respectively, and will al
ways be taken ',lS directed from S into Ve' Differentia
tion in the direction of 11. or 11.' will be denoted by a/an 
or a/an'. Furthermore, u+(P) and au+(p)/an will de
note the limiting values of u and au/an as P - PES from 
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Ve and similarly u-(P) and ou-(p)/on will denote limit
ing values as P- PE S from Vi' 

By piecewise Lyapunoff surfaces, we mean a surface 
S, for which 

N 

S=6 Si 
i=1 

where each Si is a Lyapunoff segment in the sense of 
Sobolev.10 

Sobolev lists as one of the requirements of a Lyapu
noH surface that there exist some 0:1 such that 

f lo:1\dS~0:1"'0()' (2.1) 

where the integration may be carried out over any por
tion of the surface S, including S itself. Mikhlin9 shows 
that this is a consequence of the other properties re
quired by both Sobolev and Mikhlin and need not be im
posed as a separate condition. This remains true for 
piecewise Lyapunoff surfaces. 1 Here, however, we add 
a related but different requirement, namely that 

f\o:,1IdS~0:2<0()' (2.2) 

where again the integration is over any portion of S. 
The normal derivative is taken with respect to the field 
point, not the integration point. This requirement is 
fulfilled if S is Lyapunoff and can be shown not to be 
fulfilled for specific piecewise Lyapunoff surfaces (e. g. , 
hemisphere). It is not clear if (2.2) is sufficient to 
guarantee that a piecewise Lyapunoff surface be also 
Lyapunoff; thus the class of surfaces we treat includes 
Lyapunoff and possibly some, but not all, piecewise 
Lyapunoff surfaces. 

C(X) and C2 (X) will represent spaces of complex 
valued functions defined on X which are continuous and 
twice continuously differentiable respectively and D'(X) 
is the space of complex valued piecewise continuously 
differentiable functions on X. Furthermore, we will 
denote the space of piecewise continuous complex valued 
functions on S which are also continuous on each Lyapu
noff segment by D(S). Similarly, D'(S) denotes piece
wise continuously differentiable complex valued func
tions on S which are also continuously differentiable in 
each Lyapunoff segment. 

Problem A 

The problem we consider is that of finding the total 
field at all points in ffi3 given a time harmonic incident 
field ul(P) (either a point source in Ve or a plane wave 
originating in Ve or a distribution of such sources). A 
time dependence exp(- iwt) is assumed. It is convenient 
to represent the total field u(P) as a sum of incident 
and scattered fields for PE Ve, i. e. , 

(2.3) 

The problem then is that of determining u(P) such that 

422 

(i) u(P) E C2 (V,) n D'(VI ) nD '(S), 

(ii) uS(P) E C2(Ve) n D'(Ve) n D '(S), 

(iii) ('v2 +k~)u(P) = 0, PE VI> 
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(iv) (V2 +k;)us(P) = 0, PE Ve, 

(v) Peu+(P) = p;u-(P), PES, 

(vi) 
ou+(P) = au-(p) 

PE SI> i=1,2, ... ,N, 
an an 

(vii) limr(a.,u
S 

- ikeUS\ = 0 in all directions. 
r"oo vr ') 

We note that the prescribed incident field will satisfy 
(v2 + k;)u i (P) = 0 almost everywhere in R3. 

This is the basic problem in acoustic diffraction 
where u is the space part of a time harmonic velocity 
potential. A similar equation can also be written for the 
space part of the pressure or density. 

Note that if we let 

P1u(P) =v(P), PE Vi' 

and 

Peu(P) =V(P), PE Ve, 

then the boundary conditions become 

(vii') v-(P) = v'(P) l PES, 

(viii') 1. oV-(P) =1. ov'(P) 
PI an Pe an 

whereas the other conditions in Problem A remain the 
same. The transition problem is sometimes posed in 
this form in current literature. 5,11 

Problem B 

We will also conSider the corresponding problem for 
the Laplace equation which results when k i =ke=O and 
the radiation condition is replaced by a regularity condi
tion in the sense of Kellogg. 12 This problem arises in 
magnetostatics (Ref. 13, p. 169, and Ref. 14, p. 73). 

The solutions of Problems A and B for point sources 
are essentially the Green's functions for these prob
lems and can, therefore, be employed to yield expliCit 
solutions of a class of inhomogeneous problems. 

In the succeeding sections, we derive coupled integral 
equations of the form 

+ K' au+ I 
u = 1u +K2a;/ +u , 

au' au' aui 
an' =K3u' +K4a;/ + an' , 

where K; are operators. These equations can be written 
in vector form 

(i-I<)u= cr, 
where U = ~:+ Jan) and cr is known. The Neumann series 
solution of this equation, 

is proven to be convergent for I Pi - Pe I and I kl - ke I 
sufficiently small. 
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3. DERIVATION OF INTEGRAL EQUATIONS 
A. The total field equations 

We begin with the standard integral representation 
for US (Ref. 15) 

...! r (us+ ~ exp(ikeR) _ exp(ikeR) ou
s
+) dS 

47T J s ~ an R R an 

l
US(P,), 

= O'~/) US+(PI), pI E S 

0, 

(3.1) 

where R stands for R(P, PI) with P the integration varia
ble and pI the field point, and O'(PI) is a measure of 
solid angle7 and is equal to 27T when P' lies on a smooth 
portion of S. 

We will always assume that for a piecewise Lyapunoff 
surface Isf(P)(og/on) dS stands for 2:i',,1 Is .f(P)(og/on) dS 
where each Si is a Lyapunoff segment. • 

From Green's identity applied to exp(ik~)/R and u i 

in the region Vi 

1- ((Ui~ exp(ikeR) _ exp(ikeR) ou
i
) dS 

47T Js an R R an 

1

0 PIE Ve 

= _ 47T ~:(PI) ui (PI), pI E S . 

- ui(P'), pI E VI 

Equations (3.1) and (3.2) together with (2.3) lead to 

ul(P') + 1-1(u+~ exp(ikeR) _ exp(ik~) oU+)dS 
41T s an R R an 

(3.2) 

= O'~:/) U+(PI), pI E S (3.3) l
U(PI), PIEVe 

0, PIE Vi 

Now, applying Green's identity to exp(ikjR)/R and u in 
the region Vi yields 

1- ((u-~ exp(ikIR) _ exp(ikiR ) oU- dS 
47TJs an R R an 

l
o, PIE Ve 

= - 41T ~~(PI) u-(P'), pI E S (3.4) 

-u(P' ), PIE Vi 

Substracting (3.4) from (3.3) and using the boundary 
conditions, we get 

ui(P') + 1- 1- (u+~ Pi exp(ikeR) - Pc exp(ik,R) dS 
Pi 47T)s an R 

_ 1-1 exp(ikeR) - exp(ikiR) ou+ dS 
47T S R an 
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lU(PI
), 

= [O'(P') PI - Pe + Pe.\ u+(PI), 
\ 41T Pi p;} 

pl¢S 
(3. 5) 

P'ES 

We note that it is sufficient to determine the field and 
its normal derivative on the surface because Eq. (3. 5) 
expresses the field everywhere in terms of these quanti
ties. The representation (3.5) is a weakly singular inte
gral equation for pI E S and it can be written as 

. ou+ 
ku' +AAu+ +'AB-=u+, 

an 

where 

(3.6) 

A = (O'(P
I
) Pi - Pe + pe)-l, (3.7) 

41T Pi Pi 

(Af)(PI) = _1_ (f(P)~ Pi exp(ikeR) - Pe exp(ikiR ) dS 
47TPi)s an R ' 

(3.8) 

and 

(Bf)(pl)=-~l exp(ikeR)-exp(ikiR) f(P)dS. (3.9) 
47T s R 

For a smooth surface S, Eq. (3.5) was derived by 
Mitzner. 4 

We now employ the following form of Gauss' integral: 

~ ( ~lds= _ 41T-0'(PI) PIES. l
o, PIE Ve 

47T J s an R 41T' 
(3. 10) 

-1, PIE Vi 

By multiplying both sides of (3.10) by - [(PI - Pe)/P;] 
xu(PI

) and adding to Eq. (3.5), we get the following 
integral representation 

ui(P') + ~ r u+~ exp(ikeR) - exp(ikiR) dS 
41T}s an R 

+ Pi - Pe ~ (u+~ exp(ikiR) -1 dS 
Pi 41T Js an R 

+ Pi - Pe ~ ([u+(P) _ u(PI)l~ ldS 
Pi 41T Js on R 

_...! 1 exp(ikeR) - exp(ikiR) ou+ dS=u(PI) 
41T S R on ' 

PIE Ve o (3.11) 

weyote that this is a continuous representation of u(PI
) 

in Ve , it is independent of 0' even at conical pOints, and 
is "regularized" in the sense of Ahner and Kleinmano 7 

In fact, their representation is exactly reproduced by 
letting Pi - 00. 

We can write the last equation, for pI E S, in the 
form, 

i + ou+ + 
u +Eu +B-=u 

on ' 
(3.12) 

where 

(Ef)(P I ) = ~ If(p)~ exp(ikeR) - exp(ikiR) dS 
41T s on R 
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+ Pi - Pe ..!.. ff(P)~ exp(ikIR) - 1 dS 
Pi 41T s an R 

+ Pi - Pe..!.. ((f(P) - f(P')]~ ~ dS (3.13) 
Pi 41T is an R 

and B is given by (3.9). 

In the case when k i "'ke"'k, Eqs. (3.6) and (3.12) no 
longer involve the normal derivative of the total field 
and reduce to the boundary integral equations for the 
total field 

(3.14) 

and 

(3.15) 

Solutions of these equations suffice to solve Problem A 
for k i "'k., and hence Problem B. 

B. Integral equations for the normal derivative of the 
field 

When k; '" ke, it is necessary to derive an additional 
equation for the normal derivative of the total field at 
P', assuming P' to lie on a smooth part of the surface. 

When Pi "'Pe and k;"'ke, we can obtain this additional 
equation by direct differentiation of Eqs. (3.5) or (3.11), 
because the derivative of the integrands are either con
tinuous or integrable as will be shown in Lemmas 4. 1 
and 4. 2 (Ref. 16, p. 217). In either case, we get the 
regularized integral equation 

au; (P') +..!..£ u+_a_
2 

_ exp(ikeR) - exp(ikiR) dS 
an' 41T s an' an R 

_..!.. i ~ (eXP(ikeR) - exp(ikIR)) au+ dS", au+(p') 
41T san' R an an" 

(3016) 

When Pi'" Pe and k i '" ke direct differentiation of Eq. 
(3.5) or Eq. (3.11) will invoive the term 

_0_ (u+~~ dS 
an' Js an R 

which exists only under more stringent conditions on u+ 
than just requiring that u+ E C(S). 17 This would place 
undeSirable restrictions on the space of functions in 
which the solution is sought. However, this disturbing 
term can be avoided using the method of Mitzner4 as 
follows. 

Differentiating both sides of Eq. (3.4) in the direction 
of the normal as P' approaches a smooth portion of S 
from Vi and using the jump conditions (Ret 18, p. 685), 
we get 

1... f u __ a_2_ exp(ikiR) - 1 dS 
41T s an' an R 

1· 1 a i-a 1 dS + 1m -- u--
P'EV j -P'E s 41T an' s an R 

_ 1... (_a_ (exp(ik i R )\ oU- dS '" _ .! au-(p') P' E S. 
41T Js an' '\ R J an 2 an' , 

(3.17) 
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Similarly, taking the normal derivative of both sides of 
Eq. (3.3) as P' approaches S from Ve, yields 

aui(p') +..!.. ( u+_a_2 _ exp(ikeR) - 1 dS 
an' 41T Js an' an R 

+ 1m -- u --d 1· 1 a 1 + a 1 S 
P'EVe-'P'ES 41T an's an R 

_..!.. r _~ exp(ikeR) ou+ dS "'.! au+(p') P' E S. 
41T Js on' R on 2 on' , 

(3018) 

Subtract Eq. (3.17) from pj Pi times Eq. (3.18) and 
simplify using the boundary conditions and the known 
result that continuity of f is sufficient to guarantee that 

lim ~lf(p)~~dS 
P'EVe-P'ES an' s an R 

- lim ~ ( f(P)~ ~dS'" 0 17 
P'E Vi -P'ES an' J s on R . 

This leads to the result 

~ aui(p') + ~ 1..£u+_a2_ exp(ikeR) - exp(ikiR) 
Pi + Pe an' Pi + Pe 21T s on' on R 

x dS __ 1_..!.. ( 3, (pe exp(ikeR) - Pi exp (ikIR)\ au+ dS 
Pi + Pe 21T is an R lon 

au+(p') 
'" ~, P' on a smooth part of S. (3.19) 

Equation (3.19) is essentially the same weakly singular 
integral equation derived by Mitzner4 for the normal 
derivative of the field. It can be written as 

~ au
i 

+CU++Dau+ '" ou+ 
Pi + Pe an' an an" 

(3.20) 

where 

(Cf)(P') '" ~ ..!..if(P)~ exp(ikeR) - exp(ikiR) dS 
Pi + Pe 21T s an an R 

(3. 21) 

and 

(Df)(P') 

'" __ 1_ 1..13,(pe exp(ikeR) - PI eXP(ikIR))f(P) dS. 
PI + Pe 21T s an R 

(3.22) 

To achieve a regularized form, we again employ 
Gauss' integral (3.10) for P' on a smooth part of Sand, 
by multiplying both sides by 

2 PI - Pe au+ 
Pi +Pe on' , 

obtain 

Pi - Pe ...! ( ~(~) ou+(P') dS '" _ E.i..=...&. OU+(P') 
Pi + Pe 21T Js an R an' Pi + Pe on' . 

(3.23) 

Adding this equation to (3.19) and simplifying, we get 
the desired regularized equation 

aui (PI) + 1.. r u+ ~ exp(ikeR) - exp(ikiR) dS 
an' 41T Js an' an R 
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_ ~ r ..£..- (exp(ik,R) - exp(ikIR)\ ou+ dS 
41TJson'\ R Ion 

+ PI- pe ~[..£..- (~xp(ikIR) -1) au+ dS 
Pe 41T san' \: R an 

+!!.i...=...&. ...l.[ r..£..-(.!.) ou+(P) + ~ (.!.) oU+(P')] dS 
Pe 41T s lan' R an an Ron' 

= ou+(P') 
on' 

(3.24) 

This is regularized because 

"£"-(.!.) au+(p) + ~(.!.) ou+(P') 
on' R on on Ron' 

= _ v (.!.). In' au·(p) _ n au·(p,)\ 
R \ on on' I 

and the quantity in the square brackets vanishes when 
R-O. 

We can write this equation in the form 

ou l au· au· 
an' + Gu++H-a;; = an' , (3.25) 

where 

(Gf)(P') = ~ r f(p)_a
2
_ exp(ikeR) - exp(ik,R) dS 

41T J s an' on R 

(3.26) 

and 

(Hf)(P') =_ ~ r ~ (exP(ikeR)- eXP(ik,R»)f(P)dS 
41T J s an' R 

+ ~ ~ ( ~ (exP(iktR) - 1) f(P) dS 
Pe 41T Js an R 

+ 2.!.:::..&. ~ ( [..£..-(.!.)f(P) + ~(.!.)f(P'~ dS. 
Pe 41T Js an' R on R ~ 

(3.27) 

Equations (3.6) and (3.20) form a pair of coupled 
weakly singular surface integral equations (when the 
field point is on a smooth part of the surface) which can 
be written in vector form as 

(1- L)U= uf, 
where 

U=(a::), 
,an' 

and L is the operator matrix 

L =(~ ~). 

(3.28) 

(3.29) 

(3.30) 

Equations (3.12) and (3.25) form a pair of coupled 
regularized surface integral equations which can be 
written in vector form as 

where U is the same as before, 
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ut=(a:,) , 
\in' 
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(3.31) 

(3.32) 

and;?1 is the operator matrix 

(3.33) 

As will emerge in the following sections, both the 
weakly singular equation (3.28) and the regularized 
equation (3.31) may be solved iteratively for different 
but partially overlapping parameter ranges. 

4. EXISTENCE OF SOLUTIONS IN THE FORM OF 
NEUMANN SERIES 

We will use the following direct method to solve the 
equations of Sec. 3. Suppose 

(I-K)cp = l/J (4.1) 

is the integral equation with K being a linear operator. 
Then we use the iteration scheme 

cp(N+1)=Kcp(N)+1/! cp(O)=1/!. (4.2) 

This will lead to the Neumann series 

(4.3) 

We can use this series not only to approximate the 
solution but also to demonstrate the existence of the 
solution by showing that the series converges in a com
plete linear vector space V under a suitable norm II II. 
For this, it is sufficient to prove that K maps V into 
itself and IIKII < 1. 

For the convergence of the Neumann series generated 
by Eqs. (3.14) and (3.15), we use C(S), the space of 
continuous complex valued functions on S with the norm 

Ilf(P) II = sup it(P) I. 
PES 

(4.4) 

For the Neumann series generated by Eqs. (3.28) and 
(3.31), we consider the space C(S) x D (S) with the fol
lowing extension of norm (4.4) 

II ; II =max{11f11 , Ilgll} (4.5) 

where the symbol II II on the right refers to the norm 
(4. 4). For convenience, we will use the same symbol 
for the norms on C(S) and C(S) x D (S) and the meaning 
will be clear from the context. 

It can be easily verified that these norms satisfy the 
required axioms and the corresponding spaces are com
plete in the norms. 

Having defined the appropriate Banach spaces and 
norms, we next establish that the operators introduced 
in Sec. 3 map the appropriate spaces into themselves. 

Lemma 4.1: 

A: C(S) - C(S) if Sis Lyapunoff, 

B: C(S) - C(S)} if S is piecewise Lyapunoff. 
E: C(S) - C(S) 

Proof: Ahner and Kleinman 7 showed that for S piece
wise Lyapunoff, the operator L defined as 

Lf = ~ [f(P) ~ exp(ikR) dS + f(P') (41T - (J(P'») 
41T s an R 41T 
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mapped C(S) into C(S). Renaming this operator Lke or 
Lkj accordingly as k is replaced by ke or k;, it is easily 
verified from the definitions (3.8) and (3.13) that 

Af = Lk f - Pe Lk f + Pe - PI f(p,/4rr - a(p,») (4.6) 
e PI I Pi \ 41T 

and 

(4.7) 

Hence, E maps C(S) into C(S) for S piecewise Lyapunoff, 
whereas, A maps C(S) into C(S) only if S is Lyapunoff 
because a(P') is discontinuous at corner points. The 
operator B (3.9) clearly maps C(S) into C(S) since the 
kernel is analytic in R. 

Lemma 4.2: If S is piecewise Lyapunoff and satisfies 
Eq. (2.2), the operators C,D, G, H all map D(S) -D(S). 

Proof: The operators in question are 

Cf- Pe If(p)-o2- exp(ikeR) - exp(ikIR) dS 
- 2rr(Pi + Pel s on' on R ' 

(4.8) 

1 1 a 
- 2rr(Pi + Pel s on' 

X pe[exp(ikeR)-11~Pi[exp(ikIR)-11 f(P)dS, 

(4.9) 

Gf=..!... ( f(p)_o2_ exp(ikeR) - exp(ikiR) dS (4.10) 
4rr J s on' on R ' 

Hf = - ..!...1 ~ (eXP(ikeR) - exp (ikiR») f(P) dS 
4rr son' R 

+ Pi - Pe l_o_(exp(ikIR) -1) f(P) dS 
4rrPe son' R 

+ Pi - Pe t(~! f(P) +..?..- 1.. f(P'»)dS 
4rrPe Js on' R on R ' 

(4.11) 

where D has been rewritten slightly for convenience. 
We see that the above integrals fall into one of the 
following three types: 

(1) Integrals whose kernels have discontinuities of 
the form n·"A or ii' . R multiplied by analytic 
functions of R. 

f 0 1 f 0 1 (2) f(P) on RdS or f(P) an' lidS" 

(3) (f(p)_a_
2 

_ exp(ikeR) - exp(ikIR) dS. 
Js an'on R 

Type (1) integrals include kernels such as 

~ exp(ikR) - 1 d a exp(ikeR) - exp(ikiR) 
an' R an an' R 

and hence are continuous functions of PIon S if f(P) is 
continuous on the segments SI and remain bounded as 
P' approaches a boundary point of Si' As for Type (2), 
fsf(P) (a/an)R-l dS is the potential of a double layer and 
is continuous on smooth portions of S if f is continuous 

426 J. Math. Phys., Vol. 16, No.2, February 1975 

(Ref. 17, p. 49). Condition (2. 1) assures that integrals 
of this type remain bounded as P' approaches a bound
ary point of Si' f f(p)(a/an')Wl dS is the "direct value 
of the normal derivative of a single layer" and is con
tinuous (Ref. 18, p. 587) on smooth portions of S if f is 
continuous. It remains bounded as P' approaches bound
ary points of Si because of (2. 2). 

Type (3) may be handled as follows. Observe that 

:n F(R) = ii· V F(R) = (n. R) d~ F{R) (4.12) 

and 

(4.13) 

where "A is the unit vector from pI to P. Then the in
tegrand becomes 

02 exp(ikeR) - exp(ikiR) 
an' an R 

= _a_[~(eXP(ikeR) - exp(ikiR)\ (~'R)] 
an' dR R J n 

= _ (n' . R)(~. R)~ (eXP(ikeR) - eXP(ikiR») 
dR R 

~ (exp(ikeR) - eXP(ikIR») ~ (~ . R) 
+ dR \: R an' n . (4. 14) 

Expanding the exponentials and using Lemma 1 of the 
Appendix, this can be written as 

02 exp(ikeR) - exp(ikIR) 
an' an R 

= i -£ (m + 1) (km+2 _ k,!,+2) (iR)m-l 
m=l (m + 2) ! e , 

x [em - l)(n. R)(n', R) + (n. n')] 

k~ - ki ~ ~ ~ ~ ~ ~ 
- ~[(n'.n)- (n·R)(n'.R)]. (4.15) 

The first term leads to an integral of type (1), while the 
second is the potential of a single layer with continuous 
density on each Si if f is continuous on Sj, hence the in
tegral is continuous on each Si (Ref. 18, p. 582). The 
corollary in the Appendix may be used to show that the 
potential is bounded at boundary points of Si' Hence, the 
lemma. 

With these results, it follows that 

L = (~A ~B): C(S) x C(S) - C(S) x C(S) 

if S is Lyapunoff. The fact that A is a mapping of con
tinuous functions into themselves only when S is 
Lyapunoff imposes the same restriction on L" However, 
the regularized operators apply to piecewise Lyapunoff 
surfaces subject to (2.2). Hence, 

!11 = (~ !): C(S) x D (S) -C(S) x D (S). 

Next, we establish a series of bounds on the operators. 

Lemma 4.3: If S is Lyapunoff (not piecewise 
Lyapunoff) 
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II Afll~J2-lk2_k21:z;+.2.- Ip,-pel k2:z;+ Ip,-pe l a}lifll. 
\16rr e I 161T PI ' 4rrp, 

Prool: 

IIAIII = SUp 1_1_ r I(P)l.. PI exp(ikeR) - pe exp(ik,R) dS I 
P'E S 41TPI Js an R 

~ sup {I.1. r I(P)l.. exp(ikeR) - exp(ik,R) dsl 
P'ES 4rrJs iJn R 

Ip,-Pel 1 ( a e(ik,R)_1 I 

+ 4rrp, 1/ P) iJn R dS 

IPI-pel 
+ 

4rrPI 111(p) :n ~dsl}· 
The estimates (A5) and (A 7) in the Appendix and the 
corollary to Lemma 4 lead to the desired result. 

Lemma 4.4: If S is piecewise Lyapunoff 

II Bill ~ (Ike - k,I/4rr):Z; 11111. 

Proof: 

IIBIII= sup 1.1. ( exp(ikeR) - exp(ikiR) f(P)dSJ. 
p'E s 4rr ls R 

The estimate (A4) in the Appendix establishes the result. 

A similar use of the estimates in the Appendix serves 
to establish the following lemmas: 

Lemma 4. 5: If S is piecewise Lyapunoff 

IIcfll'" I JL-121 (~Ik,,+kll:z; +tj3) Ik!- ki 111/11· 
p, +Pe rr 

Lemma 4. 6: If S is piecewise Lyapunoff and satisfies 
(2.2) 

IID/II ~ J!.L. 
Pi +Pe 

x ·{1..lk2- k2 1:Z; + 1... Ipi - pel k2~ + IPi - Pel a} lifll. 
8rr e I 8rr Pi I 2rrp, 

Lemma 4.7: If f is piecewise Lyapunoff 

II EIII ",{_3_ Ik2 _ k2 1:Z; +.2.- Ipi - pel k2:z; + Ip. - pel a} 1III1 
16rr e I 16rr PI I 2rrPI . 

Lemma 4. 8: If S is piecewise Lyapunoff 

Lemma 4. 9: If S is piecewise Lyapunoff and satisfies 
(2.2) 

II Hfll"" {2- Ik2 _ k2 1:Z; + _3_ IPi - Pel k2~ + I PI- Pel a} 11/11. 
16rr • I 16rr Pc i 2rrp. 

These estimates permit us to establish the main results. 

Theorem 401: If S is Lyapunoff (not piecewise 
Lyapunoff), then ilL II < 1 for sufficiently small I k, - ke I 
and iPI- Pel. 

Proof: Let (~) E C(S) x C(S). With the definition (3030) 

L(f)= (AAf + ABg). g CI+Dg 
Using the norm (4.5), it follows that 
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Consider first 

IIAAI+ABgjl'" IAIIIAIII + IAIIIBgll· 

Since Sis Lyapunoff A = 2p/(p, +Pe) [(307) with u = 2rr]. 
Using this together with Lemmas (4.3) and (4.4), we 
obtain 

II AAf+ ABgl1 "" .1. {3Ptl k; - k~ I ~ + 3ki Ip,- pe I~ 
2rr 4IPI+Pel 4IPI+Pe l 

+ I PI - pc I Q'} 11/11 + pti k, - ktl :z; lid 
11'1 +Pel 2rripi +p,1 

"" 1 {3Pdk~-kilb + Ik -k I:z; 
2rrlp. +Pe J 4 Pi e j 

+tki Ip,- Pel b + Ipi - Pe I Q} max{lI/ll, lid}· 

Similarly, with Lemmas (4.5) and (4.6) we find 

II CI+DglI'" II C/II+ IIDgll 

""1~121 (~Ike+kll~+tmlk;-killltil 
PI + Pe rr 

+ I JL 1.1.(.11 k 2 - k2 1 ~ + ~ I PI - pe I k2~ 
Pi + Pe 2rr 4 e j 4 Pi I 

+ Ipi-Pel a) Ilgll 
PI 

'" I 1 I {Pelk;-k~l~ Ike+kiIL+tm 2rr PI + Pe 

+ tPI I k; - k~ I ~ + t I PI - Pe I k~L 

+ IPi - Pc I a}max{IItIl' IIgll}. 

Examination of these inequalities shows that they can 
be written in the form 

II XAf+ i\Bg I) "'{Ike - k j la1 + Ipi - Pe ja2}max{ 11111, Ilg II}, 
Ilcf+Dgll~{lke-k!la3+ Ipl-pel a4}max{ll/lI, IIgll}, 

where the a l depend on Ph Pe, kl' and ke but remain 
bounded as kl - ke and PI - Pe' Hence, for any 15 > 0, it 
is always possible to choose Ike - k i I and I PI - Pe 1 
small enough (e. g., Ike - kl I < 0/2aj, I Pi - Pe I < O/2a2) 
so that 

II XAf+ABglI"'15max{II/II,lIgll} 

and 

in whiCh case 

IIL(~)II=max{IIAI+ABgll, IIcf+Dgll}~6max{lI/ll, lid} 

= 011 (~) 11 0 

Choosing 1) < 1, we have 

IlL II 
IIL(PII ",,, 1 

'" sup 11(/)11 ~ v < . 
C(S)xC(S) g 
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Theorem 4.2: If S is piecewise and satisfies (2.2), 
then 1111111 < 1 for sufficiently small I kl - k. I and I PI - Pe I, 

Proof: Let (~) E C(S) xD (S). With the definition (3.33) 

111 (f) = (Ef + Bg). g Gf+Hg 

With (4.5), it follows that 

11 111(;)11 =max{ II Ef+Bg II, IIGf+Hgll}. 

Lemmas 4.4 and 4. 7 show that 

IIEf+Bgll<s IIEfl1 + IIBgl1 

<s 1.. ~ ~ I k2 _ k2 1 ~ + ~ I PI - Pe I k2~ 
27T tB e I 8 PI I 

+ Ipi-Pe l a'lllfil + Ike4-kl l ~llgll 
Pi ~ 7T 

<s 1.. {~ I k 2 _ k2 1 ~ + ~ I Pi - Pe I k2~ 
27T 8 e I 8 PI I 

+ IPlp~pel 0'+ Ike;kll ~}max{llfll, lid} 

and with Lemmas 4.8 and 4.9, we obtain 

II Gf+Hg II <si7T {(~ I k.+kll ~ +t(3) Ik;- ki I +t Ik; - k~ I ~ 
+~ IpI~p.1 k~~+2IPI~Pel a} max{llfll, lid}. 

As before, these inequalities may be written more com
pactlyas 

and 

where the bl depend on the parameters PI> Pe, kl> and 
k. but remain bounded when kl - k. and PI - P.. There
fore, just as in the previous theorem, for any 6> 0, 
we can choose Ike - kll and I PI - Pe I sufficiently small 
so that 

11111 (~)II '" (f) II (011 ~ 6 for all g E C(S) xD(S). 

Hence, 1111111 <s 6 and taking 6 < 1 establishes the theorem. 
Theorem 1 guarantees the convergence in the norm 
(4. 5) of the Neumann series solution of Eq. (3.28) while 
Theorem 2 guarantees convergence of the Neumann 
series for (3.31). 

As observed previously, the problem Simplifies con
siderably if kl =ke' The terms involving the normal 
derivative drop out, and it is no longer necessary to 
work in the product space. The problem is one of finding 
only the field on S which was formulated in weakly 
singular and regularized form in (3.14) and (3.15). The 
Neumann series solution of (3.14) will converge on 
Lyapunoff surfaces if IIAAII < 1 which with Lemma 4.3 
will be assured if 

Ipi-Pel (tk2~+a)<1. 
21Tlpl +Pel 

(4.16) 
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Similarly, Lemma 4. 7 shows that the Neumann series 
solution of (3.15) will converge on piecewise Lyapunoff 
surfaces even when pI is a conical point if 

j p~;p;e I (jk2~ + 0') < 1. (4.17) 

These limitations are different as is more evident in the 
case when k = 0 (Problem B) and S is convex. The first 
holds for all finite nonzero PI> Pe of the same sign and 
the second holds for all PI> Pe such that 0 < pj PI < 2. 
From this it appears that the iterates for the weakly 
singular operator converge for a wider range of values 
of PI and P. than the iterates for the regularized opera
tor. However, in the case of the regularized operator, 
the iterates converge for a larger class of surfaces and 
the convergence holds good in the limiting case when 
PI - "", although this is not a consequence of the present 
results. This behavior is demonstrated in the following 
examples in which case 0' = 21T. Then the inequalities 
(4.16) and (4.17) become 

\ :: : :: I < 1 and \ PI ~ pe I < 1, 

respectively. 

5. SOME EXAMPLES 

We demonstrate the iteration technique in the particu
lar case when S is a sphere for three different cases: 
(1) k j = ke = 0 (the potential problem, B); (2) PI * Pe , kl = ke 
=k*O; (3) PI =Pe , kl*ke• More detail as well as the gen
eral case PI*Pe, kl*ke is found in (Ref. 19). In these 
examples, we will always solve for the limiting values 
of the field and its normal derivative as the field point 
approaches S from Ve , but for convenience we write u 
and au/on rather than u+ and au+/on. 

The surface is taken to be a sphere of radius "a" in 
which case a(pI) = 21T for all pI E S. A spherical polar 
coordinate system with origin at the center of the sphere 
is employed. 

A. Potential problem (k i '= ke = 0) 

We solve both the weakly singular equation (3. 14) and 
the regularized equation (3.15) assuming 

ui(P) =-1/47TR(P, Po) (5.1) 

where Po is a fixed point in Ve' Hence, we are finding 
the Green's function for this problem. 

The iteration scheme for the weakly singular integral 
equation is, for P' E S, 

U(N+1)(p') _ Pi - P. 1..1u(N)(p)~ 1 dS 
- PI + P. 21T s on R(P, PI) 

N~ 1, 

The computations are similar to those described in 
(Ref. 7). We employ the well-known properties of 
spherical harmonics 
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(5.3) 

and 

l p.,(COSypp )P,,(cosYpp·)dS 
s 0 

0, mo#n 
= 41Ta2 

2 1 p"(cosYP'p), m =n 
n+ 0 

(5.4) 

where P1 and P2 have spherical coordinates (rb 01, CP1) 
and (r2, O2, CP2), respectively, Ypp'is the angle between 
the position vectors of the pOints P and pI, and Pill are 
the Legendre polynomials. On the surface, a/an = alar. 
It is then a straightforward calculation to determine that 

By mathematical induction, we can show that 

1 ., am 
U(Nl{P') = - 21T P ~P ~ rlll+1 P.,{coSYp·po) 

i _ e = 0 

xt ( pe-pi )" 
n=0 (Pe + Pi)2m + 1 

(5.6) 

Summing the geometric series and letting N - 00, we get 

provided 

/
.Pi.=2£-2 1 1/ <1 for m=0,1,2,3,···. 
Pi +Pe m + 

This condition holds if 

1 ~1<1, PI +Pe 
(5.8) 

which is true for all finite Ph Pe of the same sign. The 
above expression for U{P') agrees with that computed by 
the method of separation of variables. 

The iteration scheme for the regularized equation 
(3.15) is 

U(N+1l(P') = Pi - Pe ((U(Nl(P) _ U(Nl(P/)] 
41TPI Js 

x a 1 dS 1 
an R(P, PI) - 41TR(P' , Po) , 

(0 l( ') _ 1 
u P - - 41TR(P' , Po) 

Proceeding as before, we get 

and 
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u
i1l

(p' )=_ :1T ~ r~1P .. (COSYp'Po)(1+Pi;,Pe 2:+1) 

(5.10) 
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x [1 _ (P.L=..& ~)N+tJ 
Pi 2m+1 • 

(5.11) 

{u' converges to the solution provided 

\Pi~pe 2:+1\ <1, m=0,1,2,3,"·, 

which always holds for m = 0. For m 0# 0, the condition is 
the same as 

Ipip~pel<2:+1, m=1,2,3,···, 

which is true if I (P, - Pelf PI I .:; 2 or 

- 1 ~ pj Pi ~ 3. (5. 12) 

Comparing (5. B) and (5.12), we find that the weakly 
singular equation yields the solution for a wider range of 
values of Pi and Pe than the regularized equation. How
ever, when Pi - 00, only the regularized equation yields 
the solution. 

B. Diffraction by a sphere (Pi =1= Pe. k i = ke = k) 

Assume that the incident field is a plane wave along 
the z axis given by 

u i (P) = exp(ikz) = exp(ikr cosO). (5.13) 

The iteration scheme for the weakly singular integral 
equation (3.14) is 

u(N+O(P') = Pi - peliu(Nl(P)~ exp(ikR) dS 
Pi+Pe 21T s an R 

+ ~ exp{ika cosB') (5.14) 
Pi +Pe 

U(Ol(P') = ~ exp(ikacosO/). (5.15) 
PI +Pe 

The explicit iteration can again be carried out with 
the help of the following well-known expansions in 
spherical harmonics (Ref. 20): 

., 
exp(ikrcosB) = L; i"{2m + 1 )j.,(kr)P .,(cosO), (5.16) 

_0 

exp[ikR(Pt, P2) =ik t (2m + 1)j (kr)h (o(kr )P 
R(Pb P2) .,.0 ., 1., 2., 

(5.17) 

where j m and h~l l are spherical Bessel functions. The 
first iterate is found to be 

(5.1B) 

and the Nth term is induced to be 

2 ., 1 SN+l 
U(Nl(p') = ~ L; im(2m + l)j.,(ka)P m(cosO/) - m 

Pi+Pe _0 1-S .. 

(5. 19) 

where 

(5.20) 
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Letting N- 00, we get 

u(P') = ~ £ im(2m + l)jm(ka) p.(cosO') 
Pi + Pe m=O 1 - S'" 

(5.21) 

provided 1 Sm 1 < 1. This condition is fulfilled for suffi
ciently small 1 Pi - Pe I. A more detailed discussion is 
given in (Ref. 19). 

In a similar fashion, the iterative scheme for solving 
the regularized Eq. (3.15) is 

U(N+1)(p') = Pi - Pellu(N)(P)~ exp(ikR) 
4rrpi s ~ an R 

_U(N)(p') :n ~)ds+exp(ikaCOSO')' 

u(O)(P') = exp(ika cosO'). 

The Nth iterate is 

U(N)(p') = 6 im(2m + I)P m(cosO')jm(ka) 
m=O 

x 1- [(PI - Pe)/2pi + Sm(PI + Pe)/2piJN+l 
I-Sm 

which converges as N - 00 if 

I 
Pi - Pe 'I- PI + pe Sm I < 1. 

2Pi 2PI 

(5.22) 

(5.23) 

(5.24) 

Again, this condition is fulfilled for 1 PI - Pe 1 sufficiently 
small. 

c. Diffraction by a sphere (Pi = Pe. k i =l=ke ) 

Again, we choose the incident field to be a plane wave 
(5.13). The integral equations now involve both u and 
au/an, however, the weakly singular equation (3.30) and 
the regularized equation (3.33) coincide in this case. 
The iteration scheme becomes 

U <N+il(p,) =..!... f{u (N) (P)~ exp(ikeR) - exp(ikiR ) 
47r)s an R 

_ au(N)(p) exp(ikeR) - exp(ikIR)}dS 
an R 

+exp(ikacosO'), (5.25) 

au(N+il(p') =..!... f{u(N)(p)_a_2 _ exp(ikeR) - exp(ikiR) 
an' 47r )s an' an R 

_ OU(N)(p) _0_ exp(ikeR) - eXP(ikIR)} dS 
an an' R 

+ik cosO' exp(ika cosO'), 

u(O)(P') = exp(ika cosO'), 

ou(O)(P') 
--an"""",,........:. =ik cosO' exp(ika cosO'). 

(5.26) 

(5.27) 

(5.28) 

Carrying out the iteration in a manner similar to pre
vious cases, we obtain 

u(P') = £ im(2m + l)Pm(cosO')jm(kia) (5.29) 
m=O r m 

ou(P') = t im(2m + I)Pm(cosO')(d/ da)jm(k/a) , (5.30) 
an' m=O r m 
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where 

(5.31) 

provided 11- r m 1 < 1. This holds for 1 k/ - ke 1 sufficient
ly small. 

APPENDIX 

Lemma AI: 

~ cn. ti) = - n' . n + (R . n')(R . fi) 
an' R 

Proof: Let R = p' P, so that R = R/R, 

A A (R.n) V' 'i(It· n) = V' R" 

= .!..V'(R ·n) + (R .n)v'.!.. 
R R 

1A R·nA 
=- -n+--R 

R R' 

a A A A A A) 

- (R· n) =n'· V'(R· n an' 

Corollary: 

- fY.;i + (R· fi' )(R· it) 
R 

l OA A I 1 an' (R • n) .s R. 

Proof: 

ii· ii'- (R·ii)(R. ii') _ A, RX (nx R) _ (n'xR)· (nXR) 
R -n . R - R . 

Hence the result follows. 

Lemma A2: If n is a nonnegative integer, 

I ~ sinO l.s _1_ 
4£!' 0 n+l 

for all O. 

Proof: Let 

f(O) = L sine 
dO" e . 

f(O) is a continuous function which can possibly be un
bounded as e - 0 and 0 - ± 00. From the expansion of 
sinO/O in powers of 0, we find 

L sine I 
de" 0 9=0 

is either zero or 1/ (n + 1) and hence f( 0) is bounded as 
0-0. 

By mathematical induction, we can show thatf(e) is a 
sum of terms of the form ± sine/ em and ± cose/ em and 
hencef(O) is bounded as O-±oo. 

Hence f(O) is bounded. We can prove by induction that 

d"+1 sine _ (;'l:)0 _ n + 1 r d" sinel 
dO"+1 0 - ± 0 e Lae" e} 

i. e., 
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f'(9)=± (~)9 _ n;l [(fI). 
Let eo be a critical value of fUJ), where flo * 0 

± (iy:)eo _ n + 1 f(Oo) = 0, 
00 eo 

or 

So, 

If(90) I-"S l/(n+l) if 110 *0. 

This is true for each critical value 00 * 0 and hence, in 
general, 

Ifun I -"S l/(n + 1) if 0* O. 

However, 

If(O) I -"S l/(n + 1). 

Hence the Lemma. 

Lemma A3: 

/ exp(ikeR) ~ exp(ikjR) I-"S I k. - kj I. 

Proof: Appropriate trigonometriC identities lead to 

exp(ikeR) - exp(ikjR) 
R 

coskeR - coskjR +i(sink.R- sinkjR) 
R 

x /:fI s~e le.(k
e
-kj)R/2' 

Again using Lemma A2, we obtain 

j
J.. exp(ikeR)-exp(ikjR) /-"S Ik~-kil + 
an R 2 

and for real kj and ke of the same sign 

(ke -k j )2-"S Ik;-k~1. 

Hence the Lemma. Observe that the estimate is un
changed if the normal derivative is taken at P' rather 
than P, i. e. , 

/
....£... exp(ikeR) - exp(ikjR) j-"S.:! Ik2 _ k2 1 

an' R 4 • I' 

Corollary: 

I ~ exp(ikR) - 1 \ -"S .:!k2 
an R 4 • 

(A3) 

This follows by setting kj = 0 and dropping the sub
script on k e• This is a sharper bound than that given by 
Ahner and Kleinman. 7 

Lemma A5: 

1

_02_ exp(ikeR) - exp(ikjR) I 

an' an R 

Proof: Differentiating (AI), 

_0_2 
_ exp(ikeR) - exp(ikjR) 

an' an R 

using (4. 13), leads to 

2 sin(ke + kj)tR sin(k j - keHR - 2i cos(ke + kj)tR sin(kj - keHR 
R = ....£... (A • R~) ['(k k )!.R] r_ (k~ - kD sinO 

an' n exp Z e + j 2 [ 2 0 

Taking the absolute value, recalling that I sinl1lo I -"S 1 
(Lemma A2) and I exp[i(ke+kIHRJI =1, yields the 
desired result. 

Lemma A4: 

I :n exp(ikeR) ~ exp(ikjR) I-"S t I k; - k~ I. 

Proof: Differentiating (AI) using (4.12) leads to 

~ exp(ikeR) - exp(ikIR) 
an R 

=n'Rexp[i(k +k )!.R]{- (k;-k~) sin(ke-kj)iR 
e 12 i 2 (ke-k;HR 

(AI) 

'(k _k)!L Sin(ke-kIHR} 
H e j dR (ke-kjHR . (A2) 

Taking the absolute value and using the fact that In· R I 
-"S 1, yields 

I..E.... exp(ikeR) - exp(ikjR) I 
Ian R 
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+ (n. R)(n' . R) exp[i(k" +kj)tR] 

x f. (ke +k l ) (k2 _ k2) sinO + (k~ - k1)(ke - k j) 1z 4 e j 0 2 

x !!:",,(sinet i (ke - k;)3 d\ (SinO)} . 
dO 0 7 4 dO 0 8=(ke-kj)R/2 

Taking the absolute value, using the estimates in the 
corollary to Lemma Al and Lemma A2, we find that 

1

_0_2_ exp(ikeR) - exp(ikjR) I 
an' an R 

-"Sl:..[lk~-kil (ke -k j )2J Ik2_k21 Jke+kjl 
R 2 + 4 +e; 4 

Ik~-k~llke-kjl Ike-k;13 
+ 4 + 12 

Again, we use the fact that for real k. and k j of the same 
sign we may appropriately replace Ike-kjl by Ike+kjl 
which yields the cruder estimate of the statement of 
the Lemma. 

USing the results of Lemmas A3 to A5 enables us to 
derive the following estimates: 
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I if(p) exp(ikBR) ~ exp(ik,R) dsl "" IkB-k,l~ Ilfll, 
(A4) 

I Is f(P) :n (exP(ikeR) ~ eXP(ik,R») dS I "" t I k; - k~ I ~ IlfIV, 

(A5) 

Ii f(P) o~'( exp(ike
R

) ~ exp(ik,R) )dS\ "" t Ik;- k~ I ~ Ilfll, 
(A6) 

I Is f(p) :n ~dsl "" a Ilfll, 

lif(p) o~,~dsl "" a Ilfll , 

I 
r f(P)~ exp(ikeR)- exp(ik,R) dsl 
Js on' on R 

""(~lke+kil~+tJ3}lk;-k~lll!ll, 

where ~ is the surface area of S, 

/3= sup -[
dS 

P'E S s R 

'and 

a=max{sup r 
P'E sis 

(A7) 

(AS), 

(A9) 

The estimates involving a/on' are valid for P' on 
smooth parts of S as well as limiting values as P' ap
proaches boundary points of S,. (A8) requires the addi
tional assumption (2.2). 
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Topology of Higgs fields 
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It is shown that the conserved magnetic charge discovered by 't Hooft in non-Abelian gauge theories 
with spontaneous symmetry breaking is not associated with the invariance of the action under a 
symmetry group. Rather, it is a topological characteristic of an isotriplet of Higgs field:; in a 
three-dimensional space: the Brouwer degree of the mapping between a large sphere in configuration 
space and the unit sphere in field space provided by the normalized Higgs field if,a ~ ¢q (¢b ¢b )-1 J1 . 

;,The use of topological methods in determining magnetic charge configurations is outlined. 
A peculiar interplay between Dirac strings and zeros of the Higgs field under gauge transformations 
is pointed out. The monopole-antimonopole system is studied. 

1. INTRODUCTION 

In quantum electrodynamics one can introduce! mag
netically charged fields at the price of changing 
Maxwell's equations. The conservation of magnetic 
charge is related to the appearance of a new (magnetic) 
U(l) symmetry in the theory. 2 

In non-Abelian gauge theories of the Higgs type, mag
netic monopoles can appear without any modification of 
the field equations as has been demonstrated recently 
by 't Hooft. 3 Since one is dealing with the unaltered field 
theory one may wonder as to the origin of this new con
servation law of magnetic charge. Is there a "hidden" 
symmetry in non-Abelian gauge theories that has not 
hitherto been recognized? We shall answer this question 
in the negative and will show that the possibility of non
vanishing 't Hooft magnetic charge is a direct conse
quence of having three scalar (Higgs) fields in a world 
with three space and one time dimensions.Mathematical
ly expressed, the value of the magnetic charge is deter
mined by the homotopy class of the Higgs field. In this 
respect our work is closely related to the "kink" and 
"metricity" concepts introduced earlier by Finkelstein 
and Misner4 and Skyrme. 5 

We also explore the role of gauge invariance and 
derive a connection between the zeros of a Higgs field 
and the Dirac strings of monopole theory. A particular
ly simple treatment of the monopole-antimonopole 
problem then emerges. 

2. THE MEANING OF MAGNETIC CHARGE 

We start by conSidering a gauge theory based on the 
group SO(3). We have a triplet of Yang-Mills fields 
A~ (It =0,1, 2,3=Lorentz index, a=l, 2, 3) and a triplet 
of Higgs fields cf>". In terms of these fields one can 
define 't Hooft's "electromagnetic" field tensor 

F uv= $"G~v - (l/e) ~GIJc$aD u $bDJi>c, (la) 

where 

cf>4 = (cf>~cf>~tl/2cf>., D,,¢a = a" ¢a + eEdCA~ ¢c, 
(lb) 

The tensor F "" can be further written in the form 

F .. v=M"v+IIulI' (lc) 
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where 

M .. v=o"BII-oIlB", 

B = ~aA4 
/J. 'Y It' 

H "" = (l/e)e. oc :f,Ga" 4>ba.$c. 
We now define the magnetic current 

and find from Eqs. (lc, d) and (2) that 

(ld) 

(2) 

k = l.E aVHPu = (1/2e) E€ o·~ao';;"bou;;"c (3) 
/J. 2 IJ.llpCT tJ.rlpa abc '+' '+' '+' ~ 

In deriving Eq. (3) we have used the identity E".puovM,a 
= 0 valid in the absence of Singularity lines in the gauge 
field. The remarkable feature is that the magnetic cur
rent is completely specified in terms of the scalar 
triplet of Higgs fields. It is independent of the Yang
Mills fields A~. The current k" being the divergence of 
an antisymmetric tensor is conserved 

o"k"=O. 

In other words the magnetic charge 

M=(1/4rr) Jkocf'x 

obeys 

M=O. 

( 4) 

(5) 

(6) 

We now show that M nevertheless does not generate a 
symmetry. The divergence equation (6) is not a dynami
cal equation. It holds true no matter what action princi
ple determines the dynamics of rp4. It is not a combina
tion of field equations. Noether's theorem (more pre
cisely the reciprocal of what is usually referred to as 
Noether's theorem) does not apply and we cannot de
rive a symmetry. In fact M, as can be seen from Eqs. 
(3) and (5), contains only the fields cf>G and their space 
derivatives and hence commutes with all dynamical 
variables; thus it generates no symmetry transforma
tions. Then how does the conservation of the magnetic 
current k" come about? To answer this question, we 
start by writing down the magnetic charge in the form 

(7) 
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where the last integral runs over the sphere 

S~: XIXI =R2 (8) 

in configuration space. This sphere can be parametrized 
in terms of two parameters ~'" (a:::: 1,2): 

Xl:::: xl(~a)' (9) 

Using 

1 oxm ax" A o~'" 0$& 
tPUI="2Elm"3fc' 0~E"'8tP~, OJcp6= OX J ~' 

we find 

41TeM= lim fS2 tEaaE •• $.0 $608;P·tP~. 
R--o R 4 ex 

It is readily checked that the square of the integrand 
in this expression is precisely 

(10) 

(11) 

(12) 

the determinant of the metric tensor of the unit sphere 
;p.;p. = 1. The integrand is then ± ,;g. While the point 
(~1' ~2) covers the sphere S~ once, the vector $ can 
cover the unit sphere d. times wJth the positive sign 
of Ii and d_ times with the negative sign. The differ
ence d = d. - d_ must be an integer since otherwise the 
fields $- would nat be single valued. The integral of 
Ii tP~ gives the area 41T of the unit sphere with the ap
propriate sign for each covering. Thus 

41TeM =d41T 

or 

M:::: d(lle), d = integer. (13) 

Once we have shown that, in units of lie, M must be 
integer, we can throw new light on the conservation law 
of magnetic charge [Eq. (6»). The continuous time evolu
tion of the scalar fields and their gradients can change 
the magnetic charge-as defined by the integral (7)
only continuously. This is compatible with the integer 
spectrum of M only if M is time independent. By using 
Feynman's path integral quantization this statement is 
readily carried over to the quantized theory. 4 

We note that the argument that led us from Eq. 
(11) to Eq. (13) is a special case of a general theorem 
due to Kronecker. 6 The integer d is called Kronecker's 
index, and it plays a central role in topology. This is 
not surprising, since magnetic charge, as was empha
sized above, does not originate in dynamics but rather 
follows from the topological structure of three scalar 
fields in a three-dimensional space. In the next section 
we further explore the topological meaning of magnetic 
charge, We shall give criteria for finding the magnetic 
charge simply from the field topology. Finally, we note 
here that the charge density ko given by Eq. (3) vanishes 
everywhere except at the zeros of the Higgs field where 
it has 6-like singularities that yield the result (13) upon 
integration. The zeros ~. of the Higgs field are obtained 
by imposing three conditions cp·(.~)=O, a= 1, 2, 3, in a 
three-dimensional manifold (Xl, x2,.0) leaving thus in 
regular cases a zero-dimensional manifold, i. e., an 
isolated zero. It is also clear that the arguments of this 
section can be generalized to n * 3 space dimensions, 
provided one considers a theory with n scalar fields. It 
is remarkable that in all such theories one disposes of 
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an "identically" conserved current of the 't Hooft type. 
If in n space dimensions one has only n - p scalar fields, 
these fields will vanish on p-dimensional manifolds, and 
there are conserved quantities associated also with 
these manifolds. An example is provided by flux quanti
zation in an "Abelian" superconductor where n = 3 and 
p = 1. The quantized and conserved quantity in this case 
is the magnetic flux. 

3. THE TOPOLOGY OF HIGGS FIELDS 

In the last section we saw that magnetic charge equals 
the Kronecker index of the normalized vector field $(x) 
defined over a large sphere (S;: XIXI =R2) in configura
tion space. To proceed further with our analysis, let 
us consider $·(x) in more detail. It maps the sphere 
S~ into the unit sphere in field space S;l: 

;" S2 _S2 
'/'. R 1/>1' (14a) 

Along with the Kronecker index, such a mapping can be 
characterized7 in three further equivalent ways by its: 
A. Brouwer degree, B. homotopy class, and C. 
POincar€!-Hopf index. It is worth considering these al
ternatives as they throw additional light on the topology 
of Higgs fields. 

A. Brouwer degree 

Just as in the last section we parametrize the sphere 
S~ by the two parameters ~'" [Eq. (9)]. In addition, we 
also parametrize the sphere S;l by two parameters say 
CP" (a = 1, 2; e. g" polar coordinates). The mapping (14) 
can then be described by 

(14b) 

and is not necessarily one to one. Let (1/;1,1/;2) be the co
ordinates of a point 1j! on S~l' Let <p-1(1/;) denote the set of 
all pOints on the sphere S; that are mapped into the point 
'f by the mapping (14b). If the Jacobian of the mapping 
(14) does not vanish at any of the pOints of <P-1(lb), then 
1j! is called a regular point of the mapping (14). Assume 
now that 1j! is a regular point of the smooth mapping (14). 
The Brouwer degree of the map (14) at the point Ij; 

d(1);I/!), is defined as 

A (~) d(cp;1jJ) = ~E~~L» sgndet o~8 . ( 15) 

It is readily shown that d does not depend on the choice 
of the regular point on S~l' so that we shall use the nota
tion d( 1» for it. 

B. The homotopy class 

Two smooth mappings 

f,g:S~-S:l (16) 

are smoothly homotopic if there exists a smooth 
mapping 

F : S~ <2) [0, 1] - S;\ (17) 

such that 

F(~, O)=f(o, F(~, l)=g(n. (18) 

In other words there exists a continuous class of map-
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pings F(~,~) labeled by a parameter ~ E [0,1] such that 
Eqs. (18) are obeyed. 

The set of all mappings smoothly homotopic to a given 
mapping defines its homotopy class. 

C. The Poincare-Hopf index 

Let x = i be an isolated zero of the isovector field 
o 

lj>i(X). Consider a small 2-sphere S.2 centered at x. The 
normalized field ;P'(X) maps S.2 onto 5;1' The Brouwer 
degree of this ma~ping is called the Poincartl-Hopf in
dex i of the zero x. 

Now let us state without proof some theorems7 that 
show that the Brouwer degree, the homotopy class, the 
Poincare-Hopf, and Kronecker indices are equivalent 
ways of characterizing a smooth mapping. First of all 
a special case of a general theorem of Hopf states that 
two smooth mappings (16) are homotopic if and only if 
they have the same Brouwer degree. Furthermore, it 
can be shown that if the isotriplet field CP"(x) has only 
nondegenerate zeros, then the Brouwer degree of the 
mapping (14) equals the sum of Poincar~-Hopf indices 
of the zeros of CPI(X) inside the sphere S~. Finally, the 
Brouwer degree d($) of the mapping (14) is equal to its 
Kronecker index. In short then: Magnetic charge in units 
of lie equals Kronecker index of mapping (14) equals 
Brouwer degree of mapping (14) equals sum of indices 
of (nondegenerate) zeros of the Higgs field, 

eM=d=d($)= ~ i(x). (19) 
"'"(%)=0 

All Higgs fields in the same homotopy class have the 
same magnetic charge. Let us illustrate all this with a 
few simple and important examples. 

Example 1: The constant map 

lj>a(x)=C", Ca=const, C"C"*O. (20) 

Then ¢" = ca I(CbCb)1/2. The Kronecker index and 
Brouwer degree obviously vanish. Since the constant 
field has no zeros, the sum 2: .,,4(%)=0 i(x) is also zero. 
Moreover, all constant fields are smoothly homotopic. 
One can even give a simple form for Fa(x,~) that accom
plishes the transition from one to another member of the 
homotopy class: Fa(x, A) = ca(1 -~) + Da~. 

Example 2: 

cpa(x) = xaf(x l ), (21a) 

where f is a continuous function with no zeros and a suf
ficient number of continous derivatives. Then 

(21b) 

While Xl covers S~, ;pa covers once with positive orien
tation the sphere S; ,1' Hence the Kronecker index is 
d= 1. Choosing both the es and cp's (the intrinsic co
ordinates on both spheres) to be polar coordinates, it 
is obvious CPI = ~I' CP2 = ~2' so that the Brouwer degree 
of the mapping (21) is d (xIIR) = 1. The only zero of the 
Higgs field is at the origin and its index is obviously 
i(O) = 1. We thus see that whichever way we turn it, the 
magnetic charge of the Higgs field (21) is + 1 (in units 
of 1/ e). 
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Example 3: 

CPI(X) = 2axl j(x i ), 

1j>2(X) = 2 ax2j(x i) , (22) 

CP3(X) = (xix' _ a2)j(xl), 

where f has suffiCiently many continuous derivatives 
and no zeros. Here again all four criteria give the total 
magnetic charge M = 0; however, it is obvious that cpa(x) 
has two zeros, one at Xl =x2 = 0, X

3 = + a, the other at 
Xl = x2 = 0, X 3 = - a. They have indices + 1 and - 1 re
spectively. The field (22) can thus be interpreted to cor
respond to one monopole and one antimonopole separated 
by a distance 2a. 

Example 4: A field with total magnetic charge M = 2 

1j>1(X) = ax1f(x i ) , 

cp2(X) = X2x3f(x ' ) , (23) 

CP3(X) = «X3)2 _ a2)j(x i ). 

It has zeros at Xl = X2 = 0 x3 = ± a, and the indices are 
+ 1 for both zeros. One could interpret this as two 
monopoles separated by the distance 2a, but the asym
metrical appearance of the field casts doubt on such an 
interpretation. Of course, here as well as in the pre
vious cases such interpretations are to be validated by 
searching for solutions of the type (21)- (23) to the field 
equations. In the context of gauge theories gauge in
variance can considerably simplify this task. We now 
address ourselves to this problem. 

4. GAUGE INVARIANCE. DIRAC STRINGS AND 
HIGGS ZEROS 

The discussion of the previous sections concerned 
ways of determining the magnetic charge from the topo
logy of the Higgs fields. Somehow the Yang-Mills fields 
A~ played no role. In fact, a conserved magnetic charge 
can be defined even in the absence of gauge fields. One 
might therefore believe that gauge fields are irrelevant 
to the problem of magnetic charge. However, this is 
not so. To properly understand the effects of gauge 
fields, let us start by considering the problem of gauge 
invariance. 

From its definition (1)-(2) the magnetic current ku 
is an isosinglet and therefore so is the magnetic charge 
M [Eq. (5)]. This is true whether gauge fields are pres
ent or not. In the presence of gauge fields, F uy and 
therefore k,. and M are invariant also under local iso
spin-gauge transformations (i. e., isospin transforma
tions with space dependent parameters). This comes as 
no surprise as we expect magnetic charge to be an ob
servable. Though F uv is gauge invariant its "partition" 
into M,.y and H)J,v [Eqs. (Ie, d)] is not. In particular, M)J,v 
is not gauge invariant. We have seen that if the gauge 
field is not Singular, then the magnetic charge depends 
via H)J, v only on the homotopy class of the Higgs field. 
But this homotopy class can change under gauge trans
formations while the magnetic charge cannot. This 
means that the M /LV term in F I<V which in the original 
gauge did not contribute to the magnetic charge must 
in the new gauge contribute. In other words, the gauge 
field must acquire a (stringlike) singularity in the new 
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gauge. This means that the gauge transformation itself 
must be singular. Before going on, let us illustrate this 
on an example. 

Let the Higgs and gauge fields for large 
by the ('t Hooft) expressions3

: 

CP4(X) = Fxa /r, ~4(X) = xa /r, 

A~=O, A1=(1/e)~4lJx/r. 

Now perform the gauge transformation 

w = exp\ - iq;I3 ) exp(ieI2 ) exp(iq;I3) , 

Ixl be given 

(24) 

(25) 

where q;=arctan(r/x1), 8=arccos(x3/r), r=(x'x')1/2 
are the standard sperhical coordinates and fa the isospin 
generators. This gauge transformation is indeed singu
lar in that a ,ww-1 has a singularity line along the posi
tive x3 semiaxis (such gauge transformations are also 
considered in Ref. 3). The fields cp' and A[" in the new 
gauge are given by 

~ I.,. /2= w$·( ,'/2) w-1 = 13 43 ,./2, 

A;·'./2 = wA1(,'/2) w·1
_ U/e) a IWW-

1 

= 0.3(1/ e) ~'3k[x~/r( r - x3
)] ,./2. (26) 

The Brouwer degrees of the S~ - S;1 mapping defined by 
$ and $' are + 1 and 0 respectively as we have seen in 
Sec. 3. In the new gauge, however, the Yang-Mills 
field A;S is singular along the whole positive 3 semiaxis. 
It exhibits the familiar Dirac string of Abelian electro
dynamics. In this gauge the magnetic charge is com
pletely given by the M <LV term 

M = 4~ ii. cPO', ~iJkM}k 
=..l r cPu ocurlA 13 = .!. 

41T ) S2 e' 
R 

where only the regular part of M <LV is integrated [one 
omits the singular -O(Xl) 6(x2) partB]. We thus see that 
the gauge transformation (25) has "transferred" the 
magnetic charge from the Higgs to the gauge field. 

In the primed gauge (26) the fields have a very simple 
configuration: The Higgs field is constant over all of 
space, while of the gauge fields only one (the third) i80-
pace component survives so that one has for aU practi
cal purposes an Abelian field. For this reason, we call 
a gauge in which 

cpa = 6.3 , A1:::= 6.3A~ (27) 

an Abelian gauge. (Of course, the common isodirection 
of cp and A need not be the 3 direction). In the Abelian 
gauge the nonlinearity of the Yang-Mills self-couplings 
is removed and the gauge field becomes additive. We 
are then led to a natural method for dealing with phys
ically interesting systems of collinear monopoles and 
antimonopoles. It involves the following steps: 

1. Start with an Abelian gauge. 

2. In the Abelian gauge let A~ equal the sum of the 
singular potentials corresponding to the monopoles and 
antimonopoles of the problem. 

3. Make a gauge transformation to a gauge in which 
all string Singularities are removed. The expression ob-
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talned in this way for the gauge and Higgs fields in the 
nonsingular gauge are the proper (boundary) expressions 
to be used for Ixl- 00. 

The Abelian gauge expressions of the fields are ob
viously solutions of the dynamical equations in that 
gauge (except on the string). Since the dynamics is 
gauge invariant, this proves that the expressions for 
the fields in the nonsingular gauge will also be solutions 
of these equations and everywhere at that. One can then 
impose these solutions asymptotically for r- 00 and 
determine the form of the solution for small r by multi
plying the solutions by arbitrary functions and minimiz
ing the energy integral. 3 As a trivial example, if we 
start with the fields (26), apply the inverse w·1 of the 
gauge transformation (25), then we find the proper 
asymptotic expressions (29) of 't Hooft. 3 Similarly for 
one monopole and one antimonopole one starts from 

$. = 6.3 , A1(xJ) 

- 6 .!. EO x~ ( 1 _ 1 ') (28) 
- .3 e 3«&- rJr __ a _ x3 ) r.(r. + a _ x3 ) , 

where Y. is the distance of the point x=(X\X2,x3) to the 
point A.= (0,0 ± a) (at which the monopole/antimonopole 
is located). 

The proper gauge transformation in this case is 

(29) 

where 6 is the angle between the vectors xA. and xA. 
[cos6=(r2-a2)/r.rJ, It is readily checked that this 
gauge transformation indeed removes the string singu
larity for A~ and that in the nonsingular gauge the CP"(x) 
take the form (22) which thus acquires physical content. 
Remarkably enough for a system of two identically 
charged monopoles no static nonsingular gauge exists. 
The field (23) is then not physically interesting. We 
hope to return to these problems and their relation with 
dual resonance models elsewhere. 

To sum up, we have found a remarkable complemen
tarity between Dirac strings and Higgs zeros. Magnetic 
charge can be carried in the zeros of the Higgs field, 
but gauge fields can "carry" it only in the presence of 
Dirac strings. Gauge transformations can change the 
homotopy class of the Higgs field and thus the magnetic 
charge they carry. The gauge invariance of magnetic 
charge then requires gauge transformations that affect 
the homotopy class of the Higgs field, to remove or sup
ply (as the case may be) Dirac strings in the gauge field. 

5. CONCLUSIONS 

We have established that the conservation of magnetic 
charge in non-Abelian gauge theories does not originate 
in a symmetry of the Lagrangian via the Noether mech
anism. It is rather a topological invariant of a mapping 
between two spheres provided by the normalized Higgs 
fields. The study of the topology of Higgs fields has led 
us to a method for easy identification of the magnetic 
charge assignment to a given field configuration. The 
inclusion of gauge invariance has further revealed a 
remarkable "complementarity" between the zeros of 
Higgs fields and the singularity lines (Dirac strings) of 
gauge fields. 
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It may be worthwhile to point out the relevance of all 
this. to hadrodynamics. One would want to identify the 
monopole-antimonopole system discussed in Sec. 4 
with an (approximate) classical picture of a meson. 
The question is where are the quarks? So far, we have 
not included fermions, but we can do this in the standard 
way. Classical solutions of theories of fermions coupled 
to scalar Higgs and gauge fields have been studied re
cently.9 It has been pOinted out that the density of ferm
ions is large only in the immediate vicinity of the zeros 
of the Higgs fields. But we have seen that zeros of the 
Higgs field localize magnetic charge. We thus see that 
Fermi fields like to localize around magnetically 
charged centers. We can thus conclude that the location 
of magnetic charge determines the location of the quarks 
even though the quarks do not themselves carry mag
netic charge. 
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A variational principle in statistical mechanics for particle 
systems with bounded pair interactions 

A. Gerardi, N. laniro·, C. Maffei * , and C. Marchioro* 
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(Received 13 December 1973) 

A gas of particles interacting pairwise via bounded potential is considered in the framework of 
rigorous statistical mechanics. It is proved that the pressure is the supremum on a class of states of 
the difference between the entropy and the mean energy. 

1, INTRODUCTION 

Variational principles are well known in thermody~ 
namics. They have been recently discussed also in the 
framework of rigorous statistical mechanics. In parti
cular, the principle that defines the pressure as the 
supremum on a large class of states of the difference 
between the entropy and the mean energy has been con
sidered by Ruelle, 1 for lattice systems, and by 
Gallavotti and Miracle-Sole, f9r hard sphere systems. 2 

In this paper we extend the variational principle to a 
system of particles interacting via a bounded pair 
potential. In order to control large fluctuations of the 
number of particles in bounded regions, we suppose the 
potential to be superstable. 

In Sec. 2 notations and assumptions are defined. In 
Sec. 3 we discuss the definition of states and of their 
entropy. In Sec. 4 we define the mean energy and 
finally in Sec. 5 the variational principle is established. 

2. NOTATIONS AND ASSUMPTIONS 

We consider a system of identical particles in IR", 
interactin(!: pairwise via a potential rf>. We assume the 
following: 

Assumption 1: Let 

be a continuous translational invariant function such 
th'tt 

rf>( - x) = rf>(x). 

(In fact, the Lebesgue measurability is sufficient for the 
validity of the variational principle). 

We define the interparticle configuration energy as 

Definition 1: 

\)~(xv •.. ,xm ) = U (xv' .• , xm) + U q,(xlO ••• ,xm ), 
1 2 

where U 1 is the one-body potential (JJ. = chemical 
potpntial) 

and 

U(xl' ... ,xm)=-JJ.m, 
1 

Uq,(X1 , ••• ,xm)=O, m=O,1. 
2 

U<t>(X1, ... ,xm)=L rf>(Xi-X), m>1. 
2 i<j 
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Assumption 2 (stability): There exists B '" 0, such that 
for all m, Xl"'" Xm 

U<t>(X1 , ., • , X m) "" - mB. 
2 

The following partition of lR" will be useful in the sequel 

Definition 2: 

r(r)={XElR": ri - ~ ~Xi< ri + ~f 

where r E zv, 

Assumption 3 (superstability): There exist A> 0, 
B "" 0 such that for every finite set R c ZV and 
X=(x1, •. · ,xm)c U,.r=R r(r) 

where n(X,r)=CardXn r(r). 

Assumption 4: There exists a decreasing function 

<p: Z+ -lR+ 

such that 

sup I rf>(x - y) I ~ <p( 1rI) 
xer(r' 

~r<o' 

where Irl = supri for rE Z". Note that Assumption 4 
implies weak-tempering and lower-regularity conditions 
for rf>. 

The set of Ij! has a natural structure of a linear space. 
In this space we introduce the norm of </J as 

II</JII= IIlI + L sup 1rf>(x-y)l· 
rCZV xer(r' 

y::: r(O) 

We callN the set of all </J satisfying Assumptions 1-4 
and Ih the subset also satisfying Assumption 3. 

It can be shown that the following theorem holds: 

Theorem 2.1: If X=(xv "" xm)c u~ r(r) (R finite 
subset of Z), then 

u",(X) ~ II </J II L n2(X, r) 
rER 

3. STATES AND ENTROPY 

The description of states in classical mechanics as 
states on an Abelian C*-algebra, has been considered 
by several authors (see for instance Refs. 3 and 4). Let 
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T E 1R~ be the configurational space of one particle (as 
usual we omit the particles momenta), and let 

T="E T" 
"~ 

be the topological sum of disjoint copies of T". Let also 
k::' be the space of real continuous functions on T with 
support inA" (Ac T open bounded set) and kA the space 
of sequences (f")rt-O where fn E kl and f n= 0, for n large 
enough. Finally we call k the union of k A' Therefore 
an element of k may be considered as a function on T. 

Iff=(fn)'=-n"'ok we define a function Sf,=- k in such way 
that its restriction to Tn is 

We now construct an abelian C*-algebra. For any 
integer q >-- 0, and any bounded continuous complex func
tion r.p on m9

, the set.if of the function r.p(Sfl' ••. , Sf.) on 
T, with respect to the usual operations, forms a com
mutative *-algebra. Its closure A with respect to the 
uniform norm is our Abelian C*-algebra. 

Let E be the space of states on A. We shall consider 
now a subset of E, related to a family of density distri
butions. For every bounded open Ac T and any integer 
n? 0 let /J.l >-- 0 be a measure on An, symmetric in its 
n arguments. We say that (J.-L ';,) is a family of density 
distributions. if the following conditions are satisfied: 

(i) Normalization. For all A. 
~ 

2:: /J.l(A n) = 1. (3.1) 
,.,0 

(ii) Compatibility. Let Ac Nand XA' / A be the char
acteristic function of N / A where N / A is the comple
ment of A in N. If f"'=- kl then 

where 

(f&x"l,j A) (Xl' ••. ,Xn+m) = fn(x l , •••• Xn)xA' / A (xn+l ) 

X' .. • XA' /A(X"+m)' 

We consider the state p on A defined by 

P(r.p(Sfl' •..• Sf.» 

(3.2) 

= ?;;o1an d/J.:(x1••••• xn)r.p(Sf1(Xl ••··• x n),···, Sf.(xl .···, xn» 

where f l , ••• ,f.'=- k A and we extend it by continuity to a 
state p on A. 

We call 1 the set of states thus obtained. 

If F is a function on T, a translation Ta by aE T is 
defined by 

TaF(Xl' ... ,xn) = F(x, - a, ...• xn - a). 

We call r the subset of 1, consisting of translation in
variant elements that are related to a density distribu
tion satisfying the following requirement: 

(iii) Invariance: 

/J.l(fn) = J.l~+a(Taf"). 
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We require a further condition on the states: 

(iv) There exist real numbers y, 0 with y> 0, such 
that for every bounded and open region .6. and for every 
f"E k1, we have 

i f" (X)ld/J. ~ (X) "" -.!., ( f"(X) exp "E [- yn2(X, r) 
6" n. It:J.n r 

+ on(X, r) J dX 

where dX=dx l ••• dx" is the Lebesgue meal>ure; we call 
jl the set of states of J" satisfying (iv). 

This condition is suggested by the fact that it holds 
for the equilibrium state of a gas of particles interacting 
via a superstable potential; of course, in this case y 

and 0 depend on the potential considered. 5 

The following inequality will be useful in the sequel. 

Lemma 3.1: Let Acffi" be an open bounded set con
taining the origin. If (/J.~) is a family of density distri
bution satisfying (i)-(iv), then for every Me Z+ 

where A"" is the set of Xc An such that n(X, 0) =m? M 
and €(A) - 1 when A - 00 in the Van Have sense. 

Proof; Let f(r) = An r(r) and let p = {r,=- Z": f(r) * n} 
be a finite set. We consider separately the contribution 
of the term r=O and the other ones. The first one gives 

= "E m 2 "E (m + p)! 
m~M p .. o m!p! 

x /J.~+P(x;{'@ X~;f'(O» 

where X;;' is the characteristic function of f(o)m. Using 
(ii) and (iv) we obtain 

"E fA" n n2(X, 0) dJ.l ~(X) = "E m 2 /J. 'l\O)(X;{') 
n'JI.M m-M 

m2 

"" "E -, exp(- ym 2 + om) <s const exp(- yjlJ2). 
m"*M m. 

For the other terms 

<sexp(-y~)const (cardp -1) 

where we made use of (ii) and (iv). 

With the aid of the Van Have limit the lemma is finally 
proved. QED 
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The entropy shall now be defined. Let (Il~) be the 
family of density distribution related to a state p r:o. J 1 • 

We suppose that for every A, n, Il ~ is absolutely con
tinuous with respect to the Lebesgue measure and we 
put 

1 
dll ~(X) = ,'O"~(X) dX. n. 

The entropy S.( A) is defined by: 

Definition 4: 

Sp(A)=- 2: -\- ( dXO"'l(X)logO"l(X). 
n"O n. JlI.n 

The following results hold. 4 

Theorem 3.1 (Robinson-Ruelle): The limit 

s = lim Sp(A) = inf Sp(A) < + 00 

11.-~ VeAl 11. veAl 

exists in the Van Hove sense. 

Definition 5 (Mean entropy): s(p) is defined on Y by 
(i) s(p)=s if pr:o. Jl and the measures Il~ associated 
with p are absolutely continuous with respect to the 
Lebesgue measure. (ii) s(p) = - 00 otherwise. 

Theorem 3.24: The functional s(p) is affine on 71
• 

4. MEAN ENERGY 

Let A e IRv be an open bounded region, p ~ 71 and 
I/Jccl!1. We define the mean energy as 

U.'II.(p)=V(A)-lI: L Uol.(X)dlll(X). 
n::s:O A 

Theorem 4.1: Let pr:o. it, then 

when A is a net of increasing cubes. The functional 
p- U.(p) is affine. 

Prrof: We first note that for every A not too small, 
for instance A~ reO), the following continuity relation 
holds: 

I U"II.(p) I '" III/JII canst 

where we used Theorem 2.1 and Lemma 3.1. 

So we can confine ourselves to consider finite range 
potentials. We put 

UI/IlI.(p) = U;'II.(p) + U~II.(p) 

where U~II.(p) is the functional obtained considering only 
the configurations in which no more than M particles 
are in each r(r). By Lemma 3.1 we have 

U~II.(p) '" const exp( - yM2) E(A) VeAl III/Jil 

which vanishes in the limit 

veAl - 00, 

M = 9 (lOg V~A) ) (9'" integer part). 

(4.1) 

(4.2) 

We prove that in the same limit U~II.(p) converges. 
The proof is similar to that of Ref. 2. For every Xc IRv 

let e(X) be a function defined as 
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e(x)=o if X n I'(O)=¢, 

r=1, ... ,m. 

and E( 0 is a continuous function with compact support 
contained in reO), such that 

fr.«() Em d~ = 1. 

A8(X) = I: e(T)ljJ(T) =S(61/J \ (X) 
" rex N(T) N I 

with 

if N(T)= 1, 

</J(T) = cp(x - y) if N(T) = 2, T "'(x, y), 

otherwise. 

and 

supp A!e Aa. 

if A() is a sufficiently large cube centered at the origin. 
It is easily seen that, for every X'" (Xl' ••• ,xn) (x I r:o. m,,) 
if A(X) is a cube centered at the origin containing X and 
A~ A(X) + reO), 

(4.3) 

Now let p r:o. ]" and {Il~} be its family of density distri
bution. We define 

(4.4) 

where II' n is the set of all configurations Xc A, A~Aa 
with n(X, r) "'M. We note that there exists the limit 

In fact, 

IAZ(X)/ ",2 max E(OIII/JII2: n2(X,s) 
'r:o.r(o) sr:o.S 

where 

S={sr:o. Zv: [A()+ r(o)]n r(s)*cp} 

so that, by (4.4) and Lemma 3.1, (4.5) is proved. 

The proof then proceeds as in Ref. 2. Using the 
limit (4.2), we prove that 

p(A~) = U.(p). 

5. VARIATIONAL PRINCIPLE 

(4.5) 

QED 

Definition 6: Let A a bounded Lebesgue measurable 
region of IRv and I/Jr:o.N: 

ZII.(I/J) = I: J, f, dXexp[-{3U.(X)]. 
n;!sO n. An 

Definition 7 (Pressure): 

p 1I.(1/J) = {3"I V(A)-I log Z 1I.(</J). 

For A - 00 in the Fisher sense, the thermodynamic limit 
exists: 
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lim P",(Ifi)=P(Ifi). 
"'-.. 

A property of the density distribution associated with 
an equilibrium state is known: 

Lemma 5.1 (Ruelle5
): Let Ifi~ /fJ; the equilibrium state 

of a system of identical particle in a box A is related to 
a family of density distribution /J. ~ such that 

dp.'l,. (X) = exp[ - J3U~ (X)] dX 
Z",,(if;) 

and there exist y, 6' (independent of A) so that (iv) of 
Sec. 3 holds. 

Assumption 5: Call j~ the subset of oj" consisting of 
states such that 

6> 6, 0 < Y < 2-2
" y < y 

where y and 5" are defined in Lemma 5. 1. The as
sumption 6 > 6' and y < Y assures that j~ contains the 
equilibrium state. The stronger Assumption 5 is in
troduced by technical reasons. 

We give now the main theorem of this note: 

Theorem 5.1 (Variational principle): The functional 
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p- S(p)J3"l - U.(p) is affine on if;~ /fJ and, for every 
WE/fJ, 

P(if;)= sup [S(p)l3"l-U.(p»). 
PE)t 

The proof runs in the same way as in Ref. 1, also 
taking into account the technique of Theorem 4. 1. Note 
that the Assumption 5 is introduced to assure that the 
test measure used in Ref. 1 be in 1;. 
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Erratum: Multichannel stationary scattering theory in two-Hilbert 
space formulation [J. Math. Phys. 14, 957 (1973)] 

E. Prugovecki 

Department of Mathematics, University of Toronto. Toronto. Canada M4P 2A 7 
(Received 3 O,.tober 1974) 

The second parts of Theorem 4.1 and 4.2 should 
state only that (3.16) implies (4.7) and (2.5) implies 
(4.10), respectively. The converses of these two state
ments are not true. This is an essential observation 
since, as discussed late r, a scattering theory in the 
Liouville spaceB 2 (H) based on (4.7) and (4.10) is actual
ly more general than its couterpart on the Hilbert 
space H. 

The errors stem from the incorrect relation in lines 
16 and 17 on p. 962. The expression on line 17 is not 
equal to the one on line 16 but rather to 

<[ rl; - U(t) JU( - t)] l-v)( -V 1\[ rl: - U(t) JU( - t)] l-v)(-v I /2' 

The cor'red relation is: 

([~~ -Q(-t)!0t)] l-v)(-vl! [~:-Q(-t)!Q(t)11-v)(-v1/2 
= II rl; 'It 114 + II U( -I) JU(l) 'It 114 

(1) 

By using (1) and the same method as in the last part of 
the proof of Theorem 4.1, we conclude that (3. 16) in
deed implies (4. 7) for any 

p EBl(H). 

To see that the converse is not generally true, con
sider the case of two-body scattering, when H = 11 ,. and 
H is the free Hamiltonian. Assume that 
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(2) 

does exist. If we perform an energy shift 1) of H, i. e. , 
consider instead the model with the free Hamiltonian 
H' ==H +1)l .• 

4~; = s-limU( - t) UI(t), u(t) = exp( - ill't) 
~±~ . 

does not exist because of the factor exp( - i1)t), which 
diverges for t- ± 00. However, the super-operator limit 

rl~ p =h-limU(- t) UI(t) p - ,..:t 1O - -

still exists for any p E Bl (1-1), and is actually equal to 

rl,. p = h-limU( - t) U(t) p. (3) 
- "':1:-0 - -

In general, the existence of the limits 'It,. = rl. 'It in (2) 
for a given 'It E H requires that 

( 4) 

On the other hand, according to (1), the existence of the 
limit P. = 1 >11")(>11,1 given by (3) for the corresponding 
p = 1 'It) (>11 1 

demands only that 

lim 1('It.IU(- t)U(t)>1I/ 1= 1. 
t~±.o 

( 5) 

Evidently, as a condition, (5) is strictly weaker than (4). 
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